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Abstract In this contribution we report the first systematic study of zircon U-Pb geochronology and

8'80-¢Hf,,

extracted from the zircons allow them to be grouped into three types: (a) young zircons (0—~4 Ma) with eHf

isotope geochemistry from 10 islands of the hot-spot related Galapagos Archipelago. The data

(~5-13) and 8'80 (~4-7) isotopic mantle signature with crystallization ages dating the islands, (b) zircons

with eHf

the time of plume activity below the islands (~164 Ma is the minimum time of impingement of the plume

(~5-13) and 8'30 (~5-7) isotopic mantle signature (~4—164 Ma) which are interpreted to date

below the lithosphere), and (c¢) very old zircons (~213-3,000 Ma) with mostly continental (but also juvenile)

stm

sources. The first two types with similar isotopic mantle signature define what we call the Galdpagos Plume

(~—28-8) and §'%0 (~5-11) isotopic values documenting potential contamination from a number of

Array (GPA). Given lithospheric plate motion, this result implies that GPA zircon predating the Galapagos
lithosphere (i.e., >14—-164 Ma) formed and were stored at sublithospheric depths for extended periods of time.
In order to explain these observations, we performed 2D and 3D thermo-mechanical numerical experiments of
plume-lithosphere interaction which show that dynamic plume activity gives rise to complex asthenospheric
flow patterns and results in distinct long-lasting mantle domains beneath a moving lithosphere. This
demonstrates that it is physically plausible that old plume-derived zircons survive at asthenospheric depths
below ocean islands.

1. Introduction and Geological Setting

Global tomography and numerical models suggest that mantle plume occurrences are closely linked to the margins
of large low-shear velocity provinces (Burke et al., 2008; French & Romanowicz, 2015; Garnero et al., 2016;
Torsvik et al., 2014). In these marginal zones, the ascent of material connects deep mantle dynamics with surface
processes through prolonged mantle plume activity. This will eventually form large igneous provinces (LIPs),
hotspot tracks and volcanoes (Steinberger & Torsvik, 2012), like the modern Galdpagos Archipelago (Figure 1),
Hawai'i and Easter Islands. Recent studies suggest that despite striking differences in the surficial expression
of the Galapagos, Eastern and Hawai'i plumes, they share a common generation mechanism originating at the
Pacific LLSVP (Harpp, 2020; Harpp et al., 2014). The onset of hotspot magmatism is often marked by a LIP, a
term including continental flood basalts and oceanic plateaus. LIPs are usually considered the result of short-lived
(~1-2 Ma) periods of intense volcanism after the impingement of mantle plumes at the base of the oceanic or
the continental lithosphere (Kerr & Mahoney, 2007; Sobolev et al., 2011). LIPs have also been associated with
episodes of anoxia and mass extinction shortly after their eruption. In addition, they are associated with some of
the largest ore deposits in the world (e.g., Ni-Cu-PGE, Fe-Ti-V, and Cr ore depositsErnst & Jowitt, 2013).

Mantle plumes are active for long periods (Madrigal et al., 2016), however constraining their evolution through
time is complicated because of the difficulty in obtaining precise absolute age relationships in the mafic rocks
found in this setting and the fact that, in the oceanic environment, the plume products located in the lithosphere
drift away and eventually are lost upon subduction. One of the most precise geochronometers is the U-Pb in
zircon (ZrSi0O,), but the zircon abundance in the oceanic crust is limited due to the incompatible nature of the
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element Zirconium (Zr) and the scarce abundance of Zr in basaltic magmas. Zircon forms after fractional crystal-
lization of primitive Zr-subsaturated basaltic magmas (Davies et al., 2021; Pujol-Sola et al., 2020) and is stable
down to ~300 km depths, below which it transforms into reidite (Akaogi et al., 2018). In addition, recent studies
show crystallization of zircon in low-Zr mafic magmas of the mid-Atlantic ridge is possible (Bea et al., 2022)
but must involve the formation of small (local) zircon-saturated transient zones near growing minerals interfaces.
This opens a new window for research on the age of prolonged focused magmatic activity at sub lithospheric
depths, such as in mantel plumes, with significant geodynamic implications for asthenosphere-lithosphere inter-
actions and asthenospheric flow.

Mantle plume upwelling in the Pacific has been active since at least the mid-Jurassic, as recorded in the Pigafetta
Basin, which contains the oldest oceanic crust of the Pacific plate (~170-160 Ma) (Fisk & Kelley, 2002; Seton
et al., 2020). The Pacific plates offshore Central America, Colombia-Ecuador, the Caribbean and associated
accreted onshore rock exposures, contain a Mesozoic to recent record of Pacific mantle upwelling events that
resulted in new oceanic lithosphere, LIPs and hotspot tracks (Andjic¢ et al., 2019). The early plume products range
from early Cretaceous to the last Pacific LIP event: the Ecuadorian-Colombian-Caribbean LIP (ECCLIP) that
formed mostly at ~90 Ma, with potential additional events in the range 139-74 Ma (Diirkefilden et al., 2019;
Hoernle et al., 2004; Madrigal et al., 2016; Sinton et al., 1998). Mantle heterogeneities and recycled crust char-
acterize this Cretaceous activity of the plume (Gazel et al., 2021; Trela et al., 2015). Though the ECCLIP is
generally considered to be a product of the Galdpagos plume, other authors however, based on paleomagnetic
reconstructions, suggest that the ECCLIP originated 2,000 km east of the Galdpagos hotspot, and may thus not
be derived from the same mantle plume (Boschman et al., 2014). On the other hand (Shellnutt et al., 2021),
goes further as to suggest that the Triassic volcanic rocks of Wrangellia of western North America (more than
3,000 km away from present-day Galdpagos) were generated from a Pacific mantle plume source. Their pale-
ogeographic constraints, thermal estimates, and geochemistry suggests that it is possible that the Galapagos
hotspot generated the volcanic rocks of Wrangellia and the Caribbean plateau or, more broadly, that the eastern
Pacific (Panthalassa) Ocean was a unique region where anomalously high thermal conditions either periodically
or continually existed from at least ~230 Ma to the present day.

The hot-spot-related Galdpagos Archipelago erupted on top of thin and young oceanic crust (~10 Ma in the
northern part of the Archipelago, ~14 Ma in the southern part) (Harpp & Geist, 2018) created at the nearby
Galapagos Spreading Center (GSC; Figure 1). Owing to the eastward motion of the Nazca plate the south eastern-
most islands (e.g., Espafiola; Figure 2), are the oldest with K-Ar ages of ~2.8 Ma (White et al., 1993). Galapagos
volcanoes are fed by a mix of plume- and MOR-asthenosphere-derived melts that provide important insights into
heterogeneities of the mantle sources of ocean island volcanism (Blichert-Toft & White, 2001; Geist et al., 1988;
Harpp & White, 2001). Isotopic and trace element compositions of basaltic lavas in the Galapagos Archipelago
indicate melting of several distinct mantle sources that include components from recycled oceanic and conti-
nental crust materials (Blichert-Toft & White, 2001; Hoernle et al., 2000). Paleomagnetic and geochemical data
record a complex interaction between the hot spot and the GSC (Detrick et al., 2002; Gibson et al., 2015; Harpp
etal., 2003; Harpp & Geist, 2002). The interplay between the mantle plume and the GSC dates back to Oligocene
times (~23 Ma), when the Farallon plate split into the Cocos and Nazca plates and the aseismic Cocos, Carnegie
and Malpelo ridges started to form (Lonsdale, 2005; Meschede & Barckhausen, 2001). Upon drifting away from
the GSC, the oldest parts of these hotspot tracks have been subducted at the Central America and Nazca subduc-
tion zones (the oldest present-day ages of ridges are ~11-14 Ma) (Christie et al., 1992; Werner et al., 1999).

In an effort to date magmatism in the Galapagos Archipelago, we conducted a zircon U-Pb geochronology
study combined with Hf and O isotopic analysis of zircon grains from 10 Galapagos islands. Due to the scar-
city of zircon in rock samples, we decided to sample not only igneous rocks but also detrital material derived
from the igneous rocks of the islands (see below). The isotopic results from 238 zircon grains allow offering a
strong argument for the age of the archipelago. However, unexpectedly they also allow insight into the long-term
temporal evolution of the Galapagos plume, as many zircons are older than the age of the Galapagos litho-
sphere, posing fundamental questions on plume dynamics at asthenospheric depths and plume-lithosphere inter-
actions. We therefore performed 2D and 3D thermo-mechanical geodynamic simulations to understand the fate
of plume-derived zircon grains and the dynamics of the plume itself. Our geochemical and thermo-mechanical
modeling results can likely be reproduced in other oceanic islands.
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Figure 1. Plate-tectonic configuration of the Pacific and the Caribbean region and location of uplifted and accreted
Ecuadorian-Colombian-Caribbean-Large-Igneous-Province (ECCLIP) fragments. See Figure 2 for sample locations
containing zircon grains.

2. Methods
2.1. Sampling Strategy

We conducted an extensive sampling of basaltic and rhyolitic rocks (pumice), cave deposits collected on the floor
of a lava tube and of sands from stream beds and beaches in 10 Gal4pagos islands (Figures 2—4; Table 1) covering
most of the main area of the Archipelago. Finding rare zircons in basaltic rocks is a difficult task, therefore natural
geological processes such as erosion and sediment formation are good allies in the search for zircon. Beaches and
soils on oceanic islands far from the continents will have concentrates of recent material eroded from basaltic
rocks that fingerprint each island (Seelos et al., 2021).

Thirty-six (36) zircon-bearing samples (Figure 2; Table 1) were retrieved from the Western (Isabela 3 samples),
Central (Rébida 2, Santa Fe 5), Southern (Espaiiola 1, Floreana, 11), and Eastern (Baltra 2, Genovesa 1, Pinzén 2,
San Cristobal 4, Santa Cruz 5) isotopic zones defined by Hoernle et al. (2000). From these samples we analyzed
238 zircon grains for U-Pb dating and Hf and O isotopic compositions (see Supporting Information S1 for meth-
ods and Figures 5-7).

2.2. Analytical Procedure
2.2.1. Sample Processing and Zircon Separation Approach

Sand and soil samples were collected and panned locally in beaches for heavy minerals in each island of the
Galapagos Archipelago. This approach is used to reduce the risk of external and laboratory contamination to
a minimum. In this way, the samples are never in contact with other samples that do not come from the island
where they were taken. Similar techniques have been applied successfully in other regions of the world, for
example, Mauritius (Torsvik et al., 2013), Indonesia (Sevastjanova et al., 2011), and Grenada (Rojas-Agramonte
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Figure 2. Galdpagos Archipelago map showing sample locations in the islands containing zircon grains and present position of the plume (Villagémez et al., 2014). (a)
Beach sand sample GAL38 at Pinz6n, was collected at the same location as sample GAL36. Samples that contain zircon grains older than 14 Ma are designated in bold
letters and underlined (see Tables 2 and 3).
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Figure 3. Examples of contrasting Galdpagos beach sands (a, b, c, d, ) and a lava tube deposit (f). See Table 1 for sample/beach coordinates. (a) White sand beach
from Playa Mansa at Tortuga Bay, south of Santa Cruz (GAL3), (b) Green beach (Pirate cave), northeast of Floreana (FL8, GAL149), (c) olivine beach north of
Floreana. Coarse (rounded) grained beach, containing mostly mafic minerals (note green olivine) with a grain size of up to 3 mm. (d) Red beach north of Rabida,
containing many young zircon grains (GAL28). (e) Las Bachas beach near canal de Itabaca, north of Santa Cruz (GAL17). (f) Soil sample (GAL6) collected at Cascajo
Cave, a lava tube located in south-central Santa Cruz.

etal., 2017). The sands on beaches in Galapagos vary in composition, color and grain size as a result of biological
activity and the nature of dynamic processes that affected the source rocks they come from (providing mostly
grains of olivine, pyroxene and magnetite) as well as by coastal processes that modify the sand over long periods
of time (Seelos et al., 2021) (Figure 3). In addition, coral reefs located offshore and the carbonate parts of other
animals largely contribute to the composition of beach sands (Seelos et al., 2021).

The basalt and pumice samples were processed at Mainz University. We are aware that contamination may occur
in the lab during sample preparation, therefore we took good care during the process. One of the methodologies
that we use to avoid sample laboratory contamination is to “contaminate” the jaw crusher at Mainz University
with glass bottles which were passed through the machine a minimum of three times before starting the prepara-
tion of the samples. Another measure we took was that work by others was not allowed in the sample separation
room until the full set of Galapagos samples was finished. Approximately 1-5 kg of each whole-rock sample
was crushed to a grain size of ~250 pm, using a jaw crusher and roller mill. A first concentrate of heavy mineral
fraction was then produced by panning with water and a Frantz magnetic separator at Mainz University. The final
heavy mineral concentrates (mostly zircon) from rocks and detritus were obtained by panning with alcohol in the
Beijing SHRIMP Centre, China. We employed the panning technique to exclude that any zircon in the mineral
concentrate was due to laboratory contamination. Zircons for isotopic analysis were then handpicked during
optical inspection under a binocular microscope and mounted in epoxy resin. About 100 g of the homogenized
coarse rock material were powderized in a Siebtechnik® tungsten carbide mill for chemical and whole-rock
isotopic analysis.

Zircon was analyzed in situ for U-Pb and O isotopes using the SHRIMP II at the Beijing SHRIMP Centre,
Chinese Academy of Geological Sciences, and for Hf isotopes using the LA-MC-ICP-MS at Hong Kong and
Frankfurt Universities (Tables 2 and 3; Tables S1 and S2; Table S4 in Supporting Information S1). The analyses
were guided by optical and cathodoluminescence (CL) images (Figures 5-7). Analytical procedures are presented
in detail in Supporting Information S1.
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GAL162

Figure 4. Photos of some rock samples and locations from where samples that contain zircons were collected. See Table 1 for sample coordinates and Table S1 for
sample geochemistry. (a) Sample GAL15 is a porphyritic basalt with plagioclase phenocrysts collected at Las Grietas south of Santa Cruz, (b) Sample GAL36 was
collected in a rocky cliff from western Pinzén, the sample is a porphyritic basalt with abundant plagioclase phenocrysts up to 6 mm long, (c) GAL4O0 is a vesicular
basalt with olivine phenocryst collected in a dry stream west of Puerto Vaquerizo Moreno (San Cristobal), (d) GAL45a is a vesicular basalt with plagioclase phenocryst
collected in the NW coast of Santa Fe, () GAL162 is a porphyritic basalt with olivine phenocrysts (up to 5 mm in length) collected at La Loberia, western Floreana.

2.3. Geodynamic Modeling Approach

The numerical experiments were performed using LaMEM (Kaus et al.,, 2016; Piccolo et al., 2020), a
visco-elasto-plastic finite difference code. LaMEM solves the fundamental conservation equations of mass
(Equation 1), momentum (Equation 2), and energy (Equation 3), assuming the rocks to be incompressible:

av;
9 _g
o, ey
otij 0P
_— =0
dx,- ax,- + rg (2)
DT d aT
o= =2 (k%
’ Dt ax,- ( Xi > (3)

where v; are the components of the velocities along the x; direction, 7; are the components of the deviatoric stress
tensor, P is the pressure, g is the gravitational acceleration and p is the density. DT/Dt is the substantial time
derivative of the temperature, C, is the heat capacity, k is the thermal conductivity.

The conservation equations are solved in a fixed Eulerian frame of reference, using a finite difference staggered
grid scheme, while the advection is explicit with time and performed using Lagrangian particles and a second
order Runge Kutta scheme. The Lagrangian particles carry all the historical information needed to solve the
equations.

2.3.1. Numerical Design

The main goal of our simulations is to understand if plume-lithosphere interaction is able to generate chemically
distinct mantle domains that preserves geochronological information for a sufficiently long period of time (i.e.,
>80 Myrs). Furthermore, we want to assess if some of these chemical heterogeneities can be captured again by
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Table 1
Sample Location, Rock Samples Are Designated in Bold Letters
Island Field number Geographic coordinates Location Sample
Santa Cruz GAL3 S00°4549.56" W090°20"25.14" Tortuga Bay Beach sand
GALG6 S00°39'34.8" W090°16'09.3" Cascajo cave Lava tube deposit
GAL15 S00°45'24.7" W090°18'56.3" Las Grietas Basalt
GAL16 S00°39'34.8" W090°16'09.3" Cascajo cave Lava tube deposit
GAL17 S00°2948.5" W090°17'51.8" Las Bachas beach Beach sand
Baltra GALS6 S00°26'05.8” W90°16'58.1" La marina Beach Beach sand
GALS6 S00°2826.2" W90°1540.8" SE of Baltra Island at canal Itabaca Beach sand
Floreana FL-6 S01°16'34.6" W90°2917.4" Playa Negra Beach sand
FL-7 S01°14'12.78" W90°27'0.77" Post Office beach Beach sand
FL-8 S01°15'44.1" W90°2215.7" Las Cuevas beach Beach sand
GAL70 S01°16'34.4" W90°29'17.2" Playa Negra Beach sand
GAL140 S01°14'11.7" W90°26'57.2" Post Office beach Beach sand
GAL147 S01°13'40.85" W90°2525.62" Punta Cormorant Beach sand
GAL149 S1°15'39.52" W90°22"12.24" Las Cuevas beach Beach sand
GAL155 S01°15'57.79" W90°2915.64" North of Puerto Velazco Beach sand
GAL162 S01°17'13.83" W90°29'44.17" La Loberia Basalt
GAL172 S01°17'36.72" W90°29'41.68" South of La loberia Beach sand
GAL183 S01°15'44.1" W90°22'15.7" Cueva de los piratas stream Streambed deposit
GAL197 S01°15'40.23" W90°26'07.28" Stream coming down Cerro Ventana to Post Office Streambed deposit
San Cristobal SCR-2 S00°53'26.6" ‘W89°36'43.53" Cabo de Horno beach at Carola point Beach sand
SCR-3 S00°5532.5" W89°25'47.7" Puerto Chino Beach sand
SCR-5 S00°5530.09" W89°3650.40" La Loberia Beach sand
GALA40 $00°54'29.60" W89°36'20.43" Dry streambed Basalt
Rabida GAL28 S00°24'14.8” W90°42'11.2" NE of Rabida Beach sand
GAL29B S00°24'14.8” W90°42'11.4" NE of Rabida Basalt
Isabela GAL30 S00°23'32.1" W90°59'44.0" Volcéan Alcedo Basalt
GAL120 S00°24'30.30" W90°59'13.30" Volcan Alcedo, close to Punta Alfaro, Pumice
GAL122 500°24'25.0"S W90°592.19” Volcano north of Punta Alfaro Beach sand
Pinzén GAL36 S00°36'10.0” W90°38'54.7" Western coast Basalt
GAL38 S00°3610.0" W90°38'54.7" Western coast Beach sand
Santa Fé GAL43 S00°48'17.7" W90°05'09.3” NW coast Beach sand
GAL45a S00°48'17.7" W90°05'09.3" NW coast Basalt
GALA47 S00°48'9.53" W90° 2'26.93" Barrington Bay Beach sand
GAL48 S00°48'13.9” W90°0227.9" Barrington Bay Beach sand
GAL230 S00°49'34.22" 'W90°0145.37" Punta del miedo Beach sand
Espaifiola GALS53 S01°21'15.32" W89°3934.64" Gardner Bay Beach sand
Genovesa GALS54 NO00°19'6.42" W89°56'57.81" Genovesa Bay Beach sand

the mantle plume during a later model stage. For simplification, we do not consider the effects of radiogenic,
adiabatic, and shear heating. We employ lateral inflow-outflow boundary conditions to simulate the motion
of the oceanic plate, as well as a plume inflow bottom boundary condition. To identify the potential domains
that undergo partial melting and chemical refinement, we interpolate the volumetric melt fraction (¢) and solid
density (p,;,) from a precomputed mantle petrological phase diagram.
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Figure 5. Cathodoluminiscence (CL) images of the most representative Galapagos Plume Array (GPA) zircon grains
(0-164 Ma). Red circles represent SHRIMP spots while green and yellow circles represent Hf and 8180 spots, respectively.
Scale bars in white (100 pm).

Density depends on temperature and volumetric melt fraction:
psotid = po (1 — & (T — Trer)) C)
Pett = Psolid(1 — @) + pmen 5)

where p,; is the effective density, p_,, is the solid density, p,., is the melt density, « is the thermal expansion
coefficient, T is the actual temperature and T is the reference state temperature. We assume that most melt that
forms in the mantle is rapidly extracted and that only a maximum amount of melt can remain in the mantle, which
is why ¢ = 0.08 is taken as an upper bound in Equation 5. The mantle phase diagram has been computed using
Perple_X (Connolly, 2009) using the pyrolite composition from McDonough and Sun (1995), and the solution
model of Jennings and Holland (2015) see also Piccolo et al. (2020). All the relevant properties of each of the
compositional phases are listed in Table S5 in Supporting Information S1.

We employ a purely viscous constitutive relationship in this study where the deviatoric strain rate,

. 1 9 v . . . . . ) )
&ij =3 (()i + 0—j> consists of a combination of diffusion and dislocation creep and:
Xj Xj
z.shcur
. ij L i .
Eij = = Efjﬁ + 6?}“1 + Ell.';)pcr (6)
2Wetr

where 7.q is the effective creep viscosity. The viscosity of the diffusion and dislocation creep mechanisms are
given by

g (B PV
diff ) diff RT ’
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Figure 6. (a) Cathodoluminiscence (CL) image with dated spots (a) and Wetherill Discordia diagram (b) of zircon grains
from sample GAL29B.

1 \n g adis %—I Edisl+PVdisl
Nais1 = EBdisl (e7))" exp | —= RT = ). @)

whereas the linear viscous upper cutoff #ypper is constant and the second invariant of the strain rate tensors and

L . , 0.5 .
deviatoric stress tensors are given by é;; = (0.5¢;;¢;,)"°, and 7;; = (0.51-,:‘}‘5“’1,:‘;‘6”) respectively. By, and B
are the pre-exponential factor of diffusion and dislocation creep respectively, n the stress exponent, &;; the second
invariant of the strain rate tensor, and E,  and V,  are the activation energy and volume respectively (see Table
S5 in Supporting Information S1).

By substituting Equation 7 into Equation 6 and using the square root of the second invariant of strain rate and
stress, Equation 6 can be expressed as:

. (28 I (28 !
Er1 = + + (8)
27]diff 277upper < 27](]151,0 >

ROJAS-AGRAMONTE ET AL.

9 of 37



~1
A\J 1

ADVANCING EARTH
AND SPACE SCIENCE

Geochemistry, Geophysics, Geosystems 10.1029/2022GC010485

Gal155 Gal149.8 Gal36.1 Gal197.7 GAL6.8 GAL160.1 GAL3.1 GAL3.5
(4.184.2) 232:3 Ma326+4 Ma355+2 Ma 3783 Ma 4002 Ma 503+4 Ma 506+4 Ma
() £ ) (O 4 )

20pm

1 Gal1657  FL81  Gal197.5 QALGA1 Gall97.6 GAL6.14
533t5Ma 54323 Ma 586+5Ma  578+4 Ma O13t5Ma 76625 Ma 835:7 Ma

19)

GAL3.4 FL8.5 Gal155.3 Gal197.4 EL6.6 GAL6.3 Gal155.6
841+7 Ma  878+8 Ma 986+6 Ma 1038+6 Ma 1054+6 Ma 1069+6 Ma 1186+7 Ma
(16) Ry 1

Gal155-1.1 GAL1471 Gal197 GAL6.1 SCR3.3 Gal197.3 Gal172.1

1195+8 Ma 1312¢28 Ma 1.1-1.2 1489+8 Ma 1522+9 Ma 1557+7 Ma 2019+21 Ma
(23)}‘ - ( 26) g F27) (28) P (29)
i'-k%‘a

50 ym . y e - 50 um

Gal149-17  GAL3.6 GAL3.2 GAL3.3
Gal149-18  2794+3 Ma 2858+5 Ma 3055+2 Ma

0—
2517 Ma

Figure 7. Cathodoluminiscence (CL) images of the most representative older zircon grains (>200 Ma). Red circles represent
SHRIMP spots while green and yellow circles represent Hf and 8180 spots, respectively. Scale bars in white.

where 74;510 1S the strain rate independent part of #gig.

Equation 8 is a nonlinear expression of z;;, which is solved using (local) Newton iterations. The total deviatoric
stress tensor also contains a lower cutoff viscosity that is added in a Kelvin-like manner:

Tij = eheu + 2”Ilnwer£zj (9)

Equation 9 is substituted in the force balance equation (Equation 2), which gives a set of nonlinear equations,
which is solved with a Newton solver preconditioned with Picard iterations.

2.3.2. Initial Setup and Boundary Condition

The reference scenario of our 2D/3D thermo-mechanical numerical simulations (Figure 8) features a plume with
a radius of 150 km and an excess temperature of 250°C with respect to the local mantle potential temperature,
consistent with recent estimates from seismic tomography (Nolet et al., 2019). The plate has a constant velocity of
5 cm/yr, and an initial thermal age of 30 Ma (see Section 2.3 and Supporting Information S1 for further details).
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Figure 8. Numerical models of plume-lithosphere interaction. Snapshots (a—c) show the dynamics of a plume (with 1,600°C) interacting with a 30 Myrs old oceanic
lithosphere that moves with 5 cm/yr to the right. Thin lines with arrows are streamlines indicating flow directions; the arrows are unscaled as they would otherwise

be dominated by the plume velocities. Partially molten regions (indicated by purple shaded areas produce chemically distinct mantle domains (green/violet). We
additionally highlight the chemical heterogeneous mantle domain that undergoes the zircon-reidite phase transition. The pathway of zircons in the mantle is tracked by
passive tracer zircons (circles) which are colored by age until a zircon arrives at a partially molten region for the second time when they are removed from the numerical
domain (indicated by stars). (d) Cumulative distribution of erupted zircons. Ages <10Ma are absent because it takes some time for the initial plume to arrive at the
lithosphere-asthenosphere boundary (and melt) and because we only plot zircons that arrive at the melting zone for the second time. (e) Temporal evolution of erupted
passive tracer zircons along with periods of plume activity, which show that some old zircons can be preserved in the shallow mantle for extended periods of time.

For the 2D numerical experiments we used a domain that extends 4,000 km X 1,000 km along the x and z direc-
tions and with a grid resolution of 256 X 128 elements respectively. This strategy allows performing long-term
experiments able to cover the time evolution recorded by the geochemical data here presented. Moreover,
employing such large numerical domains prevents inflow boundary condition to interfere with the processes
that we simulate. The mantle is initially isothermal (1,350°C) using the half-space cooling model to describe the
initial lithospheric thermal structure. The uppermost portion of the compositional field is composed of a thin
oceanic crust (10 km), and 90 km of lithospheric mantle, while the rest of the domain is filled with mantle phases
(i.e., upper and lower mantle). The thickness of the lithospheric mantle is self-adjusting during the evolution of
the simulation as a function of the 1,200°C isotherm position. A depth dependent post-spinel phase transition at
660 km is introduced to adjust the inflow velocity of the plume allowing it to have a smooth temperature profile
(the density jump associated with this phase transition is Ap = 300 kg/m? see Table S5 in Supporting Informa-
tion S1). The initial plume is located at the bottom of the numerical domain and in its centre. In most numerical
experiments (Table S6 in Supporting Information S1), we introduce a rectangular thermal perturbation at the
bottom to simulate an initial plume conduit to trigger the upwelling at the onset of the simulation, which has the
same phases as the plume and an excess temperature of 250°C. Its width is equal to the inflow diameter (i.e.,
300 km) and covers almost all the lower mantle with its height. Since many of the zircons that have been collected
from Galdpagos are older than the Nazca plate, we assume that the Pacific plate retains its integrity for the whole
duration of the simulation. The initial age of the plate, and the corresponding temperature of the inflow boundary
condition is varied from 15 to 40 Myrs and the plate velocity is varied from 1 to 10 cm/yr.
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We employ a free slip boundary condition at the upper boundary with a constant surface temperature of 0°C.
Lateral boundaries are no-heat flux and free slip boundary condition except for a narrow inflow-outflow window.
The inflow-outflow window extends from the top of the domain to a minimum depth of 100 km to a maximum
of 350 km. In all numerical experiments the velocity between 0 and 100 km along z-direction is constant, and
directed from left to right side of the numerical domain. In most of the numerical experiments we introduce
a buffer inflow-outflow window in which the velocity is linearly decreased to 0 km (this distance is varied
from O to 250 km). The inflow plate has a constant thermal age that increases toward the right as a function of
the plate velocity. In some simulations, we also employ a stress-free lateral boundary with lithostatic pressure
(see Supporting Information S1). The bottom boundary is permeable with no tangential velocity components
(Ribe & Christensen, 1994, 1999), and the temperature at the boundary is constant and equal to the ambient
mantle temperature (1,350°C) with a Gaussian thermal perturbation with a radius of 150 km and a AT = 250°C.
Within the plume inflow window (—150, 150 km along x direction), particles with plume phase are injected with
a temperature equal to the one of the bottom boundary condition. Outside this inflow window, the temperature
of the material is assumed to be equal to the ambient mantle temperature and has the same phase of the normal
mantle.

2.3.3. Mantle Chemical Heterogeneities

In order to track the mantle chemical heterogeneities, we use two strategies: first, we highlight areas of the mantle
or plume that reaches ¢ = 0.05 at least once (Piccolo et al., 2019); second, we activate passive tracers (“passive
tracers zircon” in Figure 8) that are associated with a chemical heterogeneous mantle domain and start tracking
their position, temperature, pressure and melt quantity. The initial position of the passive tracers is defined by a
refined grid spanning from —1,200 to 1,200 km and from 100 to 200 km along x and z direction respectively. As
soon as they are activated, we record the age of the melting event, assuming that this portion of mantle could bear
geo-chronological information (see Figure 8). These mantle domains have to be interpreted as potential portions
of the mantle that can bear zircon. Once the passive tracers come in a region that undergoes another melting
event (when ¢ > 0.05), we assume that the rising melts will bring the zircons rapidly to the surface and remove
them from the model domain (“pre-eruption zircons” in Figure 8). When the passive tracer is erupted, we collect
information about the zircon age, and the timing at which the eruption event occurs (see Figure 8). The age of the
potential zircon generated during the partially melting of the mantle is measured in Ma, while the actual simu-
lation time is expressed in Myrs (as for the initial thermal age of the lithosphere). The chemical heterogeneous
mantle domains that are tracked give an estimation of the age of the event that may lead to the generation of zircon
population and represents an estimation of the maximum age retained by them.

3. Results

The largest concentration of all zircon grains in the Archipelago occurs in Floreana representing 37%, followed
by Santa Cruz (14%), San Cristobal (13%) and Baltra (9%). The rest of the islands have more or less a similar
distribution of 6% with the lowest concentration in Genovesa and Pinzon (Figure 2). This distribution, however, is
to some extent biased by sampling density of each island which was in general a function of the number of sandy
beaches present on each island, accessibility to the beaches etc. The chemical composition of the zircon bearing
rock samples is displayed in Figure 9 and Table S3 in Supporting Information S1.

The U-Pb age of most grains (74%) is <4 Ma old, within the range but ~1.2 Million year older than the K-Ar
ages (~2.8 Ma) reported by White et al. (1993) which corresponds to the age of basaltic to rhyolitic magmatism
in the islands (Geist et al., 2014; Stock et al., 2020) (Figures S1 and S2 in Supporting Information S1). According
to our data the volcanoes in Galapagos do not form a linear progressive chain as noticed by White et al. (1993)
nevertheless the islands in the eastern part of the Archipelago (Santa Fé, Espanola, Floreana, San Cristobal and
Santa Criiz) are consistently older than the ones in the west (Rabida, Baltra and Isabela) (Figure 2). A detailed
study of the age of the islands is in preparation, however the age ranges (<4 Ma) in the islands is as follow: Santa
Fé: 1.6 to 3.93 Ma, Espanola: ~0.5 to 2.31 Ma, Floreana: ~0.20 to 3.81 Ma, San Cristobal: ~0.52 to 2.10 Ma,
Santa Cruz: ~0.05 to 3.50 Ma (with one grain ~4.0 Ma), Rabida:~ 0.5 to 1.09 Ma, Baltra: ~0.04 to 1.50 Ma, and
Isabela: ~0.00 to 1.22 Ma (Table 2). This data indicates that the very young zircon population crystallized from
the evolving basaltic liquids upon cooling and that the detrital grains younger than 4 Ma derive from erosion of
the volcanic rocks exposed in the islands. Twenty of these samples, however, contain zircon grains older than
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Figure 9. Chemical composition of zircon-bearing rock samples shown in Figure 2. (a) TAS classification diagram after (Bas et al., 1986). (b) Zr/Ti versus Nb/Y
(Pearce, 1996). (c) Chondrite (CI)-normalized (McDonough & Sun, 1995) REE abundances. (d) Nb/Yb versus Th/Yb of the analyzed samples including the MORB-

OIB array (Pearce, 2014). In all diagrams,

(Sun & McDonough, 1989).

reference normal and enriched mid-ocean ridge basalts (N-MORB and E-MORB, respectively) and ocean island basalt (OIB)

14 Ma (Tables 2 and 3) that significantly predate the emergence of any existing island, as well as initiation of the
GSC and associated lithosphere (10 Ma).

The zircon grains with ages less than 4 Ma and up to 164 Ma define what we call the Galdpagos Plume Array
(GPA). Most of the zircons are generally anhedral to subhedral, which can be explained because most were
retrieved from beach sands (Figure 5). Some grains appear broken and there is a diversity in shape. Few grains
are euhedral and in general all grains range in size from ~80 to 300 pm with some bigger grains of more than
1 mm (Figures 5 and 6). The grain interiors exhibit relatively high CL intensity and are mostly homogenous with
some grains displaying weak to well-developed magmatic zonation. Zircons from basaltic sample GAL29B are
perfectly euhedral ranging in size from 150 to more than 200 pm and are also characterized by high CL intensity
and oscillatory zoning typical of magmatic zircon (Figure 6a). The grains have high positive eHf, (6.9-10.6;
Table S2) and young ages of 0.88 + 0.08 Ma, indicating growth upon crystallization of evolved basaltic liquid
(Figure 6b).
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The results of this study are displayed in Figure 10 and show that, except for one grain (with a 21.0 Ma core and a
18.5 Ma rim; Figures 5 and 6), all zircon grains with ages up to 164 Ma exhibit high positive eHf, (6-14; Tables
S1 and S2) and SIKO(Zimn)
Supporting Information S1). The zircon grains within this ~0—164 Ma range are distributed continuously without

values well within the range of mantle zircon (Valley et al., 2005) (4—6%o; Table S4 in

significant age gaps, defining a “Galédpagos plume array” (GPA; Figure 10a). Zircon younger than 0.2 Ma (steep
slope in Figure 10b) is not as abundant as zircons in the range 0.2—4 Ma (shallow slope in Figure 10b). This
is consistent with the arid climate and the resulting lack of fluvial erosion throughout most of the archipelago
which have prevented significant erosion of the youngest subaerial lavas (Geist et al., 2014). GPA zircon that has
pre-Galapagos Archipelago ages in the range ~4—164 Ma is scarce (steep slope in Figure 10b) but spreads evenly
and is isotopically indistinguishable from the younger <4 Ma zircon, suggesting the same plume-related mantle
origin. This is consistent with existing isotopic data of whole rocks, olivine and plagioclase from the Archipelago
and associated Carnegie, Cocos, Malpelo and Coiba ridges (Figure 10a), reinforcing the view that GPA zircons
crystalized from plume-related liquids.

The GPA trend is interrupted at 164 Ma (Figure 10a) by the appearance of low ¢Hf, and high 6180(2i rcon
in zircon of Triassic (213 Ma) and older age (non-GPA). The grains show variable textures and sizes (all larger

) values

than 100 pm), mostly broken and with rounded terminations (Figure 7). CL images often reveal core-rim features,
some with oscillatory zoned cores surrounded by recrystallized or newly grown rims too thin to be measure by
the SHRIMP spot. The non-GPA zircon forms a distinct array extending in ages from 213 to 3,055 Ma with
heterogenous eHf, and 80 ;.-

a21.0 Ma core and a 18.5 Ma rim) shows mostly low eHf ) (—27.7 to 1.8, only two show higher values at 4.1 and

Whereas zircon in the range ~213-835 Ma (plus an outlier zircon grain with

6.7) and generally high SIRO(Zimm) (4.7-10.8%o), typical of continental crust, zircon in the range ~835-3,055 Ma
has a variety of SHfm (=9.1 to 8.2) and SISO(Zimm (4.7-11.3%o) values consistent with both juvenile and conti-
nental crust signatures.

3.1. 2D/3D Thermo-Mechanical Numerical Simulations of Plume-Lithosphere Interaction

The results of our thermo-mechanical numerical simulations show that after an initial rising stage, the plume
head is sheared along with the moving plate, and splits into smaller plumes that produce partial melt beneath the
lithosphere (Figure 8a). Zircons crystallized in these partially molten regions (e.g., GPA zircons ~164 Ma), are
colored green or violet (depending on whether they formed from plume or ambient mantle material) to track their
subsequent location. We initially introduce 90,000 passive tracers that represent zircon. The tracers are placed
in the upper mantle and we track their motion once the surrounding mantle partially melts for the first time, as
a proxy for zircons that formed but did not immediately erupt. Their subsequent path is tracked until they arrive
in a partially molten region for the second time, when they are assumed to be extracted to the surface along with
freshly erupting lavas. In the simulations, the zircon age is accordingly the age between formation and eruption
(in Myrs). Zircon that is transported to depths >300 km has its U-Pb age reset upon reidite formation (Rasmussen
et al., 2020) and is no longer considered in the interpretation.

The model results show that zircon can stay in the shallow upper mantle for extended periods of time (Figure 8
and Movie S1). Perhaps counterintuitively, not all zircon is dragged along with the moving lithosphere, but much
instead initially moves in the opposite direction. This is because the plume's rising velocity is larger than the
plate motion, which induces small scale convective cells (Figures 8b and 8c). Some of this zircon returns to the
plume region, whilst the rest is mixed in with the asthenospheric upper mantle. The dynamics of the plume is
cyclic, with periods of slow and steady activity interrupted by more active phases. This results in discontinuous
magmatic activity and sub-lithospheric circulation patterns that are mostly confined to the uppermost astheno-
spheric mantle, allowing the preservation of zircons. Most passive tracers are erupted to the surface within 50
million years of plume formation and contain relatively young zircons (Figures 8d and 8e). Yet, old zircons can
be dragged into these lavas and erupt as well, in accordance with our observations in the Galdpagos Archipelago.
It should be noted that our simulations only track old zircons and that it takes some time for the initial plume
to arrive at the lithosphere-asthenosphere boundary and produce melt. Accordingly, the youngest zircons in the
simulations are ~10 Ma (Figure 8d). Yet, qualitatively the shape of the curve is remarkably similar to our data
from Galapagos (see also Figure S9 in Supporting Information S1).

In order to test the sensitivity of our results to changes in the model parameters, we performed systematic simu-
lations that demonstrate that the features described above are robust. The analysis shows that some differences
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Figure 10. Tsotopic composition (¢Hf, and §'%0 ) and age of Galapagos zircons. (a) U-Pb age versus eHf, (blue) and "0, ;... (red) of analyzed zircons. Both
high eHf/,) and low 6180(2“0‘)“) define the Galapagos Plume Array (GPA, blue and red rectangles, respectively), which extends from 0 Ma to ca. 170 Ma (note significant
scatter at >170 Ma). A similar isotopic composition in the range of the GPA is shown in black bars which represent the ranges of ¢Hf in Galapagos lavas and Carnegie,
Cocos, Malpelo and Coiba ridges and the Caribbean Large Igneous Province, respectively, and for §180 in olivine and plagioclase from Galapagos lavas and xenoliths
(Blichert-Toft & White, 2001; (d) Geist et al., 1998; Geldmacher et al., 2003; Peterson et al., 2019). The data can be found in Supporting Table S8. (b) Age of analyzed
zircons sorted by age of spot. The distribution shows four sectors separated by slope breaks, including 1: age range of zircon of less eroded (most recent) volcanic rocks
(<0.2 Ma); 2: age range of zircon of most abundant volcanic rocks exposed to erosion (0.2—4 Ma); 3 and 4: age ranges of pre-Galapagos Islands zircon, comprising 3:
zircons belonging to the GPA that extend from 4 to 164 Ma well beyond the oldest age of the exposed lavas and the age of basement oceanic lithosphere (10-14 Ma),
and 4: exotic zircons older than 164 Ma with scattered eHf ;) and 830, including continental crust signature. For reference, 23 Ma (estimated split of Farallon plate)
and 90 Ma (major Ecuadorian-Colombian-Caribbean-Large-Igneous-Province event) are indicated in (b). In A and B, lighter colored circles for eHf,, and age data,
respectively, correspond to zircon grains separated from rock samples.
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in the model results arise as a function of plume radius, temperature and age of oceanic plate. Old oceanic plates
(40 Ma) reduce the amount of melt produced, but can preserve very old zircons (~130 Ma), while young plates
(15 Ma) generally give rise to a smaller amount of old zircons (see Figures S3—S5 in Supporting Information S1).
A smaller plume radius (<100 km) produces less melt, while higher plume temperatures result in a molten layer
below the lithosphere with corresponding young zircon ages. Plate velocity, lateral boundary conditions, the
manner in which the plume is introduced in the models, as well as 2D versus 3D effects are all of second order
importance (Figures S6-S11 in Supporting Information S1).

4. Discussion

4.1. Potential Sources of the Non-GPA Zircons

The non-GPA zircon grains indicate old (>213 Ma) to recent (~20 Ma, for the outlier) external sources not
related to plume activity. Galdpagos is situated on very young oceanic lithosphere and unlike Mauritius and
Iceland, where rare old continental zircon has also been found (Ashwal et al., 2017; Torsvik et al., 2015),
seismic studies preclude the presence of fragments of continental crust beneath the Galdpagos Archipelago
(Villagémez et al., 2014). Unlike the old zircons and suspected Archean fragments found in the mid-Atlantic
region (Bea et al., 2020; Bortnikov et al., 2008, 2019; Pilot et al., 1998; Skolotnev et al., 2010), the Pacific
has no recent history of continental rifting. The Pacific mantle domain developed from the breakup of the
Neoproterozoic and penultimate supercontinent Rodinia after ~700 Ma (Palaeo-Pacific Ocean or the later
Panthalassan superocean) (Cawood, 2005). Due to the switch of subduction polarity, from that directed toward
the future Pacific domain to that directed away the Pacific, soon after the breakup of the supercontinent Rodinia
(~600 Ma), little continental material has been recycled into the Pacific mantle domain. Thus, subduction
polarity associated with the supercontinent cycle and super ocean evolution could probably explain why the
Pacific mantle domain has been protected from contamination with continental crustal materials for much
of the past 600 Myr. Alternatively it is possible that some continental blocks/slivers stay stranded forever in
Pacific mantle (invisible to seismic studies (Villagémez et al., 2014)) owing to the same mechanism as in the
Southwest Indian Ridge (Liu et al., 2022).

Nevertheless, the source of these exotic non-GPA zircons is enigmatic and may include a combination of processes,
such as (a) Anthropogenic contamination, (b) Contamination of sands by bird dropping, (c) Strong trans-oceanic
atmospheric dust clouds from the continent, (d) Subaqueous transport by ocean currents, (e) Far-traveled volcanic
pumice, (f) Volcanic super-eruptions, (g) Magmatic assimilation of detrital oceanic sediments, (h) Contamination
of the asthenosphere by subducted material. We now discuss in detail each of the processes.

4.1.1. Anthropogenic Contamination

Three sources of possible anthropogenic contamination can be considered, (a) building material brought from
the continent to build residential environments, (b) tourism, (c) laboratory contamination (for more detail see
analytical procedure). According to the website of Galapagos conservation (https://galapagosconservation.org.
uk/projects/sustainable-buildings-project/), the majority of houses built in Galapagos are made with concrete
breeze blocks from materials often sourced from two local mines located within the Galapagos National Park.
Blocks made from alternative aggregates such as broken glass are made in Galapagos by artisanal manu-
facturers; however, by far the most-sustainable building material available in the Islands is bamboo. In any
case, considering the possibility that some constructions may have been made with material brought from
the mainland, it should be noted that these residences are only located in San Cristobal, Floreana, Santa Cruz
and Isabela, far from the locations where the detrital samples were taken (except for Playa Negra in Floreana
(GAL70, FL6; Figure 2)). In addition, another consideration regarding the building material brought from the
mainland as a possible source of contamination is that this material must contain zircons. This is unlikely as
the material is produced by heating limestone and clay or other silicate mixtures (which do not contain zircon)
to very high temperatures.

Over 200,000 tourists visit Galapagos each year (Apolo et al., 2019), the majority through Baltra, north of Santa
Cruz, and less through San Cristobal (Figure 2). It is theoretically possible that zircon grains can be brought into
the islands in the shoes/boots and other clothing material of tourists, but it is rather unlikely that these zircon
grains will survive on the soles of the shoes to get to other islands, particularly given the precautions of the parc
which does not allow the use of the same shoes at different islands.

ROJAS-AGRAMONTE ET AL.

28 of 37


https://galapagosconservation.org.uk/projects/sustainable-buildings-project/
https://galapagosconservation.org.uk/projects/sustainable-buildings-project/

~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Geochemistry, Geophysics, Geosystems 10.1029/2022GC010485

4.1.2. Contamination of Sands by Bird Dropping

The number of regular migrant birds in the Galapagos islands total 27 species (Wiedenfeld, 2006). The vast
majority of them (23) are coast and lagoon/marine birds whose diet consist mostly of fish, shrimps, insects,
crustaceans, mollusks, worms, etc. These species do not deliberately ingest soil, but rather would do it only
accidently by searching for food on beach sands and mud. Birds that ingest sand to gravel-sized particles to help
their digestive process (geophagy) are mostly land birds; therefore, it is unlikely that sea birds will transport
zircons from the south American continent to Galapagos (Downs et al., 2019). Additionally, such a process
cannot explain the overwhelming abundance of zircons younger than 4 Ma. It would mean that the birds selec-
tively eat sediments derived from young juvenile rocks, a rather unexpected process if we take into account the
variety of soils formed in South America and the Andes.

4.1.3. Strong Trans-Oceanic Atmospheric Dust Clouds From the Continent

Owing to gravitational settling, dust particle size decreases with increasing distance from the source (Holz
et al., 2004; Mahowald et al., 2014; Sarnthein et al., 1981; Schiitz, 1980) and generally do not exceed 20 pm when
transported over long distances (Gillette, 1979; Tsoar & Pye, 1987). The zircons found and dated in Galapagos are
all in the range from ~80 to 300 pm with some bigger grains of more than 1 mm. On the other hand, according to
Aarons et al. (2013), transport models with variable dust particle diameter and wind speed demonstrate the prefer-
ential depletion of zircon during transport of dust from the source area. Inputs of African dust are more important
to the genesis of soils on islands in the western Atlantic Ocean than previously supposed (Mubhs et al., 2007).
Even if geochemical modeling indicates that soils on the Florida Keys and Bahamas have strong African dust
component (Mubhs et al., 2007) particle sizes decrease downwind as a result of more rapid gravitational settling of
coarse-grained particles (van der Does et al., 2016). In addition the mineralogy and isotopic composition of dust
also decreases downwind as a result of by the depletion in isotopes carried by dense minerals and the preferential
settling of heavier quartz and zircon particles closer to Africa (Pourmand et al., 2014). Furthermore, van der Does
et al. (2018) discussed different transport agents to explain the occurrence of large dust particles (quartz) of a few
hundred microns (up to 450 pm) in Atlantic Ocean sediment traps ~2,400 and 3,500 km away from their source
in the Sahara. However, such dust particles have a much lower density (quartz = 2.65 g/cm?) compared to zircon
(4.71 g/cm?). Although transport, turbulence, uplift in convective systems, and electrical levitation of particles
have been discussed as possible explanations, a definitive reconstruction of an aeolian transport pathway has not
yet been found.

In Hawaii, Vogel et al. (2021) reported apatite dust particles that range in diameter between 5 and 30 pm. Calcu-
lated trajectories showed that dust from known dust source areas in Central Asia and Northern Africa regularly
reaches the Hawaiian archipelago but dust trajectories originating from the Sahara are more common than from
Asian dust centers. While large and dense particles fall out faster and are thus less likely to be transported across
the Pacific, even large (~30 um) apatite dust particles observed in Hawaii could originate from tropospheric
transport. Other investigators have estimated that around 70% of dust-derived quartz in Hawaiian soils is in the
range of 2—-10 pm in diameter (Jackson et al., 1971).

4.1.4. Subaqueous Transport by Ocean Currents

The transport of large dense particles by ocean currents from South America to the Galdpagos seems highly
unlikely. The South Equatorial Current does not exceed 0.8 m/s between the mainland and the archipelago.
Based on a simplified Stokes formula of Dey et al. (2019), a 100 pm zircon particle would sink at approximately
15 mm/s, meaning that it would reach a 4 km water depth after 74 hr or 213 km from the coast at a seaward flow
of 0.8 m/s.

4.1.5. Far-Traveled Volcanic Pumice

Large floating pumice rafts created by eruptions of submarine volcanoes or coastal subaerial volcanoes have
been reported in recent years in the western Pacific (Jutzeler et al., 2020; Ohno et al., 2022). Pumices are most
abundant and most typically developed from felsic (silica-rich) igneous rocks and they have an exceedingly wide
distribution over the Earth's surface. Pumice can float on water for months and is thus distributed over the sea
by winds and currents until it becomes waterlogged and sinks to the bottom, where it gradually disintegrates and
is incorporated in the muds and oozes of the ocean floor. In the southwest Pacific Ocean, floating pumice rafts
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are driven westwards by the prevailing winds and equatorial ocean currents. This results in their accumulation
mostly in eastern Australian waters or more recently in the coast of Okinawa (Ohno et al., 2022). This observa-
tion (Figure S7 in Supporting Information S1) together with a mineralogical study from 17 beaches on 11 islands
(Seelos et al., 2021) hampers contamination of Galapagos beach sands by pumice rafting in the eastern Pacific.

4.1.6. Volcanic Super-Eruptions

Zircons are not very abundant in super-eruption volcanic deposits (only few % of the crystal assemblage)
(Matthews et al., 2012). In addition, zircon is very dense, so only a small percentage of fine-grained crystals
would travel far from the volcanoes (>1,000 km separates the Galapagos Islands from the Andean volcanic
chain). That would only be a matter of concern if there were visible distal tephra of large super volcanic eruptions
from elsewhere documented in Galapagos. The tephra layers described in Galapagos correspond to volcanoes
in Isabela (Geist et al., 1994) and Rabida (Harpp & Geist, 2018). Reports from ultra-distal tephra deposits from
super (Plinian type) eruptions (>2,000 km from Toba caldera; Indonesia and Whakamaru, >900 km from source
in the Taupo Volcanic Zone; New Zealand) indicate that ash particles are fine with >70% fine particles (<63 pm)
and particle size distributions with means of 64—78 and 52 pm respectively (Matthews et al., 2012). Only in prox-
imal regions (<200 km from source) can coarser crystals be found (mean 228 pm).

In Central and South America there are ca. twenty sites (8 in Central America and 12 in the South American
Andes) with a Volcanic Explosivity Index larger than 6 that generated relatively recent large explosive eruptions.
Considering that stratospheric winds in South America commonly blow toward the West (https://addeyans-ge-
ography.weebly.com/global-atmospheric-circulation.html;  https://earth.nullschool.net/#current/wind/surface/
level/orthographic=-89.62,4.44,459/1oc=-90.999,-0.182), it is interesting to note that so far tephra deposits
from outside Galapagos have not been reported in the islands. On the other hand, of all volcanoes from Central
and South America only Cerro Galan Caldera in Argentina has yielded rare (~540-500 Ma) zircon xenocrysts
derived from basement rocks (Folkes et al., 2011).

4.1.7. Magmatic Assimilation of Detrital Oceanic Sediments

The sedimentary cover accumulated on the ocean floor since 14 Myr (age of Galapagos lithosphere) and before
the volcanoes started to form is probably very thin owing to the pelagic location of the basement far from the
continent and the young age of the lithosphere beneath the islands (Geist et al., 1998). Therefore, assimilation of
detrital oceanic sediments accumulated below the volcanic edifices of Galdpagos and on top of the pre-Galapagos
mid-ocean ridge-related volcanic crust does not appear to be an important process in the evolution of magmas
erupted from Galdpagos volcanoes. Geist et al. (1998) indicate, based on a combination of O and He-isotopes
as well as trace element data, that assimilation of oceanic crust is not an important process in the evolution of
Galapagos magmas.

4.1.8. Contamination of the Asthenosphere by Subducted Material

Continental zircon grains in Galapagos lavas could indicate the presence of a component of recycled continental
crust in the mantle below the islands, in line with geochemical evidence (Blichert-Toft & White, 2001; Hoernle
et al., 2000), and similar to Hawai'i where old subcontinental lithospheric mantle zircon below Oahu has been
recently reported (Greenough et al., 2021). The inherited zircon population in Galdpagos matches, in terms of
age and isotope systematics, (a) zircons from exposed basement regions of northern South America and Central
America (Heilbron et al., 2017; Nadeau et al., 2013; Noguera et al., 2011), and (b) the inherited zircon grains
reported from Cretaceous suprasubduction magmatic arc and mantle rocks of Cuba and Hispaniola recycled in
the mantle by subduction of detritus shed from North and South America into nearby oceanic basins (Proenza
et al., 2018; Rojas-Agramonte et al., 2016; Torr6 et al., 2018). A major Permian-Triassic age peak in the latter,
corresponding to a prominent age of magmatic/metamorphic rocks in southwestern Mexico and Colombia, is
also recorded in the old zircons of Galdpagos. Bea et al. (2018) demonstrated that crustal zircon grains can
retain their U-Pb crystallization ages even at 1,500°C, independently of how long they have remained in the
mantle, if shielded in grains of Pb-free minerals. Shielding is also needed to prevent zircon from dissolving in a
zircon-undersaturated basaltic liquid (Shao et al., 2019). This may help explaining the presence of continental crust
zircons in the mantle, as evidence by abundant documented reports of old/xenocrystic zircon grains that survived
in mantle-derived rocks from completely different geodynamic settings. These include the Pacific islands of
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Hawaii (Greenough et al., 2021), and Macquarie (Portner et al., 2011), Mid-Atlantic MORB basalts and gabbros
(Bea et al., 2020; Bortnikov et al., 2008, 2019; Pilot et al., 1998; Skolotnev et al., 2010), and Mauritius (Ashwal
et al., 2017; Torsvik et al., 2013). Other occurrences are a variety of supra-subduction plutonic and volcanic
rocks (Rojas-Agramonte et al., 2016, 2017; Smyth et al., 2007; Stern et al., 2010; Torr6 et al., 2018), dunites and
gabbros from concentrically-zoned ultramafic bodies in the Ural Mountains of Russia (Bea et al., 2001), orogenic
lherzolites such as Finero (Zanetti et al., 2016) and Ronda (Gonzalez-Jiménez et al., 2017; Sanchez-Rodriguez
& Gebauer, 2000).

4.1.9. Concluding Remarks

What all the above mechanisms have in common is that they cannot explain all the data at the same time. Never-
theless, in our opinion one explanation for the presence of zircon grains older than 213 Ma could be the contami-
nation of the asthenosphere by subducted material like in Hawai'i (Greenough et al., 2021), where old xenocrystic
zircons possibly reached Oahu by asthenospheric transport after subduction at Papua New Guinea. In the Galap-
agos' case, a likely geodynamic scenario is that detrital material carrying zircon was brought into the mantle
during the West-directed Cretaceous subduction of the Central Atlantic-related Proto-Caribbean ocean beneath
the Farallon plate, where the Galapagos plume was likely located (Pindell & Kennan, 2009). Horizontal upper
mantle flow at relatively shallow depths (less than ~300 km) in the asthenosphere may have allowed the contam-
inated material to be dragged westward until it interacted with the Galadpagos plume.

Based on the above arguments and considering that old exotic zircons have also been separated from basaltic and
pumice samples, we can conclude that at least a portion of the old zircons found on Galapagos beaches come from
the erosion of igneous rocks from islands where they have been found. However, external sources cannot be ruled
out completely. Most probably the presence of old continental zircon in beaches, river deposits and caves have a
multiple explanation. Further work is needed to solve this issue, including analyzing hundreds of thin sections of
igneous rocks under the microscope to search for the zircon in situ and to test for its textural (inclusions), elemen-
tal (REE), structural (e.g., raman) and isotopic compositional (U-Pb/Hf/O/He) characteristics.

4.2. Galapagos Plume Array (GPA) Zircons

The most intriguing finding of our extensive zircon study is the group of GPA zircons that pre-date the Galap-
agos lithosphere and that have clear Hf and O isotopic mantle signatures. These are strongly similar to those of
whole rocks, olivine and plagioclase from the Archipelago and associated older Carnegie, Cocos, Malpelo and
Coiba ridges (Blichert-Toft & White, 2001; Geist et al., 1998; Geldmacher et al., 2003; Peterson et al., 2019;
Figure 10a). Given that (a) the age of the Galdpagos Islands lavas exposed to erosion is <4 Ma (Figure 10b),
(b) the Galdpagos lithosphere is as young as 10-14 Ma (Harpp & Geist, 2018) and (c) plate motion has moved
away the pre 10-14 Ma lithosphere from above the plume head, we can conclude that any juvenile GPA zircon
older than 14 Ma must have been formed and stored in the asthenosphere and have been later picked up by rising
hot-spot magmas at sublithospheric depths.

Two pre-Galapagos GPA zircon grains with ages of ~18 and 22 Ma are slightly younger than the time when the
Farallon plate was split by the Galapagos Spreading Center (just above the plume head) and the Cocos and Carne-
gie ridges began to form (23 Ma) (Wilson & Hey, 1995). The occurrence of these pre-14 Ma zircon grains implies
that a fraction of the ridge-forming magmas was not fully extracted from the plume source to form oceanic crust
at 18-22 Ma allowing the crystallization of zircon at depth. The same reasoning can be extended to the other
GPA zircon grains older than 23 Ma. During this time, a number of magmatic events took place in the region,
including the eruption of the ECCLIP with a major phase of construction at ~90 Ma (Hoernle et al., 2004).
Notably, we sampled two zircon grains (93 and 94 Ma) formed close in age to this major event (Figure 10b). The
GPA zircon also includes ages younger and older than the major ECCLIP event, clustering at early Tertiary (53,
55, and 65 Ma) and Jurassic (159 and two grains at 164 Ma) times (Figure 10b). The latter would allow expand-
ing significantly back in time the magmatic history of the Galdpagos plume recorded in its accreted dispersed
fragments (Hoernle et al., 2004). These GPA zircon data indicate that zircon formed much earlier than the recent
lavas that brought them to the surface and that it was stored at asthenospheric depths while staying unaffected by
other plume-related magmatic events throughout the last ~170 Ma. This offer a unique opportunity to date the
evolution of the mantle plume and to evaluate plume dynamics and asthenospheric flow.
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4.3. Geodynamic Implications

A first-order observation is that our data places the minimum time of impingement of the Galapagos plume
below the lithosphere to at least ~170 Ma, much earlier than commonly thought (~139-74 Ma (Diirkefidlden
et al., 2019; Hoernle et al., 2004; Madrigal et al., 2016; Sinton et al., 1998)). Even if most GPA zircon was
sampled from surficial detritus, one of the oldest GPA zircon grains (i.e., 164 Ma) was sampled from a basaltic
lava at the Alcedo Volcano on Isabela Island (Figures 2b and 3). In addition, the presence of post- and pre-14 Ma
GPA (mostly the ones formed at <4 Ma) zircons in sands from almost virgin beaches and uphill streams (in the
Baltra, Floreana, San Cristobal, Santa Cruz and Santa F¢ islands) and inland lava tube deposits (Santa Cruz)
clearly point to a local provenance from erosion of exposed volcanic rocks. Furthermore, a provenance study
carried out on beaches from 11 islands of the archipelago shows that the mineral grains and rock fragments in
the sand were derived from locally exposed basaltic rocks and excludes external sources (Seelos et al., 2021). All
lines of evidence thus point to the crystallization of 14—164 Ma GPA zircons in the sub-lithospheric source of
Galéapagos lavas.

Experimental work shows that zircon can survive in the presence of mafic melt for long periods of time (millions
of years) as long as the volume of melt that interacts with a zircon crystal is small or shielded within other mineral
grains (Bea et al., 2018). If shielded within a Pb-free mineral, zircon grains can retain their U-Pb crystallization
ages even at 1,500°C, independently of their residence time in the mantle (Bea et al., 2018; see also Bindeman
et al., 2018). Shielding is also needed to prevent zircon from dissolving in a zircon-undersaturated basaltic liquid
(Shao et al., 2019). Zircon grains that occur as inclusions in major mantle minerals are sealed against out-of-grain
Pb loss; consequently, their U-Pb ages never reset (Bea et al., 2018). From the aforementioned we can conclude
that it is possible that GPA zircon crystallized from zircon-saturated evolved basaltic liquids and remained in the
plume-head regions with limited or no melt fraction for a significant period of time. Eventually, rapidly ascending
magmas may pick up these zircon grains or zircon-bearing mineral or rock fragments. At this stage, dissolution
of zircon occurred if exposed to the liquid and the mineral is not shielded or the magma resided long in a magma
chamber. Ultimately, however, some asthenospheric zircon grains survived and reached the surface in the crys-
tallizing magmas that, in turn, eventually reached zircon saturation and formed new zircon, as demonstrated by
the overwhelming amount of young zircon grains (<4 Ma) that date Galapagos surface volcanism (Figure 10b).

Our finding of old asthenospheric mantle zircon grains challenges current ideas about asthenosphere convection
and plume/lithosphere interaction (Gazel et al., 2018). Contrary to expectations, our finding implies that not all
zircon was dispersed or carried away from the plume by convective flow and lithospheric motion even after more
than 100 Mys residence time in the asthenosphere, which has made it possible to date the activity of the plume.
Assuming that the onset of hotspot magmatism is often marked by a LIP and that the Galapagos plume is as old
as ~170 Ma: where is the associated LIP of that age? Perhaps it is lost by subduction below America. In any case,
but by better constraining the chronology of mantle plumes and with the help of other disciplines (e.g., geody-
namics, paleomagnetism) it could be possible to predict where to find the accreted fragments of the associated
LIPs and any potential ore deposits.

Finally, the results of the 2D/3D thermo-mechanical numerical simulations of plume-lithosphere interaction
suggest that, once formed, some zircon crystals can remain within the asthenospheric mantle for extended peri-
ods of time. Following these results, the recorded asthenospheric zircon ages hence allow dating the Galapagos
plume back to Jurassic times, a much older age than previously reported. Similar zircon observations and models
of asthenospheric flow below ocean islands could apply to other plume-related hot spots. Therefore, a systematic
analysis of zircon from ocean islands will allow monitoring temporal ranges of plume activity and dynamics over
much longer periods than those implied by the ages of the erupted lavas, hotspot tracks, plateaus and, eventually,
plume-related terranes accreted to active continental margins.

5. Conclusions

In this contribution, we show for the first time the fate of zircon grains grown in a plume environment at astheno-
spheric depths below the Galdpagos Archipelago. Zircon grains were retrieved from basaltic and rhyolitic rocks
(pumice) and sand deposits collected on the floor of a lava tube, stream beds and beaches. Our findings allow
dating plume activity to at least, ~164 Ma (early Middle Jurassic). Evidence for this comes from 0 to 164 Ma
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zircon with a plume isotopic signature (Galdpagos Plume Array; GPA) recovered from lavas and sediments
from 10 islands of the archipelago. Data from the GPA is also consistent with existing isotopic data of whole
rocks, olivine and plagioclase from the Archipelago and associated Carnegie, Cocos, Malpelo and Coiba ridges.
Given lithospheric plate motion, this result implies that GPA zircon predating the Galapagos lithosphere (i.e.,
~14-164 Ma) formed and were stored at sublithospheric depths.

Thermo-mechanical numerical experiments of plume dynamics and plume-lithosphere interaction show a
complex pattern of asthenospheric mantle flow, but they also show that old zircon grains can be stored below the
archipelago within lengthy local stable asthenospheric domains (>50 Myrs in the models) to be later captured
by subsequent rising plume magmas. Another important implication of our study is that by constraining the
chronology of a mantle plume it will be possible to predict (with the help of other disciplines e.g., geodynamics,
paleomagnetism) where to find the accreted fragments of the associated LIPs.
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whole-rock major and trace element concentration data can be accessed through https://doi.org/10.5281/

and 6180 isotopes as well as

zenodo.7047729. The reference model setup for the numerical experiments can be accessed through https://doi.
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