
1.  Introduction
Water storage and supply reservoirs are highly dynamic systems with complex three-dimensional (3d) flow char-
acteristics that can be modeled with computationally demanding numerical simulation software. Such numerical 
models are vital to predict and plan efforts to maintain the functionality of reservoirs (e.g., drinking water supply, 
irrigation, or hydropower; Woolway et al., 2021; Zarfl et al., 2015). Still, modeling complex 3d hydrodynamics is 
a great challenge because many processes and factors, such as thermal stratification, may alter hydrodynam ics  in 
a reservoir (Kerimoglu & Rinke, 2013; Li et al., 2010; Zhang et al., 2020). Thermal stratification occurs, for 
example, in monomictic, dimictic, or polymictic lakes and reservoirs with generally small flow velocities and 
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Plain Language Summary  Software tools for replicating a real-world element, such as an artificial 
lake, need to account for many unknown parameters to create a physically sound conceptual computer model. 
Still, simplification assumptions are necessary to break down the complex reality into parameters that are 
easier to calculate. But the simplified parameters take on different values for each model and require specific 
adjustments. To perform these adjustments, a past event is typically reproduced with the conceptual model and 
different simplification parameter combinations. The simplification parameter combinations leading to the best 
possible replication of the past event are assumed to be valid to use the conceptual model for predictions of 
future events. Alas, many potentially false combinations can replicate a past event with very good results. Thus, 
a conceptual computer model can be overly adjusted regarding a particular phenomenon, such as heat transfer. 
Also, the number of possible adjustment tests is limited due to the long computing time of a conceptual model. 
For these reasons, we use a fast, simplified statistical model of a more complex conceptual model and machine 
learning for the adjustment process. We find that the statistic uncertainty increases with decreasing physical 
correctness of simplification parameter combinations.
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when the water temperature seasonally trespasses 4°C, where water has its maximum (temperature-dependent) 
density (Hutchinson & Löffler, 1956). With season-driven rising temperatures, thermal stratification happens 
when warm air and solar radiation heat the upper layers of a deep reservoir (Kirillin & Shatwell, 2016; Snucins 
& John, 2000). Thus, in spring and fall, slow temperature-driven mixing occurs in monomictic lakes when the 
ambient temperature heats the lake surface above 4°C or cools it below 4°C, respectively. Stratification is particu-
larly pronounced at warmer water temperatures when density differences can become greater. In addition, many 
other factors such as salinity and organic processes affect heat absorption and transfer in reservoirs and lakes 
(Dong et al., 2020; Sommer et al., 1986; Thackeray et al., 2013). Still, the heat transfer between air and water 
or in water by advection and diffusion is a slow process, which often takes several weeks and seasonally shifts 
more and more due to climate change (Woolway et al., 2021). Thus, mixing because of other external forces can 
considerably counteract stratification. For instance, wind-driven mixing, or pump and turbine operations increase 
turbulence and promote temperature equalization (Müller et al., 2018).

In consequence, to simulate hydrodynamics in an artificial reservoir, a numerical model of a reservoir needs 
to account for many processes, and their implication requires substantial simplification hypotheses (Hodges 
et  al.,  2000; Wang et  al.,  2022). For instance, the simulation of internal waves and mixing (i.e., turbulence) 
requires simplifications in the form of bulk coefficients for turbulence closures, which ultimately, also drive heat 
transfer. Typically, heat transfer in reservoir models is simplified with the so-called Boussinesq approximation of 
advection and diffusion (Katopodes, 2019; Yang et al., 2018) as a function of bulk coefficients.

These bulk coefficients must be specifically fitted for every numerical case study by vetting model results against 
measurement data. This fitting process is called model calibration, which is defined as an inverse, multi-step 
problem aimed at reducing uncertainties and achieving good agreement between modeled and measured data 
with reasonable tolerance (Oberkampf et al., 2004). Thus, calibration involves the fitting of (bulk) model param-
eters within a physically reasonable range, updating the model, and comparing observations with model results 
(Soares et al., 2020; Wright et al., 2017).

Finding an optimum combination of values for multiple calibration parameters is typically addressed by a 
trial-and-error method that requires running the numerical model for every parameter variation. Calibration 
parameter values leading to better reproduction of measured data are saved and modified based on an expert 
opinion until the model performs satisfactorily. The goodness of agreement is typically measured by global 
(lump-sum) statistics (e.g., the Nash-Sutcliffe model efficiency or the root-mean-square error [RMSE]), or even 
visual inspection only. This subjective calibration procedure faces several substantial challenges. In particular, 
trial-and-error calibration is subjected to individual and subjective decisions (Li et al., 2015; Masoumi et al., 2021; 
Shoarinezhad et al., 2020), time-consuming because of computationally expensive numerical modeling (Afshar 
et al., 2013; Beckers et al., 2020; Lindim et al., 2011), and prone to equifinality (i.e., entirely different parameter 
combinations leading to similar model outcomes; Beven & Binley, 1992). For instance, unintentional, undetected 
flaws in the model simplification hypotheses or calibration setup may counterbalance each other and cancel out 
errors. In addition, if the available calibration data reflect only a fraction of reservoir hydrodynamics, then the 
unconstrained aspects of reservoir hydrodynamics will be arbitrarily (bad) simulated. The wrong calibration 
of unconstrained parameters represents overfitting (cf. Beven & Binley, 1992; Brodeur et al., 2020), where the 
global model performance regarding the constrained parameters may seem good, but forecast simulations of 
future scenarios may be poor because of the higher importance of the unconstrained parameters. Ultimately, 
trial-and-error calibration is poorly efficient with low informative value regarding model uncertainty, and unreli-
able for identifying a unique, meaningful calibration parameter value combination (Lindim et al., 2011).

Thus, better and more efficient calibration techniques are needed, and so-called Bayesian calibration has shown to 
be a powerful tool. A Bayesian calibration yields a probability distribution of relevant calibration parameter sets 
through a global optimum search across parameter value ranges and identifies the remaining (post-calibration) 
uncertainty of calibration parameters (Beckers et al., 2021; Camacho & Martin, 2013).

Bayesian calibration starts with defining physically meaningful ranges for relevant calibration parameters and 
associated pre-calibration parameter uncertainties. The parameter range definition corresponds to a so-called 
prior probability distribution of every calibration parameter (Kennedy & O’Hagan, 2001; Kim & Park, 2016). 
Then, measured data is used to define a so-called likelihood. The likelihood expresses how well a model fits the 
calibration data as a function of calibration parameter combinations. The likelihood also accounts for poten-
tial imprecisions in the calibration data. Finally, the prior distributions and likelihoods are combined and poor 
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calibration results are rejected (e.g., through rejection sampling; Smith & Gelfand, 1992) to obtain so-called 
posterior distributions. These distributions encode both best-fit parameter sets and post-calibration uncertainty 
of model parameters.

However, the computing time of Bayesian calibration could quickly skyrocket, because it requires running the 
numerical model many times, for instance, with millions of Monte-Carlo samples from the defined ranges of prior 
distributions of calibration parameters. To bypass computationally expensive model runs, machine-learning-
driven techniques with so-called surrogate models (also referred to as metamodels) have already demonstrated 
highly efficient performance (Beckers et al., 2021).

A surrogate model stochastically mimics the behavior of a full-complexity numerical model (especially how 
its simulation results change with changing calibration parameter values) at acceptable accuracy (Beckers 
et al., 2021; Leifsson et al., 2015; Oladyshkin & Nowak, 2012). The computing time of a surrogate model is 
typically in the order of 𝐴𝐴  (10 × 10 −3s), and therefore, faster than a full-complexity model by orders of magnitude 
(Beckers et al., 2020; Forrester et al., 2008). A surrogate model can be constructed, for instance, using polynomial 
chaos expansion or Gaussian process emulators (GPEs) in combination with Bayesian optimization (Camacho 
et al., 2015; Jones et al., 1998; Kim et al., 2013; Mockus, 1994). The surrogate construction requires at least one 
run of the full complexity model for initial training, which can then be improved by successive training iterations. 
In this study, we use a specific surrogate model in the form of a GPE with an iterative Bayesian active learning 
(BAL) training algorithm.

While the surrogate-model technique addresses the time-inefficiency problem of subjective trial-and-error cali-
bration, Bayesian calibration also promises to overcome other shortcomings of subjective calibration. To this end, 
in this study, we used Bayesian calibration for adjusting a hydrodynamic reservoir model with different physical 
correctness of model simplification hypotheses through varying the availability of measured data. In particular, 
in one of three test scenarios, we forced reservoir stratification through Bayesian calibration in an unrealistically 
short time with water temperature measurements. In two other scenarios, we provided Bayesian calibration with 
flow velocity measurements reflecting pump and turbine operations of a pump-storage reservoir. Finally, we 
compared the characteristics of posterior distributions to analyze how Bayesian calibration responds to different 
scenarios of data availability that concurrently determine the apparent nature of dominant physical processes 
to be simulated. Thus, we asked two research questions. First, how does the selection of calibration data affect 
the (Bayesian) calibration results? Second, how does Bayesian calibration characterize physically unreason-
able calibration results? The first question focused on the physical significance of the calibration results, and 
the second question addressed statistical characteristics. Our test hypothesis was that a reservoir model with a 
physically inappropriate calibration setting can appear to correctly reproduce measurement data. In addition, 
we hypothesized that the shape of posterior distributions points to physically unreasonable calibration results.

To investigate and test the two hypotheses, we ran a Bayesian calibration of a large-scale, complex hydrody-
namic Delft3D-FLOW (Deltares, 2022) model of the pump-storage Schwarzenbach reservoir (SR) in Germany 
(Encinas Fernández et al., 2020). The calibration considered two bulk parameters (background horizontal eddy 
diffusivity and viscosity) and an initial guess for the vertical water temperature profile in the reservoir (assumed 
to be a constant over depth). We used the initial water temperature as a calibration parameter, because of its 
strong influence on the model results and the generally high uncertainty involved in assigning the initial water 
temperature. By imposing physically nearly impossible fast reservoir stratification in one of the test scenarios, 
we investigated how supervised machine learning in the form of Bayesian calibration treated mixing-related bulk 
parameters to match the measured data.

Before we addressed the research questions to test the hypotheses in the results and discussion sections, we 
described the experimental design in the form of the available calibration data and models used in the next 
section.

2.  Materials and Methods
2.1.  The Schwarzenbach Reservoir (SR)

The SR is located in the Northern Black Forest (Germany, EPSG 3857: 48.654842°N, 8.329314°E) and serves 
as the upper reservoir of a hydroelectric pump-storage scheme (cf. Figure 1 and Encinas Fernández et al., 2020). 
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The reservoir has a length of 2.2 km and a maximum depth of 47 m at its highest operating level of 668.5 m 
a.s.l., leading to a total storage capacity of 14.4 million m 3. It is fed by two rivers, the Schwarzenbach and the 
Seebach, and an artificial source in the form of the Raumuenzach conveyance tunnel, which transfers water from 
an adjacent catchment. In addition to the affluents, the hydrodynamic patterns of the reservoir are influenced by 
pump and turbine operations. Water is pumped from the Murg River at the valley bottom to an intake tower in 
the center of the dam that creates the reservoir. The Murg River has much higher temperature fluctuations than 
the inert water mass of the reservoir. Therefore, the currents close to the intake tower during pump operations are 
strongly driven by temperature-induced density differences. Furthermore, the reservoir is influenced by seasonal 
thermal stratification. Hence, the reservoir is separated into an epilimnion, metalimnion, and hypolimnion during 
summer, while turnovers in fall and spring cause full vertical mixing (Encinas Fernández et al., 2020).

2.2.  Measurement Data

Meteorological data in the form of wind velocity, wind direction, relative humidity, air temperature, and total 
radiation was available from a nearby meteorological station at Freudenstadt (22 km from the SR at 48.463669°N, 
8.407444°E, cf. DWD, 2021). The meteorological data constitute boundary conditions for the hydrodynamic 
model and do not vary in the calibration process.

Flow information was available in the form of hydrographs of the three inflows (Schwarzenbach, Seebach, and 
Raumuenzach conveyance tunnel) and a time series of flows resulting from pump and turbine operations at the 
intake tower (provided by the hydropower operator). The hydrograph that serves as liquid boundary (more detail 
in the next section) for the calibration at the intake tower starts on 1 August 2016, at 00:00 a.m. and ends on 7 
August 2016, at 00:00 a.m. In addition, the reservoir operator provided water level recordings for this period. The 
inflow, outflow, and water level fluctuation time series reflect a typical scheme of pump and turbine operations, 
and Figure 2 shows the flows and water levels implemented in this study. The hydrographs and water levels were 
not used for model calibration in this study.

Figure 1.  Location and bathymetry of the Schwarzenbach reservoir. The star indicates the measurement station where the acoustic Doppler current profiler -based flow 
velocity and boat-based water temperature were recorded.
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Vertical profiles of flow velocity in the reservoir were measured with an acoustic Doppler current profiler 
(ADCP) between July and October 2016 (Encinas Fernández et al., 2020). The position of the ADCP is marked 
by a star at the center of the reservoir in Figure 1. In this study, we only used a share of these data in the first 
week of August for model calibration, corresponding to the available hydraulic data shown in Figure 2 and water 
temperature measurements.

Vertical profiles of water temperature were measured from a boat on 1 August 2016, and we used the water 
temperature profiles that were closest to the position of the ADCP. Both flow velocity and water temperature were 
measured approximately 270 m upstream of the dam. Since both measured quantities were recorded at almost the 
same location, we simply refer to this location as the measurement station in the following.

The reservoir bathymetry shown in Figure 1 corresponds to the 2012 situation and it stems from Landesanstalt 
für Umwelt Baden-Württemberg (LUBW) (2016). Thus, the bathymetry was recorded 4 yr earlier than the flow 
velocity and water temperature. However, topographic change in these 4 yr was negligible because the sediment 
yield of the catchment is small, and no major flood event occurred during that time.

More information on the available data is provided in Supporting Information S1 (see acknowledgments section).

2.3.  Hydrodynamic Delft3D-FLOW Model

A 3d hydrodynamic numerical model of the SR was set up with the Delft3D-FLOW software. The software 
solves the Reynolds-averaged Navier Stokes equations and the continuity equation for incompressible fluids with 
the Boussinesq approximation for buoyancy-driven convection (Deltares, 2022). In the here used Delft3D-FLOW 
model, we took advantage of the software's computational efficiency with its z-layer model for 3d discretiza-
tion in space based on a finite difference scheme (e.g., Platzek et al., 2014). The discretization in time uses the 
alternating direction implicit method (in line with Morgan et al., 2020). In contrast to CFD software (e.g., Open-
FOAM) using hexahedral meshes for the representation of complex 3d structures, the vertical dimension of a 3d 
mesh in Delft3D-FLOW is based on multiple layers of a two-dimensional (2d) mesh.

The Boussinesq approximation simplifies the simulation of heat transfer in fluids (here: water) in which the 
temperature varies in space. The approach ignores changes in the fluid properties except for the fluid density, 
which only occurs as a multiplier of the gravitational acceleration. Moreover, the Boussinesq coefficient quan-
tifies the momentum effect of the non-uniform velocity distribution over the water depth. Since the Boussinesq 
term appears in the advective acceleration in the shallow water equations, it can also be treated as a purely 
numerical calibration parameter to adjust the amount of fluid inertia to be considered in a simulation (Kundu & 
Cohen, 2008; Yang et al., 2018). The Boussinesq approximation (or hypothesis) is referred to as the (Boussinesq) 
eddy viscosity assumption in the following and according to the Delft3D-FLOW nomenclature.

With the eddy viscosity (Boussinesq) hypothesis, a k − ϵ turbulence closure was defined along with horizontal 
and vertical eddy viscosities. The eddy viscosities are proportionality factors for the turbulent energy transfer 

Figure 2.  Flow series and water levels defined at the liquid boundaries of the numerical model.
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resulting from moving eddies and leading to tangential stresses (Blazek, 2005), which we considered drivers for 
the observed flow velocity and water temperature patterns.

The horizontal eddy viscosity νh varied in this study as a function of the vertical eddy viscosity νv, and the back-
ground horizontal eddy viscosity 𝐴𝐴 𝐴𝐴

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ
 (Deltares, 2022):

𝜈𝜈ℎ = 𝜈𝜈𝑣𝑣 + 𝜈𝜈
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ
� (1)

νv affects the 3d turbulence and Delft3D-FLOW calculates νv based on the k − ϵ turbulence closure (see also the 
Supporting Information S1).

The background horizontal eddy viscosity 𝐴𝐴 𝐴𝐴
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ
 was one of the calibration parameters in this study (see summary 

in the next section). It represents 2d turbulence and accounts for multiple hydrodynamic phenomena. In a strat-
ified reservoir, turbulent eddy viscosity at stratification interfaces drops to zero and vertical mixing reduces to 
molecular diffusion. However, zero eddy viscosity is not physically correct because of the presence of inter-
nal waves, which are continuously generated by different sources and turbulence (i.e., vertical mixing; Hodges 
et al., 2000). Since internal waves are not explicitly considered in the Delft3D-FLOW turbulence model, they 
were added spatiotemporally using the background eddy viscosity 𝐴𝐴 𝐴𝐴

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ
 (Deltares, 2022).

While adjusting the eddy viscosity allowed us to mimic the mixing due to momentum, we additionally considered 
diffusivity that aids in representing the mixing of heat. Analogously to how Delft3D-FLOW calculates viscosi-
ties, the horizontal eddy diffusivity Δh is a function of the constant vertical eddy diffusivity of Δv = 10 −6 m 2 s −1, 
and the background horizontal eddy diffusivity 𝐴𝐴 Δ

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ
 (Deltares, 2022):

Δℎ = Δ𝑣𝑣 + Δ
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ
� (2)

In addition to 𝐴𝐴 𝐴𝐴
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ
 , the background horizontal eddy diffusivity 𝐴𝐴 Δ

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ
 was also a calibration parameter in this study 

(see also next section). The sub-grid scale horizontal eddy viscosity and diffusivity were zero in our model.

Regarding spatial abstraction, a boundary-fitted domain discretized the reservoir bathymetry (Figure 1) into 27 
vertical layers with 5,299 tetrahedral cells each. In consequence, the average cell size was 9 × 15 × 1.7 m in the 
x, y, and z directions, respectively. We also tested the model with more (up to 40) and fewer (minimum 9) layers, 
which either led to unacceptably long computing time or could not represent variations in the vertical velocity 
profiles during pump operation. For the latter reason, we also used the z-layer (not σ-layer) model for vertical 
discretization.

The unsteady liquid boundaries were defined with the water level and the discharge time series provided for the 
three affluents and at the intake tower, corresponding to a one-week-long simulation (1 August at 00:00 a.m. 
through 7 August at 00:00 a.m., 2016). Figure 2 shows the prescribed liquid boundary characteristics. The bottom 
roughness was set to Manning with an equivalent global value of 0.015, which was not modified in the calibra-
tion process. Other physical processes affecting the flow pattern were considered in the form of air temperature 
and wind (processes module and the above-introduced meteorological data) because those are known to affect 
flow velocities in the upper layers of reservoirs, and therefore, density stratification (Dissanayake et al., 2019; 
Zhen-Gang, 2008).

The initial conditions corresponded to a water level of 661.34 m and a constant (in x, y, z) water temperature 
profile with possible values defined within a range between 5°C and 30°C. The water temperature profile was 
implemented in Delft3D-FLOW at the mesh boundary of the intake tower along with the discharge (i.e., liquid) 
boundary.

A run of the Delft3D-FLOW model took an average of 12.8 hr on a 6-core computer with 2.3 GHz per core and 
16 GB memory. The simulations ran on all 6 cores. The output was written hourly. The Supporting Informa-
tion S1 contains more details about the numerical model.

2.4.  Relevant Calibration Parameters

The identification of relevant calibration parameters is the baseline for any model calibration. We identified 
three relevant calibration parameters based on other studies (e.g., Ahlfeld et al., 2003; Chanudet et al., 2012; 
Dissanayake et al., 2019; Goudsmit et al., 2002), our experience, and preliminary tests with the Delft3D-FLOW 
model of the SR.
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The three selected calibration parameters are listed in Table 1 and embraced 
background horizontal eddy viscosity 𝐴𝐴 𝐴𝐴

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ
 , background horizontal eddy 

diffusivity 𝐴𝐴 Δ
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ
 , and the initial water temperature at the intake tower Ttow 

(i.e., the liquid boundary of the computational mesh). We combined the 
values ω of the three calibration parameters into a single vector Ω that was 
required for the below-described Bayesian calibration:

Ω =

{

𝜔𝜔
𝜈𝜈
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ

, 𝜔𝜔
Δ
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ

, 𝜔𝜔𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡

}

� (3)

We chose the horizontal eddy viscosity and diffusivity because they have a 
strong influence on the turbulent viscosity terms of the advection-diffusion 

equations for heat transport (Boussinesq approximation). In addition, both parameters result from the simplifica-
tion hypotheses of the mathematical equations, and hence, are typical candidates for calibration.

We chose the initial water temperature at the intake tower 𝐴𝐴
(
𝜔𝜔𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡

)
 as a calibration parameter because it has a 

considerable effect on the currents in the SR. Due to pump and turbine operations, thermal stratification, and 
missing monitoring data of water temperature directly at the intake tower (only available at the measurement 
station, cf. the star in Figure 1), the water temperature introduced considerable model uncertainty and it could 
reportedly not be well reproduced in other studies (e.g., Dissanayake et al., 2019). The initial water temperature 
profile was key to the physically unreasonable scenario explained in the test procedure section below.

Table 1 shows the considered value ranges (interpreted as uniform probability distributions) for the three cali-
bration parameters, which stem from the literature (see Supporting Information S1 and Bermúdez et al., 2018; 
Dissanayake et al., 2019; Dong et al., 2020; Koşucu et al., 2019; Li et al., 2010; Salehi, 2017), the Delft3D user 
manual (Deltares, 2022), and our experience. These distributions formed the prior distributions to be updated to 
posterior distributions in the Bayesian calibration (see next section).

2.5.  Bayesian Calibration Accelerated by Emulators and Active Learning

A Bayesian calibration is a specific form of Bayesian updating through Bayes' theorem:

𝑝𝑝(𝛀𝛀|𝐃𝐃,) =
𝑝𝑝(𝐃𝐃|𝛀𝛀,) ⋅ 𝑝𝑝(𝛀𝛀|)

𝑝𝑝(𝐃𝐃|)
� (4)

where p(⋅) denotes probability density functions (pdfs). Ω denotes the collection (vector) of calibration param-
eters for the deterministic model 𝐴𝐴  according to Equation 3, and 𝐴𝐴 𝐴𝐴(𝛀𝛀|) denotes the prior pdf of the param-
eters in that model. It contains expert knowledge about the parameters, which is already available before the 
calibration. D denotes the collection (vector) of calibration data. 𝐴𝐴 𝐴𝐴(𝐃𝐃|𝛀𝛀,) is called likelihood. It expresses 
(as a function of the parameter values Ω) how statistically likely it is to observe the data D if the combination of 

𝐴𝐴 𝛀𝛀, was true. The combination of prior information and calibration data updates the prior distribution 𝐴𝐴 𝐴𝐴(𝛀𝛀|) 
to the posterior distribution 𝐴𝐴 𝐴𝐴(𝛀𝛀|𝐃𝐃,) . By definition, the posterior distribution is more informative than (or at 
least as informative as) the prior distribution (Box & Tiao, 1973; Oladyshkin & Nowak, 2019). The denominator 

𝐴𝐴 𝐴𝐴(𝐃𝐃|) , often referred to as Bayesian model evidence (BME, see below), plays an important role in (competing) 
model selection problems. The BME is merely a normalizing constant in this equation but can assist in error 
diagnosis.

In this study, the model 𝐴𝐴  was the full-complexity Delft3D-FLOW model (see above), calibration param-
eters were the background horizontal eddy viscosity and diffusivity as well as the initial water temperature 
(see Table 1), and measurement data D consisted of flow velocity and/or water temperature recordings (see 
above).

What remained to be defined is the functional form of the likelihood 𝐴𝐴 𝐴𝐴(𝐃𝐃|𝛀𝛀,) in Equation 4. A typical assump-
tion is that there is a measurement error ɛ (i.e., residuals) between the model and observable reality, which can be 
derived from the following expression:

𝐃𝐃 = (𝛀𝛀) + 𝜺𝜺� (5)

Table 1 
Calibration Parameters and Their Value Ranges (Min, Max) for Uniform 
Distributions 𝐴𝐴  (min,max) Considered in This Study

Parameter name Symbol Units𝐴𝐴  (min,max) 

Background horizontal eddy viscosity𝐴𝐴 𝐴𝐴
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ
  m 2s −1

𝐴𝐴  (0.1, 5) 

Background horizontal eddy diffusivity𝐴𝐴 Δ
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ
  m 2s −1

𝐴𝐴  (0.1, 5) 

Initial water temperature (intake tower) Ttow °C𝐴𝐴  (5, 30) 
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The errors (stacked as a vector) typically have zero mean (no systematic errors) and a variance 𝐴𝐴 𝐴𝐴
2

𝜀𝜀𝜀𝜀𝜀
 that resembles 

the imprecision of measurements. The most common distributional assumption for measurement errors is Gauss-
ian, and errors for different data items are uncorrelated. We followed this common assumption and obtained:

𝑝𝑝(𝐃𝐃|𝛀𝛀,) = 2𝜋𝜋
−
𝑛𝑛

2 |𝐑𝐑|
−
1

2 exp

[

−
1

2

(
𝜺𝜺
𝑇𝑇
𝐑𝐑

−1
𝜀𝜀
)]

� (6)

where n is the number of data items (i.e., the number of measurements in D and of corresponding residuals in 
ɛ) and R is the (co-)variance matrix of measurement errors (sized n × n). In our case, R was a diagonal matrix 
populated by the variances 𝐴𝐴 𝐴𝐴

2

𝜀𝜀𝜀𝜀𝜀
 per data item. The error variance (imprecision) of the measurement data in this 

study had a standard deviation of 2°C for water temperature and 3 mm s −1 for flow velocity measurements.

Based on the posterior distributions, we extracted so-called maximum likelihoods of the calibration parameters 
(i.e., the location of an optimum in the likelihood function), which led to the best possible agreement with the 
measurement data (Beckers et al., 2020). Likewise, maximum-a-posteriori calibration parameter values can be 
extracted (i.e., the optimum of the joint posterior distribution), which correspond to the best possible compromise 
between priors and data. For uniform distributions as used in this study, both sets of parameter values coin-
cide  and the posterior distribution characteristics represent the post-calibration uncertainty of the parameters.

Typical assumption-free computational methods to evaluate the Bayesian theorem in Equation 4 are computa-
tionally inefficient Monte-Carlo or Markov-Chain Monte-Carlo methods (e.g., Smith & Gelfand, 1992). These 
methods are particularly inefficient when a model 𝐴𝐴  is computationally expensive (e.g., if a Delft3D-FLOW 
run takes 12.8 hr on average), because these methods will make the model easily run millions of times to yield a 
good approximation of Equation 4. To bypass long computing times, a surrogate model response 𝐴𝐴 (𝛀𝛀) was used 
to replace 𝐴𝐴  in the computation of residuals (Equation 5) with a much faster approximation:

(𝛀𝛀) ≈ (𝛀𝛀)� (7)

With a suitable surrogate model, speed is no longer an issue because it runs easily a million times faster than a 
full-complexity model (Beckers et al., 2020). That is, a surrogate model enabled us to run 10 6 random Monte 
Carlo realizations drawn from the prior pdfs of the calibration parameters. Then, we evaluated the surrogate 
model response 𝐴𝐴  for every realization, computed the (approximate) residuals with Equation 5, calculated each 
realization's likelihood with Equation 6, and used rejection sampling (Smith & Gelfand, 1992) to approximate the 
posterior distribution in Bayes' theorem (i.e., the left side of Equation 4).

The approximation quality of the surrogate model had to be appropriate for the calibration task. The surrogate 
model's quality strongly depends on its construction method, including the selection of so-called training runs 
with the initial full-complexity model (Busby, 2009). This is where active learning becomes relevant: the training 
runs should concentrate mostly on high-likelihood areas, which are not known a priori. This is the starting point 
for an iterative process called active learning that incrementally improves the surrogate model in currently found 
high-likelihood regions, and subsequently refines the identification of high-likelihood regions.

Here, we used a GPE as a surrogate model and BAL for efficient training. The theoretical background for 
GPEs and the used BAL technique can be found, for example, in Oladyshkin et al. (2020) and Rasmussen and 
Williams (2006). To set up the GPE in this study, we applied a squared exponential kernel. This kernel required 
specifications of length scales and variance as hyperparameters, and we used the fitrgp function in Matlab (2018) 
to choose their values. For iterating between training and Bayesian updating, we implemented the iterative BAL 
technique described in Oladyshkin et  al.  (2020). The BAL builds on a combination of preliminary Bayesian 
updating and information theory (Oladyshkin & Nowak, 2019) to identify the next-best parameter set for training. 
Here, we used it to find the best out of 1,000 randomly proposed next-value candidates in every iteration. After 
every new training run, we re-iterated the hyperparameters and re-trained the GPE.

The BAL technique needs stopping criteria to identify that the iterations converge toward a final quality level. 
For this purpose, we tracked BME (see denominator in Equation 4) and the so-called relative entropy in the BAL 
iterations. Here, we approximated the full-complexity model 𝐴𝐴 BME based on the GPE-surrogate model 𝐴𝐴 BME :

𝐁𝐁𝐁𝐁𝐁𝐁 ≡ 𝑝𝑝Ω(𝐃𝐃|) ≈ 𝐁𝐁𝐁𝐁𝐁𝐁 ≡ 𝑝𝑝Ω(𝐃𝐃|).� (8)

The BME expresses as an integral quantity the average goodness of fit of the model, relative to the prior distribu-
tion. If the surrogate model response 𝐴𝐴  converges toward the full-complexity model response 𝐴𝐴  during the BAL, 
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then 𝐴𝐴 BME converges toward 𝐴𝐴 BME and stabilizes. In addition, relative entropy, also known as Kullback-Leibler 
divergence DKL, quantifies the information gain from the prior to the posterior distributions of the calibration 
parameters, and it was approximated with:

𝐷𝐷𝐾𝐾𝐾𝐾[𝑝𝑝(Ω|𝐃𝐃,), 𝑝𝑝(Ω|)] ≈ 𝐷𝐷𝐾𝐾𝐾𝐾[𝑝𝑝(Ω|𝐃𝐃,), 𝑝𝑝(Ω|)].� (9)

Also DKL stabilizes when the surrogate model response converges toward the full-complexity model response. 
Thus, we continued the BAL iterations until both the BME and DKL converged toward a constant. In addition, 
BME and DKL were criteria for selecting training points in the BAL iterations. For details on the here-used 
approximation methods, in particular, regarding the GPE-surrogate model and BAL, see Oladyshkin et al. (2020).

2.6.  Test Procedure

Initially, we ran the full-complexity, hydrodynamic, numerical 3d model (Delft3D-FLOW) of the SR 30 times 
to constitute the baseline for the BAL iterations. Next, we calibrated the three calibration parameters in the 
GPE-surrogate-assisted BAL iterations (see above). The prior calibration parameter distributions are listed in 
Table 1. We used the available calibration data in the form of depth-averaged horizontal flow velocity and water 
temperature profiles at the measurement station (see Figure 1) in the three below-described scenarios. We consid-
ered the calibration complete when additional training points in the BAL iterations did not yield an improvement 
in BME (Equation 8) and relative entropy (Equation 9). To verify convergence, we logged the BME and relative 
entropy at the end of every iteration. Finally, we implemented the maximum likelihoods resulting from the poste-
rior distributions of the last BAL iteration to re-run the full-complexity and GPE-surrogate models at the end of 
each below-defined scenario. In particular, we defined three scenarios to test the two hypotheses we formulated 
at the end of the introduction:

1.	 �A reservoir model with a physically inappropriate calibration setting can appear to correctly reproduce meas-
urement data.

2.	 �The shape of posterior distributions points to physically unreasonable calibration results.

To test the hypotheses, three calibration scenarios with varying physical correctness were defined. These three 
scenarios were one all-data scenario (0), and two single-data set scenarios (1 and 2), in which we applied the flow 
velocity and water temperature measurement data separately from each other for Bayesian calibration.

The all-data scenario 0 used both the flow velocity and water temperature measurement data from the measure-
ment station to optimize the three calibration parameters. Computationally, this scenario was the most expensive 
because the number of training runs for the surrogate model scaled exponentially with the number of calibration 
parameters.

Scenario 1 only used the flow velocity data to calibrate all three parameters, although the data were primarily 
useful to calibrate the horizontal eddy viscosity and diffusivity. This scenario was aimed at a physically more 
correct calibration toward heat-independent, short-term flow velocity patterns driven by pump and turbine oper-
ations. Thus, scenario 1 was physically better conditioned than the other scenarios because it only calibrated 
toward data that can be reasonably well reproduced by the Delft3D-FLOW model.

Scenario 2 only used the water temperature data to calibrate all three parameters. Thus, the Bayesian calibration 
process had to attempt stratifying the reservoir (i.e., to match the measured water temperature profiles) based on 
an initially constant (over depth) water temperature profile at a distance of 270 m (i.e., at the intake tower).

According to the above-mentioned literature (e.g., Zhang et al., 2020), stratification within a simulation time 
of 6  days (real-time) is physically unlikely, which means that scenarios 0 and 2 corresponded to (partially) 
non-reasonable calibration frameworks because of too short simulation times. If the Bayesian calibration still 
succeeded (in terms of statistical scores) in calibrating the model seemingly well, we assumed that the model was 
poorly conditioned and evidence to support hypothesis (1) was provided.

In contrast to lump-sum statistics (e.g., the RMSE), we expected Bayesian calibration to indicate uncertainty 
related to the calibration results, which would not be visible after subjective trial-and-error calibration. Thus, if 
the physically more unreasonable scenarios 0 and 2 led to more uncertain posterior distributions and wrong bulk 
mixing parameters than the better-constrained scenario 1, evidence supporting hypothesis (2) was provided. In 
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particular, we attempted to verify that high uncertainties in posterior distri-
butions were consistent with the physical soundness of the calibration frame-
works of the scenarios.

Table 2 summarizes the three test scenarios along with the number of BAL 
iterations, observations, and measurement data used per scenario. The 
number of BAL iterations anticipates the results and was driven by reach-
ing the convergences of BME and relative entropy (see details in the results 
section). Note that we were using the depth-averaged horizontal flow velocity 
U for the Bayesian calibration, which was necessary to compare the results 
of the depth-averaged output of Delft3D-FLOW with the measurement data. 
In particular, the Bayesian framework (Oladyshkin et al., 2020) can currently 

only work with one measurement point per x-y coordinate. It cannot deal with vertically varying velocities 
because of the resulting dimensionality of calibration vectors. For instance, if Bayesian calibration was extended 
to the third dimension in space, the response surface would have an additional dimension. Because the total of 
posterior probabilities still needed to sum up to 1, the additional dimension would decrease the prior output 
space to infinitesimally small numbers, which would all be rejected in the rejection sampling step (Oladyshkin 
et al., 2020; Smith & Gelfand, 1992). The problem of too small (too close to zero) probabilities in the framework 
of active learning is also referred to as curse of dimensionality (Bellman, 1957), which is discussed in detail by 
Mouris et al. (2023).

In addition, we tested the lump-sum accuracy of the calibration results by running both the GPE and Delft3D-
FLOW model with the final maximum likelihoods of the calibration parameters after each scenario. These addi-
tional runs allowed for vetting the calibrated GPE-surrogate and full-complexity models against the measurement 
data in a classical-deterministic manner that is commonly used with trial-and-error calibration methods. The 
additional runs also provided insights into the quality of final model results, and spatially explicit comparisons of 
the Delft3D-FLOW and the GPE-surrogate models in the entire SR, which we used for discussion of the physical 
relevance of calibration parameters.

3.  Results
3.1.  Convergence Speed

Every iteration step required on average 13 hr of computing time, including full-complexity model runs, updat-
ing the GPE, computing the likelihoods, and running the rejection sampling of 10 6 Monte Carlo candidates. In 
particular, a full-complexity model run took on average 12.8 hr and a GPE run took 32.5 × 10 −3 s. Note that addi-
tional computing time on the order of a few seconds to minutes is required to train the GPE in each BAL iteration.

The BME and relative entropy converged at different BAL iteration steps for the three scenarios (see Table 2). 
In scenario 0, the BAL began converging after the 25th iteration. The BME converged toward a value of approx-
imately 10 −237, and the relative entropy toward approximately 8.2. Afterward, the surrogate model produced 
statistically acceptable results that matched the full-complexity model results of the all-data scenario 0, and we 
ran a total of 50 iterations to confirm the convergence trend.

In scenario 1 (flow velocity data only), the surrogate model converged to a BME value of approximately 10 −20 
and relative entropy of approximately 2.5 after two iterations only, and we ran 10 iterations, which yielded similar 
BME and relative entropy values (i.e., the convergence confirmed). In scenario 2 (water temperature data only), 
the surrogate model converged to a BME of approximately 10 −136, and relative entropy of approximately 6.2 after 
three iterations, and again, we ran 10 iterations in total to confirm the convergence trend.

Scenarios 1 and 2 (cf. Table 2) thus converged considerably faster. The fast convergence can be explained by the 
smaller amount of measurement data to be matched compared with scenario 0. As a result, the high-likelihood 
regions are wider and less pronounced in scenarios 1 and 2, which facilitate their identification.

3.2.  Marginal Posterior Distributions of Calibration Parameters

Figures 3a–3c illustrate the parameter-wise (marginal) posterior distributions obtained from the BAL-based GPE 
for the three scenarios 0, 1, and 2, respectively. These distributions indicate that the narrowest and clearest results 

Table 2 
The Three Scenarios Defining the Frameworks for the Bayesian Calibration 
as a Function of Involved Measurements of Depth-Averaged Horizontal 
Flow Velocity U and Water Temperature T at the Measurement Station

Data scenario
# of BAL 
iterations

Measurement quantities 
involved

# of 
observations

Scenario 0 50 U and T 165

Scenario 1 10 U 145

Scenario 2 10 T 20
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were obtained in scenarios 0, tightly followed by scenario 1, and scenario 2 being substantially different. The 
combined consideration of both flow velocity and water temperature data (scenario 0 in Figure 3a) represents the 
most constrained scenario, which also reflects in the largest relative entropy of 8.2 (i.e., the largest information 
gain from prior to posterior).

Without the water temperature data in scenario 1, the posterior distribution of 𝐴𝐴 𝐴𝐴𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡
 is wider than in scenarios 0 

and 2. Compared to scenario 0, the absence of the water temperature data also changes the maximum likelihoods 
of the three calibration parameters (see Table 3 below).

Figure 3.  Posterior distributions of the calibration parameters after the iterative Bayesian updating in the framework of (a) scenario 0, (b) scenario 1, and (c) scenario 2.
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In contrast, when the flow velocity data were excluded (scenario 2, Figure 3c), the posterior distributions of the 
background horizontal eddy viscosity 𝐴𝐴 𝐴𝐴

𝜈𝜈
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ

 and diffusivity 𝐴𝐴 𝐴𝐴
Δ
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ

 remain close to identical to the prior distribu-
tions (uniform between 0.1 and 5), indicating a poor calibration result regarding 𝐴𝐴 𝐴𝐴

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ
 and 𝐴𝐴 Δ

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ
 . Therefore, their 

maximum likelihood parameter values will be close to arbitrary in the marginal (single-parameter), and we only 
observe a considerably lower 𝐴𝐴 𝐴𝐴𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡

 maximum likelihood in scenario 2.

Figure 3 thus shows how leaving out either water temperature or flow velocity measurement data increases the 
uncertainties of calibration results through wider, less narrow, and therefore, less assertive posterior distributions. 
In scenario 1, missing water temperature data leads to increased uncertainty in 𝐴𝐴 𝐴𝐴𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡

 . In scenario 2, missing flow 
velocity data leads to high uncertainty in 𝐴𝐴 𝐴𝐴

𝜈𝜈
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ

 and 𝐴𝐴 𝐴𝐴
Δ
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ

 , which indicates that these two calibration parameters 
are less driven by water temperature than by flow velocity. In particular, measurements of flow velocity include 
patterns driven by hours of pump and turbine operation, which scenario 2 knows at its boundaries but it cannot 
evaluate the operation's importance to hydrodynamic patterns in the reservoir.

Fewer measurement data correspond to fewer constraints for the rejection sampling, which makes that the poste-
rior distributions after scenarios 1 and 2 contain more samples than the more constraint scenario 0. The difference 
in posterior sample sizes between scenarios 1 and 2 can be explained by the higher number of velocity measure-
ments, which makes scenario 1 more constrained than scenario 2. Therefore, Figure 3 also illustrates how more 
calibration constraints lead to statistically more distinct calibration results.

3.3.  Maximum Likelihoods of Calibration Parameters

Table 3 lists the maximum likelihoods of the calibration parameters for the three scenarios. In scenario 0, the 
maximum likelihoods are in a statistically reasonable range (i.e., not at the limits of the prior limits given in 
Table 1). However, in scenario 1, the maximum likelihood for 𝐴𝐴 𝐴𝐴

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ
 is 4.83, and therefore, close to the upper limit 

of the prior distribution. Also, the maximum likelihood of 26.63°C for the initial water temperature is close to the 
upper limit of the prior distribution and physically unlikely in deeper layers of the SR. Yet, this observation is not 
astonishing in the absence of measurement data on the water temperature. In scenario 2, the maximum likelihoods 
for both 𝐴𝐴 𝐴𝐴

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ
 and 𝐴𝐴 Δ

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ
 are even closer to the upper limits of the prior distribution test ranges, which indicates 

that the Bayesian calibration might have gone beyond the test ranges if we had allowed it (which we have inten-
tionally not done). Therefore, 𝐴𝐴 𝐴𝐴

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ
 and 𝐴𝐴 Δ

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ
 in scenario 2 are poorly constrained by the water temperature-only 

measurement data. In addition, high maximum likelihoods for 𝐴𝐴 𝐴𝐴
𝜈𝜈
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ

 and 𝐴𝐴 𝐴𝐴
Δ
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ

 , suggest that the calibration tries to 
adjust the model by making diffusion a key physical process, especially in scenario 2 for achieving stratification.

The maximum likelihoods do not necessarily coincide with the univariate marginal peaks shown in Figure 3, 
which is why we look at the nonlinear interdependence of the posterior distributions in the next section.

3.4.  Joint Posteriors of Calibration Parameters

The marginal posterior distributions in Figure 3 do not visualize the dependence between the three calibration 
parameters. Therefore, we show the joint posterior distributions with 3d plots in Figure 4. A wide (or narrow) 
spread of the point cloud along a parameter's ω axis means high (or low) uncertainty. Diagonal structures imply 
a linear correlation, and curved shapes indicate nonlinear dependencies. The dark red color indicates the location 
of the maximum likelihoods listed in Table 1. For instance, comparing the location (red areas) and spread of the 
posterior distributions with respect to 𝐴𝐴 𝐴𝐴

𝜈𝜈
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ

 in Figures 4a and 4b (scenarios 0 and 1) highlights the substantial 
difference in its maximum likelihood (see Table 3).

The exclusive calibration toward water temperature data in scenario 2 (see Figures 4b and 4c) led to a wide spread 
of 𝐴𝐴 𝐴𝐴

𝜈𝜈
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ

 and 𝐴𝐴 𝐴𝐴
Δ
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ

 , which corresponds to quasi-total independence. The spread of 𝐴𝐴 𝐴𝐴
𝜈𝜈
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ

 and 𝐴𝐴 𝐴𝐴
Δ
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ

 would probably 

Table 3 
Maximum-Likelihood Values of the Calibration Parameters per Scenario

Scenario 0 1 2

Background horizontal eddy viscosity 𝐴𝐴 𝐴𝐴
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ

(
𝑚𝑚

2
𝑠𝑠
−1
)
  0.91 4.83 4.93

Background horizontal eddy diffusivity 𝐴𝐴 Δ
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ

(
𝑚𝑚

2
𝑠𝑠
−1
)
  2.05 1.38 4.99

Initial water temperature (intake tower) Ttow (°C) 18.86 26.63 13.42
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have gone beyond the margins of Figure 4c, if we had also allowed physically non-meaningful value ranges. The 
only structure visible in Figure 4c for scenario 2 is imposed by the heavily constrained values of 𝐴𝐴 𝐴𝐴𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡

 , which 
show the largest likelihood values in the front-right corner. This is additional (multivariate) evidence that the 
physically unreasonable forcing of water-temperature-driven stratification in scenario 2 caused high uncertainty 
regarding 𝐴𝐴 𝐴𝐴

𝜈𝜈
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ

 and 𝐴𝐴 𝐴𝐴
Δ
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ

 . Still, if we were only looking at the initial water temperature as a calibration parameter 
result, an evident misconception would be that the calibration result was good, well-constrained, and plausible.

The interdependence of calibration parameters in scenarios 0 and 1 also demonstrates that there is more than 
one unique parameter combination that leads to a similar model fit. Thus, the Bayesian calibration reveals the 
uncertainty regarding a statistically well-fitting combination of calibration parameter values (i.e., maximum like-
lihoods). However, also the Bayesian approach cannot generally solve the issue of equifinality as a result of 
weak calibration data, model simplifications, or physically non-meaningful setups. It only enables to quantify 
the post-calibration uncertainty (Figures 3 and 4) indicating that the calibration result is likely to be subjected to 
equifinality.

3.5.  Lump-Sum Statistics

We ran additional simulations with both Delft3D-FLOW and the GPE-surrogate models with the 
maximum-likelihood calibration parameter sets resulting from the three scenarios to calculate global lump-sum 
statistics characterizing a generalized model quality. The resulting lump-sum statistics in the form of the mean 
error 𝐴𝐴 (ē) , standard deviation from the measurements (σe), and RMSE are listed in Table 4.

In the all-data scenario  0, the RMSE regarding the depth-averaged flow velocity U in Delft3D-FLOW is 
2.56  mm  s −1, which represents a 17%-deviation compared with the time-averaged measurement data. One 

reason for the U  deviations is the weaknesses in reproducing the magni-
tude and timing of peaks that stem from pump and turbine operations. The 
GPE-surrogate model reproduced the data slightly better, with a smaller 
RMSE of 1.44 mm s −1 and a slightly better representation of peaks in magni-
tude and time. This slightly better performance of the GPE indicates an 
imperfect surrogate approximation, as the maximum likelihood parameter 
sets identified with the GPE perform slightly less well when plugged into 
the full-complexity Delft3D-FLOW model. However, in light of the stand-
ard deviation of measurement errors of the flow velocity measurements 
(3 mm s −1), the RMSEs represent an excellent performance of both models 
after scenario 0.

3.6.  Bayesian Calibration Residuals and Posterior Predictions

The modeled U and T with the maximum likelihoods of the calibration 
parameters also enable us to evaluate the model improvement through the 
Bayesian calibration. For this purpose, we additionally consider the model 

Figure 4.  Nonlinear dependence of the calibration parameters after the last Bayesian active learning iterations of (a) scenario 0, (b) scenario 1, and (c) scenario 2.

Table 4 
Mean Error 𝐴𝐴 ē  , Standard Deviation σe, and Root-Mean-Square Error 
(RMSE) of the Calibrated Full-Complexity and Gaussian Process Emulator 
(GPE)-Surrogate Model Runs With the Maximum Likelihoods of the 
Calibration Parameters After the Three Scenarios

Model Parameter Scenario𝐴𝐴 ē   σe RMSE

Delft3D-FLOW U (mm s −1) 0 0.44 2.53 2.56

1 0.19 1.42 1.43

T (°C) 0 −3.67 3.84 5.24

2 0.16 1.80 1.76

GPE-surrogate U (mm s −1) 0 0.31 1.41 1.44

1 −0.03 1.25 1.24

T (°C) 0 −3.77 3.85 5.31

2 0.14 1.79 1.75
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residuals, here defined as the vertical (flow velocity) or horizontal (water temperature) distances between the 
measured and simulated values.

Figures 5a and 5b illustrate the depth-averaged flow velocity U at the measurement station for scenarios 0 and 1 
(i.e., the two scenarios considering flow velocity measurements). The blue lines are the results of the Delft3D-
FLOW (closed blue line) and surrogate (dashed blue line) models with the maximum likelihoods (Table 3). The 
gray lines are the results of the training runs, which constitute the standard deviation (uncertainty) of the posterior 
distributions (Figure 3). In addition, the closed black lines show the depth-averaged flow velocity measurements 
and enable us to identify the model residuals (i.e., vertical differences with the model results).

The posterior surrogate model outputs well fit the measurement data with small residuals after both scenar-
ios. In addition, the posterior time-averages of U are 1.65 and 1.05 mm s −1 in scenarios 0 and 1, respectively. 
Thus, the calibration with flow velocity data yielded small calibration errors (i.e., residuals), which are close to 
zero on average. The calibration also reduced the model uncertainty in both scenarios, with, for instance, the 
time-averaged standard deviation in scenario 1 decreasing from 12.1 mm s −1 (prior according to Table 1) to 
0.4 mm s −1 (posterior).

A comparison of the two scenarios 0 and 1 shows that the models perform especially better in scenario 1 regard-
ing the magnitude and time of flow velocity peaks. In particular, after scenario 1, both models well simulate the 
shape and magnitudes of the measurement data, although with too small amplitudes of local extrema (lows and 
peaks). The improved accuracy after scenario 1 is also reflected in RMSEs of 1.43 mm s −1 (Delft3D-FLOW) and 
1.24 mm s −1 (GPE-surrogate), which are both smaller than after scenario 0 (see also Table 4). Already Figure 3 
indicated that the flow velocity data have higher importance for the hydrodynamic patterns in the reservoir than 
the water temperature measurements (differences between Figures 3b and 3c). Figure 5 confirms this observation 
by indicating that the water temperature data in scenario 0 lead to a worse replication of flow velocity measure-
ments. The reason is that in scenario 0, the calibration had to meet two measurement targets that compete with 
each other due to imperfect model assumptions (i.e., too short time for stratification).

Figures 6a and 6b show the water temperature profiles T at the measurement station for scenarios 0 and 2 (i.e., the 
two scenarios considering water temperature data). The blue lines are the results of the Delft3D-FLOW (closed 
blue line) and surrogate (dashed blue line) models with the maximum likelihoods (Table 3). The gray lines are 
the results of the training runs, which constitute the standard deviation (uncertainty) of the posterior distributions 
(Figure 3). In addition, the closed black lines show the depth-averaged flow velocity measurements and enable us 
to identify the model residuals (i.e., vertical differences with the model results).

In scenario 0, the calibration was forced to compromise between fitting the water temperature and flow velocity 
data, which is reflected in the physical weaknesses of the results. For instance, the water temperature profile 
modeled with the posterior maximum likelihoods is close to constant over depth and far away from the meas-
urement data. Thus, the calibrated model fails to reproduce the temperature stratification in the all-data scenario 
0, which makes sense because of the too-short time frame for the onset of stratification. In addition, in scenario 
0, the residuals of the prior and posterior model outputs have considerably high averages of 3.58°C and 4.93°C, 
respectively.

After scenario 2, the modeled posterior water temperature profiles show smaller residuals (i.e., it is generally 
closer to the measurements) than the prior profiles. The posterior profile also shows signs of temperature strat-
ification, with water temperatures at the surface approximately 1°C higher than in deeper layers. The better 
simulation of water temperature profiles also reflects in the RMSE (Table 4) reducing from 5.3°C in scenario 0 to 
1.75°C in scenario 2. Therefore, scenario 2 also performs better in terms of lump-sum statistics regarding T than 
scenario 0. However, the fast stratification achieved in scenario 2 is physically unlikely, and thus, represents a poor 
calibration even though the lump-sum statistics (Table 4) suggest good model performance. Thus, considering 
exclusively water temperature measurements in scenario 2 led to improved simulation of water temperature meas-
urements, although the water temperature profile still does not correspond well to the measurements.

These observations show that scenario 0 simulates flow velocities better than water temperature. Still, scenario 0 
simulates flow velocities less correctly than scenario 1, which does not know the water temperature data. Because 
pump and turbine operations are the main drivers for fluxes in the SR, the higher importance of flow velocity 
measurements indicates that hydrodynamic patterns are only secondarily controlled by heat-driven stratification.
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Figure 5.  Simulated depth-averaged horizontal flow velocity U resulting from (a) scenario 0 and (b) scenario 1 in the considered period from August 1 (00:00 a.m.) 
through August 7 (00:00 a.m.), 2016. The graphs correspond to the location of the measurement station in the reservoir and feature results of the training runs, surrogate 
model, and full-complexity Delft3D FLOW model in addition to the measurements.
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4.  Discussion
4.1.  Physical Relevance

Figures 7 and 8 map horizontal (non-depth-averaged) flow velocity calculated with the calibrated full-complexity 
Delft3D-FLOW and GPE-surrogate model. The maps show flow velocity magnitudes (not directions) in the 
entire SR during turbine and pump operation hours, respectively, and with the maximum likelihoods from the 
all-data scenario 0. The turbine operation map (Figure 7) represents a model snapshot on 2 August 2016, at 10:00 
p.m., and the pump operation map (Figure 8) represents a snapshot on 3 August 2016, at 03:00 a.m. Both figures 
show the horizontal flow velocity magnitudes at different water depths of 3, 16, and 30 m below the maximum 
operation water level (668.5 m a.s.l.). The pump and turbine operation hours are particularly interesting in light 
of the above observations because they potentially counteract stratification.

In the case of turbine operation (Figure  7), the calibrated GPE-surrogate (GPEAdjusted in the plots) and 
full-complexity models show two currents in the reservoir center and near the dam at depths of 3 and 16 m. 
Those currents can be related to the inflows from the conveyance tunnel that is located at the South-West shore; 
approximately 400 m upstream of the dam (see also Figure 1). The highest flow velocities occur in the vicinity of 
the dam where turbine operation draws water from the reservoir.

The pump operations in Figure 8 show a similar pattern, but with inverse velocity vector directions (directions 
are not visible on the magnitude maps). At a water depth of 16 m, both turbine and pump operations form a large 
eddy pattern in the reservoir with slow horizontal flow velocities that might affect the stratification of the water 
temperature.

While scenario 0 replicates flow velocity at the measurement station acceptably well (Figure 5), it does not 
well reproduce temperature-driven stratification (Figure 6), supposedly because pump and turbine operations 

Figure 6.  Simulated water temperature T profiles resulting from (a) the scenario 0 and (b) the scenario 2 calibrations at the measurement station. The graphs show the 
results of the training runs, surrogate model, and full-complexity Delft3D-FLOW model in addition to the measurements.
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outweigh stratification. Also, the maps of the horizontal flow velocity magnitudes (not directions) in Figures 7 
and 8 show that turbine and pump operations have a great influence on the reservoir hydrodynamics. That is, the 
primary importance for reservoir hydrodynamics in the presence of pump and turbine operations is measured 
flow velocity, which is in line with observations in other studies (Müller et al., 2018). Still, the high values for 

𝐴𝐴 𝐴𝐴
𝜈𝜈
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ

 and 𝐴𝐴 𝐴𝐴
Δ
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ

 (Table 3), especially after scenario 2, indicate that the Bayesian calibration is trying to make 
diffusion a key process. However, the dominance of pump- and turbine-driven flow velocity patterns rather 
suggests that advection is the real key process.

The RMSEs of the calibrated GPE-surrogate and the full-complexity models, lump-summed over the entire simu-
lation period, are small (cf. Table 4), but do not show the spatiotemporal variation that can be seen in Figures 7 
and 8. Thus, the RMSEs compared with the absolute magnitudes suggest that the stochastic calibration yielded 
very good global model statistics, even though scenario 0 is a physical compromise that necessarily involves 
the wrong replication of flow velocity and water temperature patterns. In consequence and in light of Figures 5 

Figure 7.  Horizontal flow velocity magnitudes in the reservoir at 3 m (top row), 16 m (middle row), and 30 m (bottom row) below the water surface during turbine 
operation (on 2 August 2016, at 10:00 p.m.). The results are produced with the calibrated GPE (GPEAdjusted) and Delft3D-FLOW model using the maximum likelihoods 
of calibration parameters according to scenario 0.
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and 6, the horizontal flow velocity magnitude maps indicate that the small global errors may hide high errors at 
a detailed scale where local errors potentially cancel each other.

4.2.  Efficiency of Bayesian Calibration With a GPE-Surrogate Model

The Bayesian calibration yielded statistically high global model accuracy in terms of RMSE (see Table  4), 
and the GPE-surrogate model increased computational efficiency almost by a factor of 10 6. Thus, the trained 
GPE-surrogate model enabled us to test as many as 10 6 parameter sets in the Monte-Carlo rejection sampling. 
In addition, the GPE-surrogate model reproduced the outcomes of the original model reasonably well and even 
outperformed the full-complexity model in some cases (see statistics in Table 4), which is in line with other 
studies using Bayesian calibration (e.g., Beckers et al., 2020). The better performance of the surrogate model is 
possible because its training builds on the results of the numerical model and measurement data. Still, the surro-
gate model can only mimic a snapshot state of the numerical model (e.g., the end of the simulation), not physical 

Figure 8.  Horizontal flow velocity magnitudes in the reservoir at 3 m (top row), 16 m (middle row), and 30 m (bottom row) below the water surface during pump 
operation (on 3 August 2016, at 03:00 a.m.). The results are produced with the calibrated GPE (GPEAdjusted) and Delft3D-FLOW model using the maximum likelihoods 
of calibration parameters according to scenario 0.
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processes. Thus, the surrogate model cannot write results at a specific point in time, for example, during turbine 
or pump operation hours.

4.3.  Choice of Calibration Parameters and Data

While the background horizontal eddy viscosity 𝐴𝐴 𝐴𝐴
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ
 and diffusivity 𝐴𝐴 Δ

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ
 , as well as the initial water temper-

ature Ttow were chosen as constraining calibration parameters, there are many other unconstrained (constant) 
parameters. We made and had to make simplifications about environmental processes, which are necessary for 
modeling hydrodynamics of pump-storage reservoirs (Bermúdez et al., 2018; Encinas Fernández et al., 2020; 
Salehi,  2017). Other factors influencing lake stratification could be, for instance, biotic parameters such as 
nutrients, carbon, or oxygen concentration (Chanson, 2004). The importance of these factors can be considered 
small in this study because they are primarily relevant for long-term, multi-year processes (e.g., climate change 
predictions, cf. Wahl & Peeters, 2014; Woolway et al., 2021). However, other external physical factors, such as 
solar radiation and wind, are likely to have affected the measurements, but we did not consider their calibra-
tion. For instance, we did not consider the adaptation of model parameters accounting for potentially cooling 
precipitation (Zhang et al., 2020) and assumed the meteorological conditions for stratification (e.g., defined in 
Bermúdez et al., 2018; Salehi, 2017) as measured deterministic constants even though we interpolated them from 
a measuring station located 22 km  away from the reservoir. The calibration of external meteorological parameters 
could additionally influence the lake stratification, but it would only be another possibility to achieve physically 
unlikely fast lake stratification within 6 days. For testing our hypotheses, however, it was sufficient to only cali-
brate reservoir-internal hydrodynamic parameters, where the environmental boundary conditions needed to allow 
for lake stratification. Ultimately, we emulated physically more reasonable boundary conditions for testing our 
hypotheses without calibrating parameters other than 𝐴𝐴 𝐴𝐴

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ
 , 𝐴𝐴 Δ

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ
 , and Ttow.

To broaden the range of validity of a reservoir model, the number of calibration parameters and measurement 
quantities (i.e., the number of columns in D) should be possibly high. In this context, the number of measure-
ments per quantity (i.e., the number of rows in D) is less important where at least 20 training measurements per 
quantity were already enabled calibration toward water-temperature measurements, even though it was physically 
wrong. Thus, for a more holistic replication of system processes, more and different measurement quantities 
are better than more measurements per quantity at a single location. For instance, it was better to have multiple 
measurement devices to collect data about different quantities with a smaller number of measurements per device 
(quantity), rather than using only one measurement device to get a high number of measurements of one quantity 
only. Still, if a measurement quantity is influenced by the local environment, sufficient measurements should 
be recorded in every sub-environment. For instance, velocity measurement in a reservoir should be made in 
fast-flowing regions at the shallow reservoir head, and slow-flowing shallow regions (i.e., the shoreline) as well 
as in deep regions (center of the reservoir).

4.4.  Effects of Varying Measurement Data Usage (Hypothesis (1))

The first hypothesis (1) was that a hydrodynamic model of a reservoir can correctly reproduce measurement data 
with calibration parameter combinations that are physically not meaningful. For instance, Reynolds-averaging in 
numerical simulations is known to result in physically non-meaningful representations of 3d flow characteristics, 
such as negative eddy viscosity (Booij, 2003). To test hypothesis (1) in light of Bayesian calibration, we first 
consider the global statistics in Table 4 with respect to the three scenarios and their varying calibration constraints 
through the number of measurement quantities involved.

The RMSE of depth-averaged horizontal flow velocities U is considerably smaller when calibrated with flow 
velocity data only (scenario 1) than when calibrated with both water temperature T and U in the all-data scenario 
0. Likewise, the RMSE of water temperature T is substantially smaller when calibrated with water tempera-
ture data only (scenario 2) than when calibrated with both T and U in scenario 0. Thus, the water temperature 
data statistically improved calibration accuracy, even though scenario 2 was designed to be physically the most 
unreasonable. In this light, the lump-sum statistics in Table 4 suggest that adding information on either quantity 
improved the model quality more than adding information on both quantities. To unpack this observation, we 
recall the comparisons of measured and modeled U in Figure 5 and T in Figure 6 at the measurement station. 
Both quantities (U and T) are represented physically worse when the measurement data lead to contradicting 
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adaptation trends of the three calibration parameters. For instance, the Bayesian calibration (cf. Table 3) suggests 
that the maximum likelihood for initial water temperature Ttow is 26.63°C when the flow velocity measurement 
data only was considered and 13.42°C when water temperature measurement data only was considered. When 
both measurement quantities were considered, the maximum likelihood is 18.86°C (i.e., somewhere between the 
single-quantity considerations).

A similar observation can be made regarding the background horizontal eddy diffusivity 𝐴𝐴 Δ
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ
 . However, the 

combination of the somewhere-in-the-middle compromises for the maximum likelihoods of Ttow and 𝐴𝐴 Δ
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ
 led to a 

maximum likelihood of background horizontal eddy viscosity 𝐴𝐴 𝐴𝐴
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ
 of 0.91, which is very different than the single 

measurement data considerations that resulted in 4.81 and 4.93 in scenarios 1 and 2, respectively. An explanation 
for the differences in the 𝐴𝐴 𝐴𝐴

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ
 maximum likelihoods is that the scenarios 1 and 2 fitted toward U and T based on 

U and T data only and respectively. Still, calibration with both U and T data resulted in the globally most robust 
model calibration (e.g., as indicated in the parameter interdependence plots in Figure 4), compared with using 
either U or T, even in the case of physically more unlikely conditions.

Thus, to mimic the measurement data, the calibration process in the T-only scenario 2 determined values for 𝐴𝐴 𝐴𝐴
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ
 

and 𝐴𝐴 Δ
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ
 that are close to the upper limits of the physically relevant calibration ranges (Table 1 compared with 

Table 3) and subjected to high uncertainty (Figure 3). This perfection comes at the expense of unconstrained 
parameters that are not reflected in the measurement data. For instance, the exclusive consideration of water 
temperature measurements in scenario 2 made that T is well reproduced but with physically and statistically 
unreasonable calibration parameter values that will lead to the false representation of other, not measured quanti-
ties. Thus, the calibration of three constrained parameters in scenario 2 led to an overfitted model that is inclined 
toward the perfection of the simulation of the considered measurement quantity T. Yet, the scenario-2 calibration 
yielded good performance according to lump-sum statistics (Table 4), even though the calibration parameter 
results are not meaningful regarding physics and the uncertainty indicated by the posterior distributions (see 
Figure 4). Therefore, the influence of the data sets used for model calibration is considerable, which makes that 
there is evidence to not reject hypothesis (1).

In consequence, the answer to the research question of how does the selection of calibration data affect the 
(Bayesian) calibration results? Is that the measured quantities determine the physical processes that Bayesian 
calibration tries to emulate with the numerical model. In this study, the flow velocity measurements enabled us to 
replicate advective hydrodynamic patterns related to pump and turbine operations but water temperature data was 
not adequate to simulate physically unrealistic diffusive heat-driven stratification. In particular, the global physi-
cal robustness of the maximum likelihoods (i.e., optima) of calibration parameters, and therefore, the validity and 
accuracy of the models considering water temperature measurements for unrealistic process emulation were low.

4.5.  Identification of Unreasonable Calibration Results (Hypothesis (2))

The maximum likelihoods of the calibration parameters yielded in this study can be considered as very good 
results regarding lump-sum statistics (Table 4). Good performance according to lump-sum statistics is not only 
the possible result of a Bayesian calibration but also of subjective trial-and-error calibration, even when the 
apparently best-fitting calibration parameters are physically not meaningful. However, we hypothesized that the 
shape of posterior distributions points to physically unreasonable calibration results (hypothesis (2)). To test 
this hypothesis, we recall that the Bayesian calibration goes beyond these lump-sum statistics (Table  4) and 
shows high calibration parameter interdependence (Figure 4c) with particularly high uncertainties for scenario 2. 
Also, the maxima of the posterior distributions are less narrow (i.e., more uncertain), and closer to the imposed 
boundaries of calibration parameters. For instance, 𝐴𝐴 𝐴𝐴

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ
 and 𝐴𝐴 Δ

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ
 are close to the upper limit of 5 in scenarios 1 

and 2. As a consequence, the evidence for the rejection of hypothesis (2) is low, but Bayesian calibration can still 
be subjected to equifinality, and addressing this issue will require further improvement of Bayesian calibration 
strategies.

Ultimately, the answer to our second research question (how does Bayesian calibration characterize physically 
unreasonable calibration results?) is that the uncertainty expressed through wide-shaped posterior distributions 
can be linked with poor calibration. Thus, Bayesian calibration has considerable advantages over lump-sum 
statistics and individual, subjective calibration by indicating physically poor calibration through high statistical 
interdependence and uncertainty. However, more evidence is required to discern physical and statistical errors, 



Water Resources Research

SCHWINDT ET AL.

10.1029/2022WR033660

21 of 24

in particular, regarding equifinality and overfitting issues. For instance, injecting physical information into the 
selection of calibration parameter values (and their combinations), or the early definition of required measure-
ment quantities according to design-of-experiments standards (e.g., Box et al., 2005) might aid in identifying and 
reducing equifinality because of wrong physical assumptions. In addition, the convergence criteria (skill scores 
of BME and relative entropy) for the BAL iterations will require to be refined to account for physical relevance.

5.  Conclusions
This study shows that Bayesian calibration (assisted by a GPE-surrogate model and BAL) yields statistically 
satisfactory fitting of a hydrodynamic numerical 3d model of a pump-storage reservoir. The Bayesian calibration 
strategy provides substantial advantages over expert-informed, subjective trial-and-error calibration regarding 
multiple aspects and unmasks physical disparities stemming from equifinality.

We calibrate three parameters, notably the background horizontal eddy viscosity, background horizontal eddy 
diffusivity, and initial water temperature in the reservoir. The calibration is informed by two measurement quan-
tities, in particular, depth-averaged horizontal flow velocity and water temperature at a measurement station. 
Three scenarios consider both measured quantities in combination and individually. In an all-data scenario, we 
calibrate with both flow velocity and water temperature data, resulting in statistically meaningful calibration 
results. The next scenario exclusively considers flow velocity measurements and is physically more reasonable to 
simulate  advective 2d currents due to pump and turbine operations. The last scenario considers the water temper-
ature measurements only and is designed to not work physically correctly because of a too short modeling period 
for the development of thermal lake stratification. Yet, the last scenario yields good results regarding lump-sum 
statistics.

This study builds on Bayesian calibration indicating calibration parameter uncertainties and their interdependen-
cies through characteristics of their posterior distributions. The posterior distributions of the calibration param-
eters resulting from the scenario only using water temperature data show particularly high uncertainties that we 
do not observe in the other two scenarios. Thus, physically incorrect overfitting is possible even with an objective 
calibration approach, but the Bayesian calibration strategy aids in detecting non-meaningful calibration results.

In addition, we show that the individual consideration of exclusively one measured quantity may yield better 
lump-sum statistics and lower global errors regarding the considered measurement quantity than the combined 
consideration of both quantities. While the overall model performance improved with fewer measurement quan-
tities, using exclusively one measurement quantity (i.e., either depth-averaged flow velocity or water tempera-
ture) leads to the overfitting of the model toward the measured quantity. We also obtain statistically acceptable 
calibration results with as few as 20 training points for water temperature only. Thus, this study suggests that the 
number of measured quantities available for model calibration is more important to represent particular physical 
processes than the number of features (i.e., measurements) per quantity.

Finally, Bayesian calibration is an efficient and objective technique for calibrating hydrodynamic models of 
reservoirs. Within considerably reduced computing time, many possible combinations of calibration parameter 
values (here: 10 6) can be tested. However, to not only identify but also address equifinality, a future challenge will 
be to implement additional criteria for selecting calibration parameter value candidates and combinations into 
Bayesian calibration. For instance, skill scores considering the statistical quality and also physical relevance (i.e., 
beyond BME or relative entropy) could be a starting point. Such skill scores could infuse physical plausibility 
into Bayesian calibration.

Notation
𝐴𝐴 Δ

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ
 	 background horizontal eddy diffusivity

Δh	 horizontal eddy diffusivity
Δv	 vertical eddy diffusivity
ɛ	 measurement error/residual

𝐴𝐴 𝐴𝐴
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ
 	 background horizontal eddy viscosity

νh	 horizontal eddy viscosity
νv	 vertical eddy viscosity
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Ω	 Vector of calibration parameter values
𝐴𝐴 𝐴𝐴

Δ
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ

 	 parameter space of background horizontal eddy diffusivity
𝐴𝐴 𝐴𝐴

𝜈𝜈
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

ℎ

 	 parameter space of background horizontal eddy viscosity
𝐴𝐴 𝐴𝐴𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡

 	 parameter space of water temperature at the intake tower
𝐴𝐴 𝐴𝐴

2

𝜀𝜀𝜀𝜀𝜀
 	 error variance of measurement data

ADCP	 acoustic Doppler current profiler
BAL	 Bayesian active learning
BME	 Bayesian model evidence
D	 measurement data set
DKL	 relative entropy (Kullback-Leibler divergence)
GPE	 Gaussian process emulator

𝐴𝐴 𝔼𝔼() 	 expected value of an expression or distribution
𝐴𝐴  	 full-complexity model response

n	 number of measurements (i.e., number of rows in D))
R	 diagonal (co-)variance matrix of measurement errors (sized n × n)
RMSE	 root-mean-square error

𝐴𝐴  	 response of the GPE-surrogate model
SR	 Schwarzenbach reservoir
Ttow	 water temperature at the intake tower
T	 water temperature (in general)
t	 time
U	 depth-averaged flow velocity

Data Availability Statement
The methods for model reduction and Bayesian updating were published in the references Oladyshkin et al. (2013) 
and Oladyshkin and Nowak (2012). The codes for the Bayesian active learning with GPE are available at https://
github.com/sergiocallau/ManuscriptSBT/releases/tag/v0.1 (Callau & Schwindt,  2022). Data at the numerical 
model boundaries and a keyhole markup language file indicating the location of the measuring station are provided 
at https://github.com/sschwindt/schwarzenbach-bc/archive/refs/tags/boundary-data.zip (Schwindt, 2022).
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