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Abstract

Aufeis is a common phenomenon in cold regions of the Northern Hemisphere that

develops during winter by successive water overflow and freezing on ice-covered

surfaces. Most studies on aufeis occurrence focus on regions in North America and

Siberia, while research in High Mountain Asia (HMA) is still in an exploratory phase.

This study investigates the extent and dynamics of icing processes and aufeis in the

Tso Moriri basin, eastern Ladakh, India. Based on a combination of 235 Landsat

5 TM/8 OLI and Sentinel-2 imagery from 2008 to 2021 the occurrence of icing and

aufeis was classified using a random forest classifier. A total of 27 frequently occur-

ring aufeis fields with an average maximum extent of 9 km2 were identified, located

at a mean elevation of 4,700 m a.s.l. Temporal patterns show a distinct accumulation

phase (icing) between November and April, and a melting phase lasting from May

until July. Icing is characterized by high seasonal and inter-annual variability. Succes-

sive water overflow mainly occurs between January and March and seems to be

related to diurnal freeze–thaw-cycles, whereas higher daytime temperatures result in

larger icing areas. Aufeis feeding sources are often located within or in close vicinity

to wetland areas, while vegetation is largely absent on surfaces with frequent aufeis

formation. These interactions require more attention in future research. In addition,

this study shows the high potential of a machine learning approach to monitor icing

processes and aufeis, which can be transferred to other regions.
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1 | INTRODUCTION

Cryospheric changes have gained much attention as a major research

topic in recent decades due to widespread consequences for biophys-

ical and human systems alike. Climate change has already led to

extensive glacier retreat and mass loss,1–3 decrease in seasonal snow

cover4,5 and permafrost degradation.6–10 In the snow-dominated and

glacier-fed Himalayan basins, these changes affect the amount and

seasonal patterns of run-off with impacts on irrigated agriculture11,12

and hydropower generation.13 However, the formation, extent and

hydrological importance of river and lake ice have not been a major

research topic, although these cryospheric components can be used

as a proxy for regional climate change.14–16 Only few studies have

focused on river or lake ice phenology and monitoring in High

Mountain Asia (HMA).17–20 Closely related to these processes is the

formation of aufeis,21 which appears as seasonal, surficial bodies of
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layered ice resulting from overflow of ground, spring or stream water

onto frozen surfaces. Its complex formation is controlled by a combi-

nation of hydro-meteorological factors and permafrost distribution,

but their interactions are poorly understood.22,23 Unlike river ice, it

persists throughout the spring melt season and larger aufeis fields –

which may reach an average thickness of several metres over areas of

several square kilometres in other northern high latitude regions, such

as Alaska and Siberia24 – can even persist over summer.25 For several

river systems in cold environments, aufeis volumes are estimated to

store a substantial amount of winter discharge which becomes avail-

able in spring. Due to climate change, the number and extent of aufeis

fields are declining in several cold regions.23,25,26 Studies on aufeis

have mainly been conducted in North America or Siberia,27–30 while

research in HMA is still in an exploratory phase, with only one inven-

tory for the upper Indus basin (UIB).31 This inventory comprises 3,700

aufeis fields, with most of them being located in the eastern parts of

UIB, indicating that cold-arid conditions might be beneficial for their

formation in high-altitude regions. Even though aufeis fields cover

only a small proportion of the UIB (Figure 1), the physical process of

aufeis accumulation has been used by local communities in Central

Ladakh for the construction of ice reservoirs, which serve to cope

with seasonal water scarcity in spring.12,32–35

The overall aim of this study is to explore the extent and dynam-

ics of aufeis in the endorheic Tso Moriri basin of eastern Ladakh.

Located in close proximity to the Tibetan plateau, it can be assumed

that aufeis is a prominent landscape feature and of great importance

for hydrological processes. According to Ensom et al.,22 we distinguish

between the process of accumulation (icing) and the resulting ice body

(aufeis). For an improved understanding of the spatio-temporal

distribution of icing processes and aufeis in this region, seasonal and

inter-annual dynamics of icing and aufeis occurrence and depletion

are analysed using a time-series approach based on Landsat and

Sentinel-2 data.

2 | STUDY AREA

The endorheic Tso Moriri basin is part of the Changthang plateau

located in Ladakh, northern India, and covers an area of 2,350 km2

(Figure 2). Lake Tso Moriri (4,520 m a.s.l., 150 km2 in size) is situated

in the centre of the basin and is surrounded by the mountain ranges

of Chamser to the east and Korzok to the west, which reach eleva-

tions above 6,650 m a.s.l. with small, high-altitude glaciers located

above 5,400 m a.s.l.36 More than 50% of the basin is snow covered in

winter, which is reduced to less than 10% in summer.37 The brackish

lake is mainly fed by two perennial rivers and several rivulets which

drain meltwater from snow and glaciers. Located in the rain shadow

of the Greater Himalayan range, the basin receives only 100–300 mm

annual precipitation. Mean monthly temperatures range from around

�20�C in January to around 8�C in July, with an annual mean of about

�2�C.38–41

Due to the cold-arid climate, densely vegetated wetlands are

restricted to moist alluvial and slightly saline soils, which are rich in

organic material and sharply contrast to the surrounding sparsely

F IGURE 1 Aufeis fields in different locations of Ladakh [Colour figure can be viewed at wileyonlinelibrary.com]

82 BROMBIERSTÄUDL ET AL.

http://wileyonlinelibrary.com


vegetated slopes. Dominant plants of the wetlands include Kobresia

schoenoides (C.A. Mey.) Steud., Kobresia royleana (Nees) Boeck., Blys-

mus compressus (L.) Panzer ex Link, Poa calliopsis Litw. ex Ovcz. and

Puccinellia himalaica Tzvelev. Surrounding desert steppe plant commu-

nities on the hillslopes include Krascheninnikovia ceratoides (L.) Guel-

denst., Stipa caucasica Schmalh., Stipa subsessiliflora (Rupr.) Roshev.;

and specifically on sand flats: Carex moorcroftii Falc. ex. Boott, Leymus

secalinus (Georgi) Tzvelev and Oxytropis tatarica Cambess. ex Bunge

(own plant sampling in 2017, unpublished).

Pastoralism has historically been the main source of livelihood

under these harsh environmental conditions. Wetlands around the

lakes and along the streams are used as pastures for domestic sheep,

goats, yaks and horses.42 Several seasonal grazing settlements exist

along the lake and rivers, inhabited between May and October. The

only permanent settlement is Korzok (Korzog) with a small area under

cultivation located at the western shore of Tso Moriri, which serves as

a regional economic and tourism centre. Due to the high ecological

diversity and its importance as a breeding area for several bird

F IGURE 2 The Tso Moriri basin, eastern Ladakh, Trans-Himalaya [Colour figure can be viewed at wileyonlinelibrary.com]
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species,43,44 Tso Moriri was designated as a wetland of international

importance under the Ramsar convention in 2002.45

3 | MATERIALS AND METHODS

3.1 | Materials

Data from Landsat and Sentinel-2 missions from November to July

were utilized to map icing patterns and aufeis fields. The start of the

time-series analysis was set to 2008, because data availability in the

region is sparse was previous years, mainly due to a non-operational

ground station in South and Central Asia.46–48 Landsat Collection

2 Level 2 surface reflectance imagery (paths/row: 146–147/036) was

selected because of its improved geolocation accuracy and interoper-

ability with Sentinel-2 data. Since 2018, imagery from both Sentinel-2

satellites was continuously available (Tile: T44SKB). Level-1C product

(top-of-atmosphere) was used due to artefacts and oversaturation in

some scenes of Level-2 surface reflectance product. The combination

of Landsat and Sentinel-2 data results in a varying number of images

per year and month, with the largest number for the years 2018–

2021. No images are available between November 2011 and February

2013, the period between the decommission of Landsat 5 TM and the

start of Landsat 8 Operational Land Imager (OLI) mission. Both data

sets were acquired from the USGS EarthExplorer (https://

earthexplorer.usgs.gov). In total, 235 images with cloud-free main val-

leys were analysed, of which 171 were allotted to Landsat and the

remaining 64 to Sentinel-2 (Figure 3; Table S1).

The extent of the Tso Moriri watershed, slope and elevation

values were derived from the 1 Arc-Second Global SRTM-DEM

(Shuttle Radar Topography Mission-Digital Elevation Model) with a

spatial resolution of 30 m downloaded from https://earthexplorer.

usgs.gov/.

The Moderate Resolution Imaging Spectroradiometer (MODIS)

daily land surface temperature (LST) data set from the Terra

(MOD11A1 V6) and Aqua (MYD11A1 V6) satellites with a spatial res-

olution of 1 km was used to substitute non-available in-situ climate

data and to estimate surface temperatures. LST obtained using

MODIS represents the radiometric temperature of a given surface

and is not the same as standard air temperature measured 2 m above

the ground.49 Depending on land cover and atmospheric conditions

LSTday can be up to 20�C higher than air temperature.50,51 MODIS

LST are considered a valuable data set for studies of land surface pro-

cesses, as the evaluations of LSTday to in-situ surface temperature

measurements have shown good agreements.52–55 Each satellite pro-

vides two acquisitions, one daytime and one night-time observation.

Local crossing times were �10:30 am/ �10:30 pm for Terra and

�1:30 am / �1:30 pm for Aqua. The Aqua daytime acquisition was

chosen for subsequent analysis as it best represents the maximum

temperature of the land surface (LSTday). In addition, Aqua night-time

data (LSTnight) were used to show the seasonality of freeze–thaw

cycles (see Suppl. S2).

3.2 | Pre-processing

For all Landsat and Sentinel-2 images the normalized difference snow

index (NDSI)56:

NDSI¼Green�SWIR1
GreenþSWIR1

ð1Þ

was calculated and stacked into a multi-band raster image containing

seven bands (blue, green, red, near-infrared (NIR), shortwave infrared

1 (SWIR 1), shortwave infrared 2 (SWIR 2), NDSI). For Sentinel-2, the

visible (blue, green, red) and NIR bands were resampled to 20 m to

F IGURE 3 Number of used Landsat and
Sentinel-2 scenes per year and month. 0 is caused
by high cloud coverage, no data due to the
transition period between the decommission of
Landsat 5 TM and the start of Landsat 8 OLI
[Colour figure can be viewed at
wileyonlinelibrary.com]
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match the spatial resolution of SWIR bands. All steps were conducted

with Python 3.7.6 and R, version 4.1.0.57

MODIS LST data were processed using the cloud-based Google

Earth Engine (GEE) computing platform.58 Temperature was extracted

on six data points along the river courses of the main valleys and sep-

arately averaged for daytime (1:30 pm) and for night-time (1:30 am)

data. To obtain a consistent timeline and to reduce biasness associ-

ated with missing values, LSTday and LSTnight were aggregated each

into 8-day averages, if fewer than three observations within the

respective 8-day period contained no data. Otherwise the time frame

was excluded (Figure S2). Based on this 8-day period, an 11-year aver-

age of LSTday was calculated as a baseline for yearly absolute temper-

ature anomalies, which were used to explore their influence during

aufeis accumulation.

3.3 | Mapping of icing events and aufeis

Icing and aufeis show a consistent lower albedo in the VIS/NIR parts

of the electromagnetic spectrum compared to snow (Figure 4). Thus,

icing events appear in a turquoise colour, while snow remains white in

a NIR-R-G false colour composite.

Although this distinct spectral signature of icing and aufeis enables

its detection with normalized difference snow index (NDSI)-based

threshold techniques,23,26,31 their application to image time-series

often requires time-intensive manual adaptation of thresholds for each

scene. Therefore, the delineation of icing and aufeis was performed

using a random forest (RF) classifier (R randomForest package59). RF is a

non-parametric supervised machine learning algorithm and has been

frequently applied in various remote sensing studies, e.g., mapping of

global lake ice cover,60 supraglacial lakes61,62 or wetland inventory-

ing.63 An RF draws predictions from an ensemble of uncorrelated

Classification and Regression Trees (CART) which are built on the basis

of randomly selected subsets of training samples. Two-thirds of the

training samples are used to train the trees, while the remaining one-

third is used for an internal cross-validation of model performance.

Each decision tree is produced independently, and each node is split by

a user-defined number of features (mtry). The forest is then grown up

to a user-defined number of trees (ntree). For new data, each class is

predicted based on majority votes of all decision trees.64 Compared to

other machine learning algorithms, RF is less prone to overfitting,

has parallel processing capabilities and only requires the setting of a

few parameters65,66

After evaluation of several combinations, five bands were

selected as predictor bands: green, red, NIR, SWIR 1 and NDSI. The

RF was built using a mtry value of 2 and the default ntree value of

500.

3.4 | Training and validation samples

Two RFs were trained, one for Landsat and one for Sentinel-2 imag-

ery using the same settings and predictor bands. For training and

validation two separate data sets were created manually on false-

colour composites due to the lack of adequate field data. For the

delineation of training pixels, 15 Landsat and 10 Sentinel-2 scenes

were randomly selected to cover a wide range of spectral properties

throughout the whole observation period. To minimize spectral con-

fusion, four land cover classes (Icing/aufeis, snow, barren land, topo-

graphic shadows) were distinguished (Table S2). For each pixel, the

spectral values on the specific date were extracted for the predictor

bands.

Training samples were selected following an area-proportional

approach with sample allocation according to the expected area of

each class.67 Therefore, 25% of icing/aufeis and 60% of samples for

each of the remaining classes were chosen randomly, and the remain-

ing pixels discarded. Validation data sets contain 200–300 samples for

each classification.

3.5 | Post-classification

To create binary classifications, the classes snow, barren land and

topographic shadow were merged into one non-aufeis class. Slopes

≥10� were excluded with a slope mask derived from the SRTM-DEM

as icing and aufeis in the neighbouring UIB mainly occurs on slopes

with angles of <10�.31 Finally, a majority filter was applied to eliminate

pixel clusters smaller than four Landsat pixels (3,600m2).22 This

refined classification was the basis for the accuracy assessment, which

reached a very good agreement with an overall average Kappa coeffi-

cient of 0.86. Details on this procedure are provided in the supple-

ment (Text S1; Figure S1). Remaining misclassifications were manually

F IGURE 4 Averaged spectral curves from Landsat imagery for
icing and aufeis (dark blue) and seasonal snow cover (light blue) in the
visible to shortwave infrared [Colour figure can be viewed at
wileyonlinelibrary.com]
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removed after the accuracy assessment (Figure 5). Classification

results were categorized into icing (accumulation: November–April)

and aufeis (melting: May–July).

As spring is the optimal time to detect the maximum possible

number and size of aufeis fields,23,26 scenes closest to mid-May were

chosen to calculate the average area and the return frequency of indi-

vidual aufeis fields (Table S3).

To determine areas subject to icing occurrence and the return

frequency of aufeis, the count of instances when ice was present at

a pixel was calculated. The return frequency was divided into three

classes following a categorization by Morse & Wolfe23 as either

infrequent (<3 years), occasional (≥3 and < 6 years) or frequent

(≥6 years).

4 | RESULTS

4.1 | Aufeis in the Tso Moriri basin

Frequently occurring (≥6 out of 11 years analysed) aufeis ranging from

0.007 km2 up to 1.7 km2 in size are predominately located along the

two main valleys: 22 are found along the southern river and its tribu-

tary streams, whereas only 4 are detected along the northern valleys

and only 1 on the fluvial fan of Korzog. The mean aufeis-covered area

in the study period amounts to a maximum of 9 km2 in May over the

entire observation period. Aufeis larger than 0.5 km2 are found only

along the southern inlet. The elevational distribution of individual

aufeis fields follows the topography of the basin and decreases from

5,040 to 4,520 m a.s.l. from northwest to southeast towards the lake

(Figure 6).

4.2 | Icing process: Temporal accumulation and
melting patterns

Temporal dynamics reveal highly variable seasonal and inter-annual

patterns. However, two main phases can be distinguished: the icing

and melting phases, which are mainly temperature controlled. The

annual icing process starts in November with a drastic growth in

December (Figure 7) and lasts until April, when day- and night-time

temperature differences are highest (Figure S2). This phase is

characterized by regular water overflow and freezing onto the

F IGURE 5 Exemplary
classification results after post-
processing for different months,
years and sensors. Icing and aufeis
extents (yellow) are shown on
false-colour composites (NIR-R-
G) [Colour figure can be viewed
at wileyonlinelibrary.com]
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surface. Icing occurrence is most prominent from January through

March and displays a strong relation to the degree of snow cover-

age and LSTday anomalies compared to the 11-year average. This

pattern is especially evident in 2018, which displays constantly high

temperature anomalies together with largest icing areas (�16 km2).

In contrast, below 11-year average temperatures, i.e., from January

to March for 2015, 2017 and 2019, favour longer snow coverage,

which results in smaller visible icing areas (between 4 and 8 km2).

This pattern is also expressed in moderate to strong correlation

(R = 0.64) with a very high statistical significance (p < 0.0001)

(Figure 8).

Months with a moderate snow coverage show alternating sea-

sonal and inter-annual patterns in icing area, depending on the loca-

tion of snow within the valleys. It shows no relation to the amount of

icing occurring in the previous months. Melting of aufeis is detectable

from May onwards, and its area continually decreases until the end of

July (Figure 7).

4.3 | Icing and aufeis accumulation frequency

Spatial icing expansion along the southern inlet of Tso Moriri can be

differentiated into two forms. While separate icing areas are present

in the upstream parts of the river (Figure 9a,b), icing in the down-

stream sections merges into one large ice field (Figure 9c,d). Both

types are not restricted to the river channels, but rather cover the

entire floodplains. Icing zones are spatially and inter-annually consis-

tent throughout the watershed with the exception of the large alluvial

fan to the south of the lake (Figure 9c). In general, icing occurrence is

highest in the centre and gradually reduces with distance and lateral

expansion from the source. Potential discharge points for water

overflow are often located within or close to wetland areas. In total,

20% of the main valleys are subject to icing occurrence.

Aufeis frequency corresponds with vegetation distribution on the

floodplain. Dense vegetation is found only in areas with low return

frequencies (infrequent/occasional) and is almost absent in areas

where ice returns on a frequent basis (Figure 9A–D). Wetland areas

are not subject to aufeis development, but are found in close proxim-

ity along the edges of frequently returning aufeis.

However, icing does not necessarily lead to frequent aufeis accu-

mulation, e.g., as seen on the west side of the alluvial fan. In general,

four categories regarding the connection between icing and accumula-

tion can be differentiated in the basin: (i) Frequent overflow but no

aufeis accumulation, (ii) frequent overflow with aufeis accumulation,

(iii) infrequent to occasional overflow events but aufeis accumulation

and (iv) infrequent to occasional overflow events resulting in no

aufeis.

Considering the extent in May, the area decreases with increasing

return frequency and is lowest for pixels ice-covered every year. Infre-

quent aufeis-covered pixels have the largest share compared to the

remaining classes with 12.55 km2 and are mainly located around the

edges. Aufeis occurring on a frequent basis (9 km2) is 3.15 km2 larger

compared to only occasional appearing ice (5.93 km2).

5 | DISCUSSION

In general, the pattern of aufeis development resembles river ice

phenology,68 even though it does not disappear rapidly during spring

but rather gradually decreases between May and July. Melt of individ-

ual aufeis is spatially and temporally heterogeneous with great annual

variability. It seems not to be only influenced by temperature, but also

F IGURE 6 Spatial distribution, size and mean
elevation of aufeis in the Tso Moriri basin [Colour
figure can be viewed at wileyonlinelibrary.com]
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F IGURE 7 Icing/aufeis area (left), observed snow coverage for each observation of the time-series (2008/2009–2020/2021) and LSTday
anomalies (right). 2011/2012 & 2012/2013 were excluded due to data gaps [Colour figure can be viewed at wileyonlinelibrary.com]
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probably by a combination of factors, including ice thickness, cloud

coverage and solar radiation.69 LSTday anomalies indicate an inverse

relationship where above-average temperatures are beneficial for

water overflow events, while at the same time low temperatures at

night facilitate the freezing process. This is particularly visible from

January to March, which can be considered the most important

months for the formation of aufeis fields. Although April is still charac-

terized by a high degree of water overflow, surface temperatures

might already be too high for frequent icing events and can be

regarded as a transitional month, where diurnal melting has already

started or freezing overnight is still occurring. Despite not utilizing air

temperature as a meteorological variable, the results still suggest the

occurrence of warming intervals, which might be one of the key fac-

tors in determining at what time an overflow event happens. While

statistical analysis has indicated the importance of short-term air tem-

perature increases for overflow events,23,30 the impact of LST on

overflow remains unknown yet. Therefore, it might be valuable to

include LST data in future studies to obtain a better understanding of

aufeis accumulation.

Icing dynamics are further affected by snow cover thickness and

duration, where higher daytime air temperatures cause a shorter dura-

tion or complete melting of snow cover along the valleys and lead to

greater icing sizes. This inverse relationship between snow cover and

extent of icing has also been suggested in other studies.21,27 Despite

that, the spatial extent of icing does not determine the final size of

aufeis fields, which show rather stable extents irrespective of the

amount of water overflows during accumulation. Although the applied

remote sensing approach does not allow for quantification of ice

thickness, this parameter could either be estimated by field

measurements or the application of terrestrial or satellite-based pho-

togrammetry techniques, it can be assumed that ice thickness of indi-

vidual aufeis fields varies on an inter-annual basis.

The high-altitude wetlands are not only of great environmental

importance but also serve as important grazing grounds. They are pri-

marily sustained by snow and glacier meltwater70 and permafrost71

meltwater. The close proximity of aufeis fields to wetlands suggests

that they supply additional water to those ecosystems, especially dur-

ing melting at the onset of the vegetation period between May and

June and in turn their substantial contribution for groundwater

recharge in cold-arid high mountain regions.72 In addition, potential

water sources feeding the aufeis are often located close or within

wetlands indicating their importance for aufeis development. Thus, cli-

mate change will most likely affect icing and aufeis dynamics in HMA,

but it is not applicable to make assumptions about possible trends

based on this study as the observation period only represents

11 years. Such developments have already been observed in other

aufeis-affected regions, where the number, extent and persistence are

already declining.23,25,26,73 Nevertheless, remote sensing provides the

opportunity to monitor such changes, despite data availability remain-

ing the main obstacle for long-term monitoring in the region. The

widespread occurrence of aufeis in the Trans-Himalaya31 offers the

opportunity not only to investigate the hydrology or physicomechani-

cal process but also their role for river ecology, downstream habitats

or local communities – aspects which have not received much

attention so far.28

The results of the accuracy assessment support that a machine

learning approach is suitable to map icing/aufeis and that the method

can be transferred to other regions. Unlike thresholds, deviations in

spectral properties do not require manual adjustments and have little

influence on the predictions of the model, if the training samples are

representative of the target classes.65 This drastically reduces the

workload especially in cases where large amounts of data are ana-

lysed. In addition, the combination of Landsat and Sentinel-2 imagery

offers the possibility to analyse denser time-series at a medium and

high spatial resolution which provides more detailed insights into

icing dynamics. However, the lower temporal resolution also has dis-

advantages in the detection of icing areas. Smaller detectable areas

may be caused by snowfall events prior to the satellites acquisition.

Data from sensors with a higher temporal resolution, like MODIS

daily surface reflectance imagery, can be an adequate alternative to

map intra- and inter-annual variations in icing/aufeis,25 but this

comes with the disadvantage of a low spatial resolution. To mitigate

the problem of cloud coverage, synthetic aperture radar (SAR) has

already been successfully used to map icing and aufeis.24,30,74 How-

ever, the application of SAR data can be challenging in areas with

rugged topography due to distortion caused by the complex image

geometry.

F IGURE 8 Scatterplot of LSTday anomaly and icing area in the
most important months for accumulation (January–March) according
to snow coverage. A moderate to strong correlation (R = 0.64) with a
very high statistical significance (p < 0.0001) is detectable [Colour
figure can be viewed at wileyonlinelibrary.com]
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F IGURE 9 Icing occurrence (a and c) and aufeis frequency (b and d). A–D shows the vegetation extent in comparison to aufeis frequency. The
thin black (a–d) and yellow (A–D) lines refer to the mean aufeis extent. Icing occurrence and aufeis frequency were calculated based on the count
of instances when ice was present at a pixel. Categorization was adapted from Morse & Wolf23 [Colour figure can be viewed at
wileyonlinelibrary.com]
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6 | CONCLUSION

In this study, icing patterns and aufeis occurrence in the Tso Moriri

basin were mapped using a time-series approach of freely available

Landsat and Sentinel-2 data. A total of 27 aufeis fields covering an

average area of 9 km2 were identified. Although icing occurrence is

highly variable on the seasonal and inter-annual scale, resulting aufeis

bodies form at the same place year after year. In addition, their loca-

tion in close proximity to the high-altitude wetlands suggests close

hydrological interactions and dependencies. This emphasizes the need

to pay particular attention to the function of aufeis in the ecological

system. In addition, the machine learning approach of this study pro-

vides a new opportunity for almost completely automated mapping of

icing and aufeis. This method can be particularly useful for studies uti-

lizing a large amount of satellite data as adaptation of thresholds for

individual scenes is not required. However, it does not permit conclu-

sions about aufeis thickness or volume. Therefore, future research

should integrate additional methods, e.g., photogrammetric tech-

niques, to estimate these parameters to contribute to a better under-

standing of aufeis and its role in HMA.
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range size patterns of vascular plants in the Himalaya contradict

Rapoport's rule. J Ecol. 2021;109(12):4025-4037. doi:10.1111/1365-

2745.13772

42. Ghosal S, Ahmed M. Pastoralism and Wetland Resources in Ladakh's

Changthang Plateau. In: Prins HHT, Namgail T, eds. Bird migration

across the Himalayas: Wetland functioning amidst mountains and gla-

ciers. Cambridge University Press; 2017:333-341. doi:10.1017/

9781316335420.025.

43. Baral HS, Bhandari BB. Importance of high altitude wetlands for pro-

tection of avian diversity in the Hindu Kush Himalayas. The Initiation.

2011;4:96-102. doi:10.3126/init.v4i0.5541

44. Prins HHT, van Wieren SE, Namgail T. Bird species diversity on a ele-

vational gradient between the Greater Himalaya and the Tibetan pla-

teau. In: Prins H, Namgail T, eds. Bird migration across the Himalayas:

Wetland functioning amidst mountains and glaciers. Cambridge Univer-

sity Press; 2017:299-315.

45. Humbert-Droz B. Impacts of Tourism and Military Presence on Wet-

lands and Their Avifauna in the Himalayas. In: Prins HHT, Namgail T,

eds. Bird migration across the Himalayas: Wetland functioning amidst

mountains and glaciers. Cambridge University Press; 2017:342-358.

doi:10.1017/9781316335420.026.

46. Goward S, Arvidson T, Williams D, Faundeen J, Irons J, Franks S. His-

torical record of Landsat global coverage: Mission operations,

NSLRSDA, and international cooperator stations. Photogrammetric

Engineering and Remote Sensing. 2006;72(10):1155-1169. doi:10.

14358/PERS.72.10.1155

47. USGS. Historical international ground stationsjLandsat missions. Pub-

lished Online 2018. https://landsat.usgs.gov/historical-international-

ground-stations/

48. Wulder MA, White JC, Loveland TR, et al. The global Landsat archive:

status, consolidation, and direction. Remote Sens Environ. 2016;185:

271-283. doi:10.1016/j.rse.2015.11.032

49. Guillevic P, Göttsche F, Nickeson J, et al. Land surface temperature

product validation best practice protocol. Version 1.1. In: Guillevic P,

Göttsche F, Nickeson J, Román M, eds. Good practices for satellite-

derived land product validation; 2018. doi:10.5067/doc/ceoswgcv/

lpv/lst.001.

50. Jin M, Dickinson RE. Land surface skin temperature climatology:

benefitting from the strengths of satellite observations. Environ Res

Lett. 2010;5(4):044004. doi:10.1088/1748-9326/5/4/044004

51. Mildrexler DJ, Zhao M, Running SW. A global comparison between

station air temperatures and MODIS land surface temperatures

reveals the cooling role of forests. J Geophys Res Biogeo. 2011;

116(G3):1-15. doi:10.1029/2010JG001486

52. Duan SB, Li ZL, Li H, et al. Validation of collection 6 MODIS

land surface temperature product using in situ measurements.

Remote Sens Environ. 2019;225:16-29. doi:10.1016/j.rse.2019.02.020

53. Singh S, Bhardwaj A, Singh A, et al. Quantifying the congruence

between air and land surface temperatures for various climatic and

elevation zones of Western Himalaya. Remote Sens (Basel). 2019;

11(24):2889. doi:10.3390/rs11242889

54. Wang K, Wan Z, Wang P, Sparrow M, Liu J, Haginoya S. Evaluation

and improvement of the MODIS land surface temperature/emissivity

products using ground-based measurements at a semi-desert site

on the western Tibetan plateau. International Journal of

Remote Sensing. 2007;28(11):2549-2565. doi:10.1080/01431160

600702665

55. Wang W, Liang S, Meyers T. Validating MODIS land surface tempera-

ture products using long-term nighttime ground measurements.

92 BROMBIERSTÄUDL ET AL.

info:doi/10.1002/ppp.2051
info:doi/10.1002/ppp.2051
info:doi/10.1002/2015JF003534
info:doi/10.1016/S0034-4257(96)00167-8
info:doi/10.1002/2016GL072397
info:doi/10.1002/2016GL072397
info:doi/10.5194/essd-11-409-2019
info:doi/10.14430/arctic2681
info:doi/10.14430/arctic2681
info:doi/10.1002/lno.11626
info:doi/10.1029/2006JG000294
info:doi/10.1016/j.scitotenv.2021.146604
info:doi/10.1080/17565529.2016.1167664
info:doi/10.1017/S1742170517000527
info:doi/10.1007/978-4-431-55242-0_11
info:doi/10.1007/978-3-319-21900-4_9
info:doi/10.3390/geosciences7020027
info:doi/10.3390/geosciences12080311
info:doi/10.1038/srep24881
info:doi/10.1038/srep24440
info:doi/10.1016/j.quaint.2014.02.026
info:doi/10.1111/1365-2745.13772
info:doi/10.1111/1365-2745.13772
info:doi/10.1017/9781316335420.025
info:doi/10.1017/9781316335420.025
info:doi/10.3126/init.v4i0.5541
info:doi/10.1017/9781316335420.026
info:doi/10.14358/PERS.72.10.1155
info:doi/10.14358/PERS.72.10.1155
https://landsat.usgs.gov/historical-international-ground-stations/
https://landsat.usgs.gov/historical-international-ground-stations/
info:doi/10.1016/j.rse.2015.11.032
info:doi/10.5067/doc/ceoswgcv/lpv/lst.001
info:doi/10.5067/doc/ceoswgcv/lpv/lst.001
info:doi/10.1088/1748-9326/5/4/044004
info:doi/10.1029/2010JG001486
info:doi/10.1016/j.rse.2019.02.020
info:doi/10.3390/rs11242889
info:doi/10.1080/01431160600702665
info:doi/10.1080/01431160600702665


Remote Sens Environ. 2008;112(3):623-635. doi:10.1016/j.rse.2007.

05.024

56. Hall DK, Riggs GA, Salomonson VV. Development of methods for

mapping global snow cover using moderate resolution imaging spec-

troradiometer data. Remote Sens Environ. 1995;54(2):127-140. doi:10.

1016/0034-4257(95)00137-P

57. R Core Team. R: a language and environment for statistical comput-

ing. R Foundation for statistical computing. 2022; https://www.R-

project.org/

58. Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R.

Google earth engine: planetary-scale geospatial analysis for everyone.

Remote Sens Environ. 2017;202:18-27. doi:10.1016/j.rse.2017.06.031

59. Liaw A, Wiener M. Classification and regression by randomForest. R

News. 2002;2(3):18-22.

60. Wu Y, Duguay CR, Xu L. Assessment of machine learning classifiers

for global lake ice cover mapping from MODIS TOA reflectance data.

Remote Sens Environ. 2021;253:112206. doi:10.1016/j.rse.2020.

112206

61. Dirscherl M, Dietz AJ, Kneisel C, Kuenzer C. Automated mapping of

Antarctic Supraglacial Lakes using a machine learning approach.

Remote Sens (Basel). 2020;12(7):1203. doi:10.3390/rs12071203

62. Wendleder A, Schmitt A, Erbertseder T, D'Angelo P, Mayer C,

Braun MH. Seasonal evolution of Supraglacial Lakes on Baltoro gla-

cier from 2016 to 2020. Front Earth Sci. 2021;9:725394. doi:10.

3389/feart.2021.725394

63. Berhane TM, Lane CR, Wu Q, et al. Decision-tree, rule-based, and

random forest classification of high-resolution multispectral imagery

for wetland mapping and inventory. Remote Sens (Basel). 2018;10(4):

580. doi:10.3390/rs1004058

64. Breiman L. Random forests. Machine Learning. 2001;45(1):5-32. doi:

10.1023/A:1010933404324

65. Belgiu M, Dr�agu L. Random forest in remote sensing: a review of

applications and future directions. ISPRS Journal of Photogrammetry

and Remote Sensing. 2016;114:24-31. doi:10.1016/j.isprsjprs.2016.

01.011

66. Pal M. Random forest classifier for remote sensing classification.

International Journal of Remote Sensing. 2005;26(1):217-222. doi:10.

1080/01431160412331269698

67. Colditz RR. An evaluation of different training sample allocation

schemes for discrete and continuous land cover classification using

decision tree-based algorithms. Remote Sens (Basel). 2015;7(8):9655-

9681. doi:10.3390/rs70809655

68. Duguay CR, Bernier M, Gauthier Y, Kouraev A. Remote sensing of

lake and river ice. In: Tedesco M, ed. Remote sensing of the cryosphere.

John Wiley & Sons, Ltd; 2014:273-306. doi:10.1002/

9781118368909.ch12.

69. Lauriol B, Clark J. Localisation, Genèse et Fonte de Quelques Naleds

du Nord du Yukon (Canada). Permafrost and Periglacial Processes.

1991;2(3):225-236. doi:10.1002/ppp.3430020306

70. Bookhagen B. The influence of hydrology and glaciology on wetlands

in the Himalayas. In: Prins HHT, Namgail T, eds. Bird migration across

the Himalayas: Wetland functioning amidst mountains and glacier. Cam-

bridge University Press; 2017:175-188. doi:10.1017/

9781316335420.014.

71. Chatterjee A, Blom E, Gujja B, et al. WWF initiatives to study the

impact of climate change on Himalayan high-altitude wetlands

(HAWS). Mountain Research and Development. 2010;30(1):42-52. doi:

10.1659/MRD-JOURNAL-D-09-00091.1

72. Lone SA, Jeelani G, Deshpande RD, Mukherjee A, Jasechko S, Lone A.

Meltwaters dominate groundwater recharge in cold arid desert of

upper Indus River Basin (UIRB), western Himalayas. Sci Total Environ.

2021;786:147514. doi:10.1016/j.scitotenv.2021.147514

73. Morse PD, Wolfe SA. Long-Term River icing dynamics in discontinu-

ous permafrost, subarctic Canadian shield. Permafrost and Periglacial

Processes. 2017;28(3):580-586. doi:10.1002/ppp.1907

74. Gagarin L, Wu Q, Melnikov A, et al. Morphometric analysis of ground-

water icings: Intercomparison of estimation techniques. Remote Sens

(Basel). 2020;12(4):692. doi:10.3390/rs12040692

SUPPORTING INFORMATION

Additional supporting information can be found online in the Support-

ing Information section at the end of this article.

How to cite this article: Brombierstäudl D, Schmidt S,

Nüsser M. Spatial and temporal dynamics of aufeis in the Tso

Moriri basin, eastern Ladakh, India. Permafrost and Periglac

Process. 2023;34(1):81‐93. doi:10.1002/ppp.2173

BROMBIERSTÄUDL ET AL. 93

info:doi/10.1016/j.rse.2007.05.024
info:doi/10.1016/j.rse.2007.05.024
info:doi/10.1016/0034-4257(95)00137-P
info:doi/10.1016/0034-4257(95)00137-P
https://www.R-project.org/
https://www.R-project.org/
info:doi/10.1016/j.rse.2017.06.031
info:doi/10.1016/j.rse.2020.112206
info:doi/10.1016/j.rse.2020.112206
info:doi/10.3390/rs12071203
info:doi/10.3389/feart.2021.725394
info:doi/10.3389/feart.2021.725394
info:doi/10.3390/rs1004058
info:doi/10.1023/A:1010933404324
info:doi/10.1016/j.isprsjprs.2016.01.011
info:doi/10.1016/j.isprsjprs.2016.01.011
info:doi/10.1080/01431160412331269698
info:doi/10.1080/01431160412331269698
info:doi/10.3390/rs70809655
info:doi/10.1002/9781118368909.ch12
info:doi/10.1002/9781118368909.ch12
info:doi/10.1002/ppp.3430020306
info:doi/10.1017/9781316335420.014
info:doi/10.1017/9781316335420.014
info:doi/10.1659/MRD-JOURNAL-D-09-00091.1
info:doi/10.1016/j.scitotenv.2021.147514
info:doi/10.1002/ppp.1907
info:doi/10.3390/rs12040692
info:doi/10.1002/ppp.2173

	Spatial and temporal dynamics of aufeis in the Tso Moriri basin, eastern Ladakh, India
	1  INTRODUCTION
	2  STUDY AREA
	3  MATERIALS AND METHODS
	3.1  Materials
	3.2  Pre-processing
	3.3  Mapping of icing events and aufeis
	3.4  Training and validation samples
	3.5  Post-classification

	4  RESULTS
	4.1  Aufeis in the Tso Moriri basin
	4.2  Icing process: Temporal accumulation and melting patterns
	4.3  Icing and aufeis accumulation frequency

	5  DISCUSSION
	6  CONCLUSION
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY STATEMENT

	REFERENCES


