Research

Elsevier Editorial System(tm) for Gondwana

Manuscript Draft

Manuscript Number: GR-D-16-00192R3

Title: Insights from recent gravity satellite missions in the density structure of continental margins - with focus on the passive margins of the South Atlantic

Article Type: SI: Rifting to Passive Margins

Keywords: continental margins; satellite gravity missions; spatial resolution; omission error; interpretation gravity effects; interpretation gravity gradients.

Corresponding Author: Dr. Hans-Juergen Goetze, Prof. Dr.

Corresponding Author's Institution:

First Author: Hans-Juergen Goetze, Prof. Dr.

Order of Authors: Hans-Juergen Goetze, Prof. Dr.

Abstract: We focus on new gravity and gravity gradient data sets from modern satellite missions GOCE, GRACE and CHAMP, and their geophysical interpretation at passive continental margins of the South Atlantic. Both sides, South Africa and South America, have been targets of hydrocarbon exploration and academic research of the German Priority Program SAMPLE (South Atlantic Margin Processes and Links with onshore Evolution). The achievable spatial resolution, driven by GOCE, is 70 - 80 km. Therefore, most of the geological structures, which cause a significant gravity effect (by both size and density contrast), can be resolved. However, one of the most important aspects is the evaluation of the omission error, which is not always in the focus of interpreters. It results from highfrequency signals of very rough topographic and bathymetric structures, which cannot be resolved by satellite gravimetry due to the exponential signal attenuation with altitude. The omission error is estimated from the difference of the combined gravity model EIGEN-6C4 and the satelliteonly model GOC005S. It can be significantly reduced by topographic reductions. Simple 2D density models and their related mathematical formulas provide insights in the magnitude of the gravity effect of masses that form a passive continental margin. They are contrasted with results from satellite-only and combined gravity models. Example geophysical interpretations are given for the western and eastern margin of the South Atlantic Ocean, where standard deviations vary from 25 - 16 mGal and 21 - 11 mGal, respectively. It could be demonstrated, that modern satellite gravity data provide significant added value in the geophysical gravity data processing domain and in the validation of heterogeneous terrestrial data bases. Combined models derived from highresolution terrestrial gravity and homogeneous satellite data will lead to more detailed and better constrained lithospheric density models, and hence will improve our knowledge about structure, evolution and state of stress in the lithosphere.

Response to Reviewers:

- Combine terrestrial and satellite gravity to provide insights into passive margins.
- Satellite gravity and gradients were used to validate terrestrial gravity databases.
- 2nd derivations of satellite gravity can re-examine the continent-ocean boundaries.

Gobal field of gravity disturbance, units: 10⁵ m/s²

Distribution of observations

360 W deg. / 90 deg. S

Figure Click here to download high resolution image

Figure Click here to download high resolution image

Figure Click here to download high resolution image

Response to Reviewers/Editors

We corrected Line 324: "weak" instaed of "week".

We replaced in line 186 "Bocher et al." and cited "Colli et al., 2016"

H.-J. Götze and R. Pail

Insights from recent gravity satellite missions in the density structure of
 continental margins – with focus on the passive margins of the South
 Atlantic

Abstract

We focus on new gravity and gravity gradient data sets from modern satellite missions GOCE, GRACE and CHAMP, and their geophysical interpretation at passive continental margins of the South Atlantic. Both sides, South Africa and South America, have been targets of hydrocarbon exploration and academic research of the German Priority Program SAMPLE (South Atlantic Margin Processes and Links with onshore Evolution). The achievable spatial resolution, driven by GOCE, is 70 - 80 km. Therefore, most of the geological structures, which cause a significant gravity effect (by both size and density contrast), can be resolved. However, one of the most important aspects is the evaluation of the omission error, which is not always in the focus of interpreters. It results from high-frequency signals of very rough topographic and bathymetric structures, which cannot be resolved by satellite gravimetry due to the exponential signal attenuation with altitude. The omission error is estimated from the difference of the combined gravity model EIGEN-6C4 and the satellite-only model GOC005S. It can be significantly reduced by topographic reductions. Simple 2D density models and their related mathematical formulas provide insights in the magnitude of the gravity effect of masses that form a passive continental margin. They are contrasted with results from satellite-only and combined gravity models. Example geophysical interpretations are given for the western and eastern margin of the South Atlantic Ocean, where standard deviations vary from 25 - 16 mGal and 21 -11 mGal, respectively. It could be demonstrated, that modern satellite gravity

2	28	data provide significant added value in the geophysical gravity data
4	29	processing domain and in the validation of heterogeneous terrestrial data
6 7	30	bases. Combined models derived from high-resolution terrestrial gravity and
8 9	31	homogeneous satellite data will lead to more detailed and better constrained
10 11	32	lithospheric density models, and hence will improve our knowledge about
12 13	33	structure, evolution and state of stress in the lithosphere.
14 15	34	
16 17	35	1. Motivation and the concept of Plate Tectonics
18 19	36	
20 21	37	Geosciences are striving for an interdisciplinary perception to combine
22 23	38	their basic findings in a world embracing synthesis to understand global
24 25	39	processes in the Earth interior and at its surface. Most of these processes are
26 27	40	generally geothermally driven, and it is easy to accept that their origin lies
28 29 20	41	below the lithosphere, in the Earth's mantle (among others Stadler et al.,
31 32	42	2010). Today, the theory of plate tectonics enables us to draw a coherent
33	43	picture of the Earth's lithosphere. Interactions between the plates at their plate
35 36	44	boundaries are responsible for most of the earthquakes that occur here
37 38	45	(among many other publications and websites:
		http://earthquake.usgs.gov/earthquakes/?source-sitepay
39 40	46	
39 40 41 42	46 47	http://www.isc.ac.uk/about/ or http://geofon.gfz-potsdam.de/).
39 40 41 42 43 44	46 47 48	<pre>http://www.isc.ac.uk/about/ or http://geofon.gfz-potsdam.de/).</pre> This paper will review the status of satellite gravity missions and terrestrial
39 40 41 42 43 44 45 46	46 47 48 49	 <u>http://www.isc.ac.uk/about/ or http://geofon.gfz-potsdam.de/</u>). This paper will review the status of satellite gravity missions and terrestrial data, as well as global gravity models, fields and gradients derived from them.
39 40 41 42 43 44 45 46 47 48	46 47 48 49 50	 <u>http://www.isc.ac.uk/about/ or http://geofon.gfz-potsdam.de/</u>). This paper will review the status of satellite gravity missions and terrestrial data, as well as global gravity models, fields and gradients derived from them. It will focus on their accuracy, resolution and the omission error – which is out
39 40 41 42 43 44 45 46 47 48 49 50	46 47 48 49 50 51	<u>http://curtinquarce.usgs.gov/curtinquarces/isource_sitenav,</u> <u>http://www.isc.ac.uk/about/ or http://geofon.gfz-potsdam.de/</u>). This paper will review the status of satellite gravity missions and terrestrial data, as well as global gravity models, fields and gradients derived from them. It will focus on their accuracy, resolution and the omission error – which is out of focus of many earth scientists. It is structured as follows: Section 1 defines
39 40 41 42 43 44 45 46 47 48 49 50 51 52 52	46 47 48 49 50 51 52	 <u>http://curtinquarce.usgs.gov/curtinquarces/isource_sitenav,</u> <u>http://www.isc.ac.uk/about/ or http://geofon.gfz-potsdam.de/</u>). This paper will review the status of satellite gravity missions and terrestrial data, as well as global gravity models, fields and gradients derived from them. It will focus on their accuracy, resolution and the omission error – which is out of focus of many earth scientists. It is structured as follows: Section 1 defines continent-ocean transitions and recalls some basics in the context of Plate
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 51 52 53 55	46 47 48 49 50 51 52 53	 <u>http://centinquake.usgs.gov/centinquakes/rsource_sitenav,</u> <u>http://www.isc.ac.uk/about/ or http://geofon.gfz-potsdam.de/</u>). This paper will review the status of satellite gravity missions and terrestrial data, as well as global gravity models, fields and gradients derived from them. It will focus on their accuracy, resolution and the omission error – which is out of focus of many earth scientists. It is structured as follows: Section 1 defines continent-ocean transitions and recalls some basics in the context of Plate Tectonics concept and passive margins in particular. For those readers who
$\begin{array}{c} 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\end{array}$	46 47 48 49 50 51 52 53	http://www.isc.ac.uk/about/ or http://geofon.gfz-potsdam.de/). This paper will review the status of satellite gravity missions and terrestrial data, as well as global gravity models, fields and gradients derived from them. It will focus on their accuracy, resolution and the omission error – which is out of focus of many earth scientists. It is structured as follows: Section 1 defines continent-ocean transitions and recalls some basics in the context of Plate Tectonics concept and passive margins in particular. For those readers who
$\begin{array}{c} 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\end{array}$	46 47 48 49 50 51 52 53	http://www.isc.ac.uk/about/ or http://geofon.gfz-potsdam.de/). This paper will review the status of satellite gravity missions and terrestrial data, as well as global gravity models, fields and gradients derived from them. It will focus on their accuracy, resolution and the omission error – which is out of focus of many earth scientists. It is structured as follows: Section 1 defines continent-ocean transitions and recalls some basics in the context of Plate Tectonics concept and passive margins in particular. For those readers who
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 56 57 58 59 60 61	46 47 48 49 50 51 52 53	http://www.isc.ac.uk/about/ or http://geofon.gfz-potsdam.de/). This paper will review the status of satellite gravity missions and terrestrial data, as well as global gravity models, fields and gradients derived from them. It will focus on their accuracy, resolution and the omission error – which is out of focus of many earth scientists. It is structured as follows: Section 1 defines continent-ocean transitions and recalls some basics in the context of Plate Tectonics concept and passive margins in particular. For those readers who
$\begin{array}{c} 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 9\\ 50\\ 51\\ 52\\ 53\\ 55\\ 56\\ 57\\ 58\\ 9\\ 60\\ 62\\ 63\\ \end{array}$	46 47 48 49 50 51 52 53	http://www.isc.ac.uk/about/ or http://geofon.gfz-potsdam.de/). This paper will review the status of satellite gravity missions and terrestrial data, as well as global gravity models, fields and gradients derived from them. It will focus on their accuracy, resolution and the omission error – which is out of focus of many earth scientists. It is structured as follows: Section 1 defines continent-ocean transitions and recalls some basics in the context of Plate Tectonics concept and passive margins in particular. For those readers who
$\begin{array}{c} 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 9\\ 51\\ 52\\ 53\\ 556\\ 57\\ 58\\ 9\\ 61\\ 2\\ 63\\ 65\\ \end{array}$	46 47 48 49 50 51 52 53	http://www.isc.ac.uk/about/ or http://geofon.gfz-potsdam.de/). This paper will review the status of satellite gravity missions and terrestrial data, as well as global gravity models, fields and gradients derived from them. It will focus on their accuracy, resolution and the omission error – which is out of focus of many earth scientists. It is structured as follows: Section 1 defines continent-ocean transitions and recalls some basics in the context of Plate Tectonics concept and passive margins in particular. For those readers who

1

Field Code Changed Field Code Changed

are not familiar with the interpretation of gravity anomalies at a continental margin in Section 2 the basic concepts are illustrated; this section can be skipped by experts. Further on the focus is set on the question how (satellite) gravity interpretations can help to explore these passive margins (Section 2.3). In the course of this paper we will notice later to what extent the new fields and gradients from recent satellite gravity missions can support research at the passive margins of the South Atlantic (Section 2.4).

In Section 3 we will demonstrate how this new information augmented our view on the density structures of the lithosphere particularly at passive margins of the South Atlantic. At last we describe the benefits for combined interpretations in Section 4, and merge information from both terrestrial and satellite gravity fields.

1.1 Short introduction to history of plate margins tectonics

Considering the history of the Plate Tectonic concepts in the early 1960s, Wegener's view on the "the continental drift" (Wegener, 1920) began to be accepted after it was refined and confirmed by geophysical observations namely by early seismological studies on deep earthquakes (Wadati, 1929; Benioff, 1954), later by Isacks et al. (1968), Oliver and Isacks (1967) and paleo-magnetic shipborne observations (Hess, 1962; Vine and Matthews 1963 among others). Together with the techniques of radiometric dating (age determination) published first by Boltwood (1907) geophysicists were able to

77	date the magnetic mid oceanic reversals by precise physical measurements.	
78	They helped to get the modern concept of "plate tectonics" fully accepted.	
79	It provides the framework for the interpretation of structures, the history	
80	and composition of continental margins. Plate movements and the differences	
81	in density of oceanic and continental crust types led to the structural pattern of	
82	continental margins and result in a tectonic classification of coastlines as	
83	active or passive margins (among others Wefer et al., 2003). Active margins	
84	are typical units of the "Circum-Pacific Ring of Fire" in the Pacific where plates	
85	are converging and coincide with plate boundaries in a subduction zone.	
86	These margins are called active (e.g. Oncken et al., 2006; Lallemand, 2014)	
87	due to the big variety of tectonic, magmatic and metamorphic processes that	
88	occur here. If continental margins mark only the boundary to the oceanic	
89	portion of the same tectonic plate, they are called passive margins. Passive	
90	margins are typical of the Atlantic Ocean between Scandinavia and Greenland	
91	(Scheck-Wenderoth and Maystrenko 2008), Iberic peninsula and the East	
92	American coast or between Africa and South America (Blaich et al., 2011 and	
93	many papers within).	
94		
95	1.2 Passive Margins	
96		
97	Although we assume that most of the readers are familiar with the	

97 Although we assume that most of the readers are familiar with the 98 concept of plate tectonics we will recall briefly some basics. In particular 99 *passive continental margins* are characterized by a transition of continental 100 into oceanic crust within the same plate. It emerges from the splitting up of 101 continents and the following divergent plate drift that forms new oceanic 102 lithosphere by seafloor spreading at the divergent plate boundary. At the

edges of the Atlantic geophysical investigations identify a laterally 10-15 km thick crustal transition between the thick crust of the continents and the thin oceanic crust. It is interpreted as relicts of thinned, mafic magmas which intruded into continental crust. In addition, passive continental margins are often stretched by intensive fault tectonics. They have a tectonically thinned continental crust, which is characterized by listric faults and tilted fault blocks. Tectonic crustal expansion starts at the time of installation of the continental drift rift system and refines the passive continental margin further (Blaich et al., 2011). These margins are marked by smooth relief due to tectonic inactivity and major sediment accumulation. This phenomenon is due to thermal cooling and sediment loading that led to conditions of subsidence and sediment accumulation, because the margins move away from the spreading center. Irregular subsidence and different sediment load often cause the accumulation of salt diapirs in the sediments of passive continental margins. The tectonic-sedimentary conditions are also favorable for the formation of hydrocarbon deposits and large salt deposits (Mohriak, 2014).

Modern passive margins (Fig. 1) border the oceans formed by the spreading caused by the break-up of the Gondwana supercontinent (e.g. Bond et al., 1984). From Figure 1 one can see that the margins of the South Atlantic Ocean (Cappelletti et al., 2011; Blaich et al., 2011; Mohriak, 2014), the western Indian Ocean, the Arctic and Norwegian seas (Scheck-Wenderoth and Maystrenko, 2008; Ebbing et al, 2006; Skogseid et al., 2000), the magma poor rifted margins of the North and Central Atlantic Ocean (Reston, 2009; Mohriak, 2014) and the margins of Antarctica are part of this system (Kalberg, 2016). A rising convection cell or a plume in the rifting area caused initial

1		
2 3	129	rifting and a regional uplift as well as volcanic activities above or below
4 5	130	oceanic sea level after an initial period of crustal thinning and erosion. Basile
6 7	131	(2015) describe another type of margin: "transform continental margins" by
8 9	132	simple kinematic models of transform faulting which cause among two other
10 11	133	types "passive transform margins". The satellite gravity picture of the
12 13	134	Equatorial Atlantic Ocean will be shown in Section 4.2, Fig. 20.
14 15	135	
16 17	136	Figure 1: full page width
18 19 20	137	
21 22	138	Fig. 1. Continental margins on Earth. Blue lines mark passive continental
23 24	139	margins mainly surrounding the Atlantic Ocean, the Antarctic Seas, and Indian
25 26	140	Ocean; red lines indicate active margins (subduction zones). Continental
27 28	141	margins were taken from from Frisch und Meschede (2005). The underlying
29 30	142	gravity field is the map of "gravity disturbance" calculated on base of the
31 32	143	EIGEN-6C4 model (Förste et al., 2014). Gravity was calculated on a grid of
33 34	144	0.5° x 0.5°.
35 36 37 38	145	
39 40 41	146	1.3 Volcanic passive margins
42 43 44	147	
45 46	148	These margins present distinctive genetic and structural features, e.g.,
47 48	149	high-rate extension of the lithosphere is associated with catastrophic mantle
49 50	150	melting responsible for the accretion of a thick igneous crust (Geoffroy, 2005).
51 52	151	Typical rifted "magma-dominated" margins are characterized by large volumes
53 54	152	of flood basalts which flow across the continental hinterlands during
55 56		
57 58		
59 60		
61		
62 63		
64 65		
05		
continental breakup (among others refer to: Hopper et al., 2004; Eldholm et
al., 2000; Gernigon et al., 2006; White and Smith, 2009; O'Connor et al.,
2012). Underlying the extrusive lavas at the continent-ocean transition zone,
these margins exhibit high seismic velocities in the lower crust of some The
deeper crust is characterized by two areas of high seismic velocity (7.2 to 7.4
km/s; Franke et al., 2010)., which are associated with voluminous igneous
rocks intruded into the lower crust.

In recent time the question arose in the context of fixing international boundaries offshore of the continents due to economic interests because e.g. hydrocarbon exploration moved further offshore e.g. to explore deep water resources. Toward the definition of this "continent-ocean-boundary, COB" at passive margins one of the crucial questions is how to define these boundaries. Torsvik et al. (2009) described how COB for the South Atlantic margins at both sides can be defined: by the interpretation of seismic, gravimetric, magnetic, bathymetric and geological information. Any identification of the COB is also important for the definition of plate boundaries at the time of break-up which allows the reconstruction of geometry and earlier position of former continents - e.g. in the reconstruction of Pangaea. It is not the aim of this paper to recalculate COBs. However we trust that the processing of gravity field and its second derivatives for recalculation of COB (Torsvik et al., 2009) will benefit from the increase of high resolution satellite derived gravity fields. Later we will return to this point in the conclusion (Section 5) suggesting calculating the 2nd derivative of satellite gravity (derivative of the gravity gradient).

2. Geophysical characteristics of margins

To investigate both active and passive continental margins almost all geophysical methods can help to discover their lithospheric structures: Seismic, potential, electro-magnetic and electrical fields. Recent studies (e.g. Torsvik et al. 2009) show that processes in the lithosphere are linked to the dynamic mantle and dynamic processes have an important influence on the evolution of lithospheric plates, which is manifested in the formation of dynamic topography (e.g. Flament et al., 2013; Bocher et al., 2016Colli et al., 2016). A key example for this interaction is the opening history of the Atlantic, where asthenospheric material reaches the surface at the mid-ocean spreading center. The uplift of hot material of the asthenosphere leads to seafloor spreading which manifests itself in the spreading anomalies in the magnetic field. The spreading axes are expressed either by topographic (heights above sea level, e.g. Iceland) or bathymetric heights (below sea level e.g. Atlantic ocean ridge). The worldwide offshore stripe pattern of magnetic anomalies which are located parallel to mid-ocean ridges allow a temporal classification of developed oceanic crust. The EMAG2 total magnetic field model has a reasonable resolution of two arc-minutes (Maus et al. 2009). The model was compiled from ship-, air-borne and satellite data (CHAMP). For the purpose of interpolation of magnetic field anomalies the oceanic crust ages of Müller et al. (2008) were employed (Maus et al. 2009). Hydro-carboniferous exploration targeted most of the passive margins of the world with both refraction and/or reflection seismic.

202	Seismic onshore-offshore investigations of a passive continental margin
203	aim to investigate the transition zone between the oceans and continents, e.g.
204	SE Atlantic and the African continent (Franke et al., 2006; 2010; Bauer et al.,
205	2000; Hirsch et al., 2009; Schnabel et al., 2008). These studies reveal the
206	history and mechanisms of the break-up and its relation to the driving
207	magmatic processes (plume - crust interactions) in the underlying mantle and
208	lithosphere. The South American side of the southern Atlantic was target of
209	multiple seismic investigations since many years (Mohriak, 2014; Blaich et al.,
210	2011; Franke et al. 2006; Heit et al. 2007; Hinz et al., 1999 and many more) to
211	investigate the shelf areas offshore, the continent-ocean transition and the
212	seaward dipping reflectors (SDR) which are characterized by high seismic
213	velocities and related high densities.
214	
215	2.1 The role of gravity field interpretations and prerequisites
216	Remark:
217	The units used for gravity field values and its gradients are given in
218	mGal (Milligals) and E (Eötvös) – as it is still common use in
219	Geophysics and Geodesy. Converting these units into SI-units, there
220	are: 1 mGal = 10^{-5} m/s ² and E = 10^{-9} s ⁻² .
221	Rock densities are always given in kg/m ³ .
222	First, the situation will be analyzed which was typical before the era of
223	satellite missions which started in the year 2000 with the launch of the
224	CHAMP satellite (refer to Chapter 4). Modelling and interpretation of the
225	Earth's gravity field and its derivatives often had to deal with a merge of data
226	sets with rather different resolution, different age and quality, coverage and

1		
2 3	227	wavelength content. This has been documented in a long list of papers
4 5	228	(among many others: Schaller et al., 2015; Bouman et al., 2014; Hosse et al.,
6 7	229	2014; Gutknecht et al., 2014; Köther et al., 2012; Tašárová, 2007). These
8 9	230	papers have shown that lithospheric models of study regions suffer mainly
10 11	231	from two facts:
12 13	232	(1) Nearly all information for constrained gravity field modelling of the
14 15	233	lithospheric is based on irregularly distributed profiles and
16 17	234	(2) large data gaps and partly low data quality due to very limited
18 19	235	access and infrastructure.
20 21	236	
22 23	237	The global gravity model EGM2008 (Pavlis et al. 2012) inherited – and still
24 25	238	inherits - these problems related with available terrestrial databases. Pavlis et
26 27	239	al. (2008) described the compilation of the EGM2008 gravity which consists of
28 29 20	240	different sources: up to a spatial resolution of approximately 140 km GRACE
30 31 32	241	(Gravity Recovery and Climate Experiment) data have been used, data from
33 34	242	140 km to approx. 10 km spatial resolution are derived from terrestrial and
35 36	243	satellite altimetry and so called "fill-in" data (Section 4.2). Today we know that
37 38	244	the relative weighting of GRACE with respect to the other datasets was too
39 40	245	low, leading to a dominance of terrestrial data errors in spectral regions where
41 42	246	better GRACE data would already have been available.
43 44	247	
45 46	248	Figure 2: Full page width
47 48	249	
49 50	250	Fig. 2. This figure portrays the terrestrial data inconsistency which is rather
51 52	251	typical for gravity surveys in remote areas (here across the South American
53 54	252	continent at a swath between $36^{\circ}S - 42^{\circ}S$ from the passive margin in the East
55 56 57		
58 58		
60 61		
62 62		
03 64 65		
0.0		

to the active margin in the West). As an example the different sources of gravity data of the Southern Central American continent are shown together with the visualization of big data gaps (Tašárová, 2007). The green and red points in Chile (CH) and Argentina (AR) are stations in the ARANEDA I and II (University of Chile) datasets; black points in southern Chile and the Arauco Peninsula are ENAP data (Chilean oil industry); the gray dense network in Argentina (AR) show the YPF data (Argentine oil company); yellow points: stations of the MIGRA 2000 dataset, and the MIGRA 2002 data (both measured by the gravity group at the University Kiel) are shown in blue. The brown lines offshore denote the ship-borne gravity data profiles from the German research vessel "Sonne". Fig. 2 shows the situation some 20 years ago at the central South American subcontinent. For a continental gravity field study the field had to be compiled from very different data sources often without any meta data information - e.g. for gravity data which were measured on behalf of oil companies (grey area in Fig. 2). In other areas, e.g., in the eastern part of Argentina (yellow dots in Fig. 2) data are missing due to difficult or impossible access. At the end of this Section we will pose the question how large lithospheric structures and how big density differences to their surrounding have to be in order to cause a detectable signal at orbit height of a satellite. This consideration describes the situation at active and passive margins in an analogues manner. In Fig. 3 the effects of gravity and gradients are shown for a simple model. For density contrasts between the values $\Delta \rho = 10^1 - 10^3$ kg/m³ Gutknecht et al. (2011) calculated gravity and gradients at the GOCE

satellite orbit height of 255 km resulting from a sphere with minimum

279	diameters between d = $20 - 200$ km (b = $10 - 100$ km, refer to Fig. 3) to be
280	tangent to the Earth surface). Within the range of the assumed parameters the
281	minimum diameter required to produce signal differences of $1 \times 10^{-5} \text{ms}^{-2}$ and
282	$12 \times 10^{-12} \text{ s}^{-2}$ at orbit height. This is rather close to the expected accuracies of
283	the gravity and vertical gravity gradient of the GOCE mission (recent values
284	are: 0.45 mE for GOCE-only, 0.2 mE for GOCE+GRACE models, cf. also Fig.
285	13). Fig. 3 conveys that a structure with a diameter of some 45 km and a
286	density contrast of 240 kg m ⁻³ could be detected in satellite gravity at orbit
287	height. If the diameter of the model sphere increases to 90 km, its density
288	contrast should not be less than 33 kg m ^{-3} .
289	The simple model described above fits rather well the dimension of the
290	Jurassic arc batholiths at the Northern Chilean continental margin with
291	diameters of roughly 60 – 120 km (Sobiesiak et al., 2007). This supports the
292	idea that batholithic structures e.g. intrusions at continental margins, can be
293	detected using data of the modern satellite missions- both gravity and
294	gradients.
295	
296	Figure 3: one and a half page width
297	
298	Fig. 3. Gravity and gradient signal caused by a minimum diameter of a sphere
299	with given density contrast in the orbit height of 255 km (Gutknecht et al.,
300	2011). The thick solid and dotted lines represent gravity signals of 1 and 10
301	mGal at orbit height. The thin dashed and dash-dotted lines represent
302	gradients of 12 and 1000 mE, respectively. The grey shaded area shows
303	results which are based on a possible combination of geometry and density
304	parameters of the causing mass anomaly.

305	
306	2.2 Gravity anomalies and isostasy
307	
308	A first look at Fig. 4 provides already helpful information on the gravity
309	gradients of the Earth at the continental margins. The figure bases on the
310	evaluation of gravity field maps from the recent gravity missions. A complete
311	Bouguer anomaly (corrected by the effect of elevation, spherical slab,
312	topography both on- and offshore) was used to calculate the first derivative of
313	the field – the dip curvature of gravity.
314	
315	Figure 4: Full page width
316	
317	Fig 4. Global horizontal gravity gradients. Deep blueish colors mark regions
318	on Earth where the dip curvature (horizontal gradient) of the worldwide
319	Bouguer gravity field (EIGEN-6C4) is small or even zero. The more reddish
320	the colors are the steeper the gradients. The strongest gradients are observed
321	at the active continental margin of Central South America. On the contrary at
322	most of the passive continental margins (Fig. 1) the gradients are rather small.
323	
324	Dark blueish colors indicate rather weeak dip curvature which means that
325	horizontal gravity gradients are small, on the contrary reddish tones point to
326	strong dip curvature and therefore strong gradients. The active continental
327	margins in the area of the Circum-Pacific are generally marked by reddish

		14	
	328	colors – strong gradients – which are related with ex	tended density variations
:	329	in crust and mantle in the transition from oceanic to	continental margins.
	330	Mostly low gradients - light blueish colors - are typic	cal for passive continental
	331	margins. In order to understand this relationship two	questions arise:
	332	(1) How was the gravity anomaly calculated and how	w big is its magnitude of
	333	the anomaly caused by the mass distribution (bot	h topography/bathymetry
	334	and densities) at continental margins and	
	335	(2) How was the <i>field</i> observed and what is known a	about accuracy and
	336	homogeneity of gravity field observations?	
	337	With regard to the first question one has to consid	der that gravity
	338	observations at the Earth's surface and the Earth ne	ear space vary from the
	339	theoretical "normal" field value. Their magnitude is a	caused not only by the
	340	latitude effect but by elevation of observational point	ts, the density of cap
	341	beneath the station in the underground and the topo	graphic masses in the
	342	neighborhood. After correction of earth tidal effects	and air pressure
	343	variations the remaining time invariable parts of the	measured signal are:
	344	Normal gravity	γο
	345	Effect of topographic masses	δg_{TOP}
	346	Bouguer slab	δg _{BPL}
	347	Elevation effect (free air term)	δg _{NIV}
	348	Effect of the crustal root	δg _R
	349	Known mass inhomogeneities	δg _{GEOL}
	350		

3 4	352	depend on what has been calculated as stated in the table above and added
5	552	depend on what has been calculated as stated in the table above and added
6 7	353	as corrections to the measured gravity field values. From all measured gravity
8 9	354	values the normal gravity (in the height and position of the observable) is
10 11	355	subtracted, and therefore the term "gravity anomaly" is defined. This is simply
12 13	356	the difference between the observable values to "normal" gravity. In
14 15	357	Geophysics we distinguish mainly between three anomalies Free air- (FA),
16 17	358	Bouguer- (BA) and isostatic anomaly (ISA) which define gravity in the height
18 19	359	of the observation (e.g. Li and Götze, 2001; Hackney and Featherstone, 2003;
20 21	360	Naudy et al., 1965; LaFehr, 1991 and many others).
22 23	361	With δg_R we describe the effect of a mountain root and define Free Air,
24 25 26	362	Bouguer and isostatic anomalies such as:
27 28 29	363	$FA = \Delta g'_{0} = g_{obs} + \delta g_{NV} \left[+ \delta g_{TOP} \right] - \gamma_{0}$
30 31	364	$BA = \Delta g''_{0} = g_{obs} + \delta g_{NV} + \delta g_{TOP} + \delta g_{BPL} - \gamma_{0}$
32 33 34	365	$ISA = \Delta g_{ISA} = g_{obs} + \delta g_{NIV} + \delta g_{TOP} + \delta g_{BPL} + \delta g_{R} - \gamma_{0}$
35 36	366	
37 38 39	367	Calculations of the individual correction terms depend on the objective of the
40 41	368	survey and are variously complicated to handle. g_{obs} denotes the measured
42 43	369	gravity field value. The calculation of the topographical reduction (δg_{Top})
44 45	370	requires precise knowledge of the terrain and surface near densities and
46 47	371	today it is most likely calculated by the aid of digital elevation models (DEM),
48 49	372	among others refer to (Holzrichter, 2013 and Szwillus and Götze, 2016); it
50 51	373	requires the use of a computer and digital elevation data. The effect of
52 53	374	topographic masses is normally calculated in a surrounding circular area of 50
54	_	

km up to 167 km (e.g. La Fehr, 1991; Hinze et al., 2006). However, Mikuška et

Common representations of gravity measurements in maps and profiles

	16
376	al. (2006), Szwillus and Götze (2016), Szwillus et al., (2016) point to "long
377	distant relief effects" and propose the calculation of all topographic masses on
378	Earth. The gravity effect of a Bouguer slab with a thickness which is defined
379	by the difference between the physical station height and the reference level
380	(normally the geoid) should always be calculated by a spherical cap (e.g.
381	Baeschlin, 1948). For smaller areas (with a reduction radius R < 20 km) and
382	moderate terrain roughness the Bouguer slab can easily be calculated by:
383	$\delta g_{BPL} = -2 \pi G \rho (H_S - H_B)$
384	with:
385	G = Gravitational constant $(6.672 \cdot 10^{-11} \text{ m}^3 \text{ s}^{-2} \text{ kg}^{-1})$,
386	ρ = crustal density (2 670 kg/m ³); offshore: rock-equivalent
387	density
388	H_S = station height; offshore: ocean depth H_D ,
389	H_B = reference height (usually it is referred to the geoid).
390	
391	In the last step the free air effect δg_{NIV} is calculated by use of the
392	"normal gradient" (0.3085 mGal/m):
393	$\delta g_{NIV} = 0.3085 \cdot (H_S - H_B) mGal/m$
394	It has to emphasized that the above used constant gravity gradient for large
395	scale investigations has to be replaced by equivalent values of derivation of
396	closed mathematical expression of the normal gravity which is always latitude
397	and height dependent. It was also recommended to calculate an "atmospheric
398	correction" (Wenzel, 1985) in order to eliminate long wavelengths errors from
399	the observed gravity field.

400	Note: the terms of "flat" Bouguer slab in δg_{BPL} and the "constant vertical
401	gradient" in $\delta g_{\text{NIV are}}$ in the above formulas are used here for simplification
402	only. Modern satellite gravity field processing at large spatial scales requires a
403	spherical cap calculation and the consideration of latitude and height
404	dependent calculation of the vertical gradient.
405	Special emphasis has to be put on the situation in oceanic regions. If
406	we assume that station heights are equal to geoidal heights $(h = 0 m)$ Bouguer
407	and Free Air anomaly is equal due to:
408	BA = FA + δg_{BPL} = FA + [-2 π G ρ (H _S - H _B)]
409	with: $H_s - H_B = 0 m$;
410	it follows that BA = FA, in case the FA is already corrected by δg_{TOP} which
411	contains gravity effect of masses at the ocean floor.
412	In oceanic areas the slab density in the Bouguer slab correction term
413	must be modified due to the known water depth "D" and the difference in
414	water- and rock density (Fig. 5). If we assume a crustal rock density of 2 670
415	kg/m ³ and a water density of 1030 kg/m ³ the resulting density for calculations
416	of offshore Bouguer anomalies is $\rho^* = -1$ 640 kg/m ³ .
417	This results in:
418	BA = FA + δg_{BPL} = FA + 2 π G ρ^* (H _S - H _D)
419	
420	Figure 5: Full page width
421	
422	Fig. 5. Illustration for describing the calculation of Bouguer anomalies on
423	continents (A), at the ocean (B) and from satellite (C). (A): On land the
424	reduction density ρ is commonly taken as 2 670 kg m $^{\text{-3}}$. The effect of

425	topography is already removed. The thickness of Bouguer slab equals the
426	station height (H_s). (B): In contrast the reduction density at sea is – 1 640 kg
427	$m^{\text{-3}}$. It is the difference between the sea water density of 1 030 kg $m^{\text{-3}}$ and the
428	rock density of 2 670 kg m ⁻³ ; thickness of the slab now is equal to the different
429	water depths (D). (C): Calculating a Bouguer anomaly in case of satellite
430	gravity a "mass correction" is calculated: $\delta g_{Mass} = \delta g_{Top} + \delta g_{BPL}$.
431	
432	2.3 Gravity at passive continental margins
433	
434	In Fig. 6 a very simple Airy-Isostasy model of a passive continental margin is
435	shown. The continental crust is much thicker than the oceanic crust and above
436	the oceanic crust there is the water cover of a few 1000 meters. The specific
437	geometry of the "crust – mantle – water cover" constellation plays an
438	important role on the trend of the gravity field here. Because of the fact that in
439	the example of Fig. 6 there is no topography, the continental margin remains
440	in an isostatic equilibrium, and one can assume that no Free Air anomaly
441	exists.
442	
443	Figure 6: One and half page width
444	
445	Fig. 6. Airy isostatic model at a continent – ocean transition. Notice the thick
446	continental crust and the thin oceanic crust at a passive continental margin.
447	Crust and mantle densities are simplified. Reasonable contrasts which cause
448	large gravity anomalies are related to the water - continent density contrast

and crust – mantle density at the continent of approx. 430 kg m⁻³. Refer to text
for more information.

However, in Fig. 7 (A) strong gravity anomaly results from the same density model (Fig. 7C) which was shown in Fig. 6. The Fig. 7(A) shows the modelled anomaly only for water effect of gravity: related to a model of a "half-indefinite" plate the resulting anomaly is negative and is caused by a strong gradient. Fig. 7 (B) on the other side contains model results which have been done only for the oceanic mantle: now the anomaly is positive and it has a gentle increase because its position is far deeper. Finally Fig. 7(C) demonstrates how the total Free Air anomaly results from the superposition of both effects: the Free Air anomaly is zero in the continental area and over the ocean as well. However, exactly above the margin the gravity field is characterized by a maximum and a minimum that follows. This distribution is a so called "edge" or boundary effect of the Free Air anomaly and is effected by the difference of the steep gradients in the model. Figure 7: one and a half page width Fig. 7. The principal effects on the gravity field at continental margins have equal gravity magnitudes but different gradients. In (A) the water effect causes a steep gradient and in (B) the density surplus of the oceanic mantle is a deeper seated effect which causes only a gentle gradient. In (C) it is explained that a Free Air anomaly at a continental margin is caused by both a negative

and positive "edge effect" due to the superposition of contributions that have equal magnitudes but different gradients. The trends of a Free air and Bouguer anomalies are shown in Fig. 8. Here modelling again gets use of a "half indefinite" thin plate for the offshore area (water). It is "zero" over the continent zero and over the oceanic area "positive" ($\rho_w = 1030 \text{ kg/m}^3$). The half of the whole Free Air anomaly maximum is accomplished exactly over the edge of the continent. Figure 8a-b: Full page width Figure 8c: One and a half page width Fig. 8. Free Air anomaly and Bouguer anomaly at continental margins which is also in an isostatic balance. (A) The absolute value of the excess mass $|+\Delta m|$ is equal to the absolute value of the deficient mass $|-\Delta m|$. Therefore the integral of gravity change with respect to the x-coordinate is zero: $\int \Delta g \, dx =$ 0. (B) The Bouguer correction at the ocean (see Fig. 3) applied to the Free Air anomaly in (A) yields the general form of the Bouguer anomaly at passive continental margins. (C) The "geological" mass inhomogeneities at the continental margins (seaward dipping reflectors, magmatic remnants, salt structures etc.) cause rather local gravity anomalies which superimpose the regional gravity wavelengths - which are effected by the "simple" structures in (A) and (B).

496	The gravity fields in Figs. 7 and 8 are caused by the over simplified
497	density structure at the "modelled margin" in Fig. 6. In the real world these
498	margins show a rather complicated picture of gravity distribution due to mass
499	inhomogeneities in the Earth's crust and lithosphere (and even in the mantle)
500	which are the results of the long-lasting history of the breakup of the
501	Gondwana supercontinent. This becomes quite clear if looking at the
502	processed gravity fields which are shown in the series of figures (Fig. 14
503	through 21) in Section 4. Their interpretation in terms of regional tectonic and
504	distribution of rock densities will help to provide a rather detailed insight into
505	the causing structure (geometry) and density distribution of the passive
506	margins in the South Atlantic region.
507	Most aspects of the calculated anomalies, both Free Air and Bouquer
508	which were discussed before, are typical for pearly all of the continental
500	passive and active margins on Earth. In the next Section the focus will be set
510	on the situation in the Southern Atlantic between Africa and South America –
511	the research area of the German Priority Program 1275 "SAMPLE" of the
510	Cormon Science Foundation DEC (https://www.comple.com.do/) The
512	German Science Foundation – DFG (https://www.sample-spp.de/). The
513	acronym stands for "South Atlantic Margin Processes and Links with onshore
514	Evolution". In this interdisciplinary project the primary research areas are the
515	mantle dynamics and magmatic processes, the lithospheric structure,
516	deformation processes and rifted margin formation, the post-rift topographic
517	evolution and many more. In the following Section we will concentrate on this
518	part of the world because a big variety of data and information is available to
519	responds to one of the key questions – how modern satellite missions can
520	contribute to the interpretations and to the understanding of the transition from
521	continental to oceanic lithosphere.

2.4 Focus region: South Atlantic passive margins

To study deeper structures and the overall evolution of conjugate passive continental margins of the South African and South American continents 3D structural models have been designed and evaluated by SAMPLE scientists and their international partners: They constructed detailed density models at both sides of the Southern Atlantic Ocean and a rather preliminary density model for the oceanic part in course of a master thesis (Klinge, 2016). These models are constrained by information and data from boreholes, refraction and reflection seismic, seismological tomography and potential field data - mainly gravity field data. Geophysical fields and observations map geometry and distribution of physical properties of the transitional structures of both crust and lithospheric mantle. Model results (Fig. 9) show (Maystrenko et al., 2013; Autin et al., 2016) that basin centers at the western (Argentinean) side are oriented west-east and therefore oblique to the mid ocean rift axis while at the other (African) side basin centers extend

parallel to the ocean rift in north-south direction.

Figure 9: One and a half page width

Fig. 9. For illustration this figure portrays a 3D density model of the SW
African continental margin (left, modified after Maystrenko et al., 2013), and
the density structure at the Argentinean side (right, Autin et al., 2016).

Apart from these structural differences both sides of the Southern Atlantic reveal similar distributions in temperature and density. Small thicknesses and density modifications in the lithospheric mantle point to small lateral variations of heat transfer into the overlaying crust. However, more relevant for the crustal heat field are lateral thickness changes of the crystalline crust which produce the bigger part of radiogenic heat. This contrasts observations and modelling results at passive continental margins in the area of the Northern Atlantic (Scheck-Wenderoth and Maystrenko, 2008). They found that the oceanic part of lithospheric mantle is much thinner and characterized by smaller densities which cause higher temperatures in the upper crust of the ocean.

To contrasting large scale paleostress fields on the correlating margins of the South Atlantic Salomon et al. (2014) point to in their studies of the South Atlantic. They asked themselves "how passive" continental margins across the globe currently are. Following the results of several other studies these margins experience a variety of stress states and undergo significant vertical movements, as they were deduced from studies of paleo-stresses at both sides of the Southern Atlantic. Here, the bounding continents consist of very different recent geological histories: Africa experiencing continental rifting whereas South America is influenced by subduction on the Pacific side. It is not clear to what extent the Atlantic continental margins are subject to the

568	same stresses and vertical motions as the main continents. Their results show
569	that the tectonic evolution of the continental margins of the South Atlantic is
570	not only passive and that both margins vary significantly in structural style and
571	stress fields, indicating that variable plate boundary forces play a major role in
572	margin evolution. In Fig. 10 we show the situation at the S-American and S-
573	African margin with reference of the paleo-stress field, as it was published by
574	Salomon et al. (2014). Their findings demand careful modelling of both
575	continental margins and a geophysical database which is able to resolve even
576	very small modifications of physical parameters and their structures; refer also
577	to Fig 9 (a) and (b) and the 3D density modelling of lithospheric by
578	Maystrenko et al. (2013) and Autin et al. (2016).
579	
580	Figure 10: Faull page width
581	
582	Fig. 10. The sketch (Salomon et al., 2014) portrays an E-W cross-Section
583	between South Africa and South America which summarize the situation of
584	their obtained paleo stresses. It shows that the African margin is controlled by
585	extension while compression characterizes the situation at the South
586	American side. Salomon et al. (2014) explained the extensional state in the
587	east by the existing "African superplume" and the compression in the west by
588	the Andean subduction zone.
589	
590	Novel satellite gravity missions aim at a breakthrough in recovering the
591	Earth's gravity and magnetic fields, their gradients as well as their temporal

592	variation. Static anomalies in potential fields (refer to Figs. 14 through 21) are
593	caused by irregular mass distribution on and within the Earth, temporal
594	variations of the gravity field are associated with mass transport processes in
595	the Earth system, such as dynamic processes on the Earth's surface, in
596	lithosphere and upper mantle.
507	
597	
598	3. Modern satellite gravity missions
599	
600	The launch of the first generation of satellite gravity missions (Fig. 11) has
601	revolutionized our knowledge of the global Earth's gravity field and its temporal
602	changes. The German CHAMP (Challanging Minisatellite payload; mission period
603	2000-2010; Reigber et al., 2002; http://op.gfz-potsdam.de/champ/) mission, the
604	US/German GRACE (Gravity Recovery and Climate Experiment; mission period
605	2002-ongoing; Tapley et al., 2004; http://www.csr.utexas.edu/grace/) mission, and the
606	European GOCE (Gravity field and steady-state Ocean Circulation Explorer; mission
607	period 2009-2013; Drinkwater et al., 2003;
608	http://www.esa.int/Our_Activities/Observing_the_Earth/The_Living_Planet_Programm
609	e/Earth_Explorers/GOCE/ESA_s_gravity_mission_GOCE) operated by the European
610	Space Agency (ESA), improved significantly the coverage and availability of high
611	resolution and precisely measured data. These gravity missions are the only
612	measurement technique that can directly observe mass changes on a global scale,
613	and thus they provide a unique observation system for monitoring mass transport in
614	the Earth system. For modern magnetic field observation, apart from the CHAMP
615	mission (2000-2010), with ESA's three SWARM satellites that have been successfully
616	launched in November 2013 also gradients observations have become available
617	(http://esamultimedia.esa.int/multimedia/publications/BR-302/).
618	

619	Figure 11: Faull page width
620	
621	Fig. 11. Satellite gravity missions CHAMP (left), GRACE (center) und GOCE (right).
622	(Sources: CHAMP: GFZ Potsdam, GRACE: NASA, GOCE: ESA Medialab)
623	
624	In these missions, three measurement concepts are implemented:
625	1. Observation of orbit perturbations of low-flying satellites due to the varying
626	gravitational attraction, by Global Positioning System (GPS), with an accuracy
627	of 2-3 cm. Non-gravitational forces acting on the satellite, such as drag of the
628	residual atmosphere or solar radiation pressure, are measured by an
629	accelerometer and corrected for in the frame of the gravity field modelling.
630	This satellite tracking technique between a low Earth orbiter (LEO) and high-
631	flying GPS satellites is called satellite-to-satellite tracking in high-low mode
632	(SST-hl), and is implemented in all three missions CHAMP, GRACE and
633	GOCE. It is the primary measurement technique of CHAMP.
634	
635	2. Observation of orbit differences (ranges) and their temporal change (range
636	rates) between two LEO satellites. This satellite-to-satellite tracking in low-low
637	mode (SST-II) concept is realized by the GRACE mission. It consists of two
638	identical satellites following each other on the same orbit with an average
639	distance of 200 km. The inter-satellite ranging is performed by means of a K-
640	band microwave system with micrometer accuracy, and shall be done by laser
641	interferometry in future gravity missions in order to further increase the
642	ranging accuracy.
643	
644	3. Observation of acceleration differences on very short baselines (satellite
645	gravity gradiometry, SGG), representing second order derivatives of the
646	gravitational potential V in all three spatial directions. This concept was

applied by the GOCE mission. Its core measurement, the gravity gradiometer, was composed of 6 accelerometers fixed on 3 orthogonal axes symmetrically around the center of mass of the satellite, measuring acceleration differences on very short baselines of only half a meter in all three spatial dimensions. The achievable performance of satellite gravity missions depends mainly on the observation technique and the orbit altitude. Fig. 12 shows the performance of different mission concepts in terms of the degree error median, which describes the average signal or noise amplitude at a certain degree *n* of the spherical harmonic series expansion of the gravitational potential V in spherical coordinates (with radius *r*, co-latitude \mathcal{G} , longitude λ):

$$V(r, \vartheta, \lambda) = \frac{GM}{R} \sum_{n=0}^{N_{\text{max}}} \left(\frac{R}{r}\right)^{n+1} \sum_{m=0}^{n} \overline{P}_{nm}(\cos\vartheta) \left[\overline{C}_{nm}\cos(m\lambda) + \overline{S}_{nm}\sin(m\lambda)\right]$$
658

660 where *G* is the gravitational constant, *M* the mass of the Earth, *R* the mean Earth 661 radius, \overline{P}_{nm} the fully normalized Legendre polynomials of degree *n* and order *m*, and 662 { $(\overline{C}_{nm}, \overline{S}_{nm})$ } the corresponding (Stokes) coefficients (e.g Torge, 2001). Therefore, the 663 degree error median describes the achievable gravity field accuracy at a certain 664 spatial (half) wavelength λ . The wavelength λ is linked to the harmonic degree *n* by

$$\lambda = 20\ 000\ \text{km/}n$$

As an example, a harmonic degree of n = 200, which was the minimum target
resolution for the GOCE mission, corresponds to a spatial wavelength of λ =
20 000 km/n = 100 km.
As a reference, the stippled black curve in Fig. 12 shows the gravity field

672 signal itself. Correspondingly, the cross-over point of a mission performance curve

with the black stippled curve indicates at which harmonic degree the signal-to-noise ratio is '1'. Figure 12: One and a half page width Fig. 12. Absolute gravity signal and error estimates of different observation concepts as a function of the harmonic degree *n* (bottom axis) and spatial wavelength λ (top axis). From the orbit information (SST-hl) only the long-wavelength features of the gravity field can be extracted. Although this observation type is not a direct gravity field functional, it can be interpreted as disturbing acceleration acting on the orbit, and thus the first order spatial derivative of the gravitational potential $\partial V/\partial x_i$. As a representative of this measurement concept, the grey dot-and-dashed line curve shows the performance of the CHAMP-only model AIUB-CHAMP 03S (Prange, 2011), which is based on 8 years of CHAMP kinematic orbit data. The grey curve shows the performance of the recent GRACE-only model ITSG-Grace2014 (Mayer-Gürr et al., 2014), which is based on almost 11 years of K-band inter-satellite ranging data following the SST-II concept (and supported by SST-hl in the very low degrees). Compared to CHAMP, the superior measurement principle of SST-II results in a significantly better accuracy in the low to medium degree range as well as a higher spatial resolution. This can be explained by the fact that the SST-II concept can be interpreted as a measurement of acceleration differences on long baselines of about 200 km. The excellent performance of GRACE in this spectral range makes this mission sensitive to the tiny temporal variations of the Earth's gravity field, which are 4 - 5 magnitudes smaller than the static signal. The black solid curve shows the performance of GOCE, represented by the GOCE-only model GOCE-TIM-R5 (Brockmann et al., 2014). It is mainly based on the

701	measurement technique of SGG and again SST-hl in the low degrees, because SGG
702	alone (green curve) is weak in this spectral range due to the specific noise
703	characteristics of the gravity gradiometer instrument. Measuring acceleration
704	differences on very short baselines of about half a meter, which approximate second
705	order derivatives of the gravitational potential $\partial^2 V (\partial x_i \partial x_j)$, enables a further increase
706	of sensitivity for high-frequency signals. GOCE starts to become superior over
707	GRACE approximately at degree $n = 115$.
708	
709	3.1 Global Gravity Field Models
710	
711	Gravity field models including GOCE data from the complete mission period
712	are meanwhile available. While the model GOCE-TIM-R5, which is based on the
713	time-wise approach (Pail et al., 2011), is based purely on GOCE data, GOCE-DIR-
714	R5, which is based on the direct method (Bruinsma et al., 2014), contains also
715	GRACE and satellite laser ranging (SLR) data. Further satellite-only models are, e.g.,
716	EIGEN-6S2 (Rudenko et al., 2014), or the S-models of the GOCO series (Pail et al.,
717	2010). The maximum degree of expansion of these models is driven by the resolution
718	of GOCE, and varies from n = 280 to 300, corresponding to about 70 km spatial
719	wavelength. This makes clear that all medium scaled geological structures at
720	continental margins and elsewhere in the world which cause a significant gravity
721	effect can be detected (resolved) in the GOCE gravity field.
722	Combination models (notice the "C" in the field identifier) including also
723	terrestrial, air- and shipborne as well as altimetric gravity are, e.g., the already
724	mentioned pre-GOCE model EGM2008 (Pavlis et al. 2012), EIGEN-6C4 (Förste et
725	al., 2014), and GOCO05C (Fecher et al., 2013, 2016). These models extend the
726	spatial resolution beyond degree 2000 (which corresponds to 10 km wavelength).
727	However, it should be noticed that there are many regions with sparse and/or low-
728	quality terrestrial data, where it has to be questioned if such a high resolution is

justified. This holds for many areas worldwide, e.g., the Central Andes in South America and also for the passive continental margins of the South Atlantic. 3.2 Products for use in Earth sciences interpretation Specifically regarding GOCE-related data, modelers and other users have the choice among basically three representations of gravity field products: 3.2.1 Spherical harmonic coefficients The most commonly used representation of the global gravitational potential V is its series expansion into spherical harmonics (Section 3). There corresponding fully normalized spherical harmonic (Stokes) coefficients $\{\bar{C}_{nm}, \bar{S}_{nm}\}$ represent the model parameters, and are usually the target quantity when deriving the model from the original gravity field data. The advantage of using this representation is that it can be considered as a weighted average of the original measurement data, so that the original noise level is significantly reduced due to this averaging. Based on the set of spherical harmonic coefficients any arbitrary gravity anomaly can be derived at the Earth's surface or at any height in outer space. All the global gravity models

748 discussed above are given in this parametrization.

750 3.2.2 Original gravity gradients along the satellite's orbit

In principle, also the gravity gradient time series for all six tensor components measured along GOCE's satellite orbit can be used for geophysical modelling (refer e.g. to Fig. 3). They represent the most original measurements. However, it has to be considered that they are measured in a rotating reference frame, the so-called "gradiometer reference frame" (GRF), which means that tensor rotations of the base

functions have to be applied to exploit them to the best possible extent. Additionally, they are affected by the colored noise characteristics of the GOCE gradiometer (Pail et al., 2011), so that a single point-wise gravity gradient observation is affected by large instrument noise, and therefore by itself has a low signal-to-noise ratio. All these drawbacks make it difficult to use this data type directly for geophysical modelling.

- 764 3.2.3 Gravity gradient grids

A reasonable compromise between the use of spherical harmonics and original gravity gradients (see above) results in the use of gravity gradient grids, which are usually defined in a well-oriented radial (North-East-up) frame at a constant altitude. They are computed from the original gravity gradients defined in the GRF by means of regional gravity processing methods. In fact, they are the spatial equivalent of the spherical harmonic representation, but much easier to use and interpret. Pure GOCE gravity gradient grids result from the space-wise method (Gatti and Reguzzoni, 2015). In the frame of the ESA project GEOExplore global grids of all six components of the gravity gradient tensor, based on a combination of GOCE and GRACE data, and defined in a radial Earth-fixed reference frame at two altitudes of 225 km and 255 km, have been derived (Bouman et al., 2015). Since these grid values are products of "averaging" original gradient data, the error level should be similar as that of gradients synthesized from global spherical harmonic models.

There is an ongoing discussion whether the gradient data contain more (highfrequency) signal than global gravity models that have been derived from them. The answer to this question lies in the constraints applied to these models. Constraints applied to global gravity models are usually designed to optimize the signal-to-noise ratio on a global scale. This means that in regions of very rough topography and therefore high-frequency gravity signals there is the tendency to constrain the system too strongly. Regional gravity solutions techniques, which are usually applied to generate gridded gravity gradient products, allow for regionally optimized constraints, but on the cost of global homogeneity. In Pail et al. (2015b) it could be shown, that compared to global models the gravity gradient grids are affected by a higher noise level.

The achievable accuracy and sensitivity of current gravity field models or corresponding gravity (gradient) grids can be expressed by cumulative quantities, which describe the estimated cumulative error at a certain harmonic degree (or the corresponding spatial wavelength). Fig. 13 shows cumulative gravity anomaly errors (a), as well as cumulative vertical gravity gradient errors at GOCE satellite altitude of 250 km (b), and ground level (c), for the GRACE models ITSG-GRACE2014s, the pure GOCE model GOCE-TIM-R5, the combined satellite-only model GOC005S and the combined models EGM2008 (pre-GOCE) and GOCO05C (including GOCE data).

From Fig. 13 we can learn which geological structure at passive continental margins (or elsewhere) can be resolved by the different gravity model types. Assuming that the geological structure/mass anomaly generates a gravity anomaly with a certain spatial wavelength on the Earth's surface, Fig. 13a then provides the accuracy in mGal with which this anomaly can been captured. (The connection from the size of a disturbing body to the resulting gravity signal is made in Fig. 3.). As an example, a gravity signal with 100 km spatial wavelength at the Earth's surface could be measured by satellites with an accuracy of about 0.5 mGal (black dashed and solid grey curves). It can clearly be seen that the accuracy for shorter wavelength signals dramatically decreases, and is already larger than 2 mGal for gravity signals with approx. 80 km spatial wavelength. Beyond this resolution, satellites cannot significantly contribute anymore, and high-accuracy terrestrial information, as it was included, e.g., in

814 Figure 13: Full page width

Fig. 13. Cumulative gravity anomaly errors in (mGal) (a); vertical gravity gradient
errors in (mE) at 250 km (b), and ground level (c). This figure shows the generally
dramatic increase of the gravity gradient errors at ground level as a result of
downward continuation.

GOCO05C (solid black curve), is necessary to resolve smaller-scale geological structures. This becomes immediately clear if looking at the series of Figs. 14 through 21: most of the anomaly sizes at the margins of the South Atlantic are smaller than 80 km. On the other hand we state that the regional gravity field caused at the ocean-continent transition can satisfyingly be resolved by satellite only models (S models). Fig. 13a also shows the major step forward due to satellite missions compared to pre-GOCE models such as EGM2008 (black dot-and-dashed line) especially in the long to medium wavelengths for gross interpretations at a continental scale.

Fig. 13b shows a similar representation when using gravity gradients at satellite altitude as basis information for geophysical modelling of geological structures. Pure GOCE-only models such as GOCE-TIM-R5 (dashed black curve) provide gravity gradients at satellite altitude with standard deviations of 0.45 mE for gravity signals with a spatial resolution of 100 km. These values can be decreased further to 0.25 mE by combination with GRACE information, as it was done, e.g., in the GOC005S model (solid grey curve). Evidently, GRACE alone (dashed grey curve) results in very high error amplitudes in the higher degrees, demonstrating the dominant impact of GOCE at shorter wavelengths. Modern combined gravity models such as GOCO05C (solid black curve) further increase the performance in the short-

841 wavelength range by complementing the satellite data by ground data over the 842 continents and satellite altimetry over the oceans. Also here the improvement 843 compared to pre-GOCE combined models such as EGM2008 (black dot-and-dashed 844 line curve) is significant. Recently gradients of the satellite gravity field came into the 845 focus for modelling purposes which can support interdisciplinary interpretations 846 (Ebbing et al., 2013; Schaller et al., 2015; Götze, 2015).

In Fig. 13b a very interesting feature is the flat curve of the combined gravity model GOC005C beyond degree 250. This results from the fact that beyond this degree the signal amplitude of gravity gradients is already below the mE level, i.e., due to signal attenuation with altitude there is no significant gradient signal left in orbit altitude beyond this degree, because most parts have been "filtered out" due to upward continuation. Inversely, this also means that GOCE has captured 97% of the amplitude of the gradient signal that exists in orbit altitude.

The picture changes completely (Fig. 13c) when continuing the gradient information down to ground level. Here the GOCE model (black dashed curve) and the GOCE+GRACE combination (solid grey curve) perform practically identical, again showing the dominance of GOCE compared to GRACE at shorter scales. However, also here for gravity signals with spatial scales below 80 - 100 km a combination with terrestrial/airborne gravity information is necessary to achieve acceptable accuracies (solid black curve), so that the gravity field information can be used for local geophysical modelling of short-scale density structures.

- 863 3.3 Not always in focus: the omission error

In order to perform a complete evaluation of the impact of modern satellite missions for deriving density structure of continental margins, one of the most important aspects is the evaluation of the *omission error*. It results from highfrequency signals, which cannot be resolved by satellite gravimetry due to the

exponential signal attenuation with altitude. These missing signals of satellite-only
models are an important issue for the determination of near-surface density
variations, but also shallow lithospheric structures.

Fig. 14 shows gravity anomaly fields for the South Atlantic region. Fig. 14 a is based on the GOC005S model resolved up to its maximum resolution of degree n =280 (~ 70 km), while Fig. 14 b displays the free-air gravity anomalies based on EIGEN-6C4 with its maximum resolution of degree n = 2160 (10 km). Comparing these two figures, the current limits of satellite-only models regarding their spatial resolution becomes evident, and can only be coped with by combination with complementary data sources from terrestrial/airborne/shipborne gravimetry, and satellite altimetry over the oceans, as it was done in EIGEN-6C4. An estimate of the omission error (Fig. 14 c) for satellite gravity models is given by the difference of EIGEN-6C4 and GOCO05S, being equivalent to the difference of the Figs. 14 a and b. Evidently, very rough topographic and bathymetric structures, generating high-frequency gravity field anomalies and steep slopes, cannot be resolved by the satellite data. However, usually these topographic features are not the main focus of geophysical modelling and interpretation, but rather sub-surface lithospheric structures. Therefore, a topographic reduction was applied, using the RWI_TOPO_2015 topographic potential model (Grombein et al., 2015) and thus taking away the effect of topographic masses up to zero level: $\delta g_{TOP} + \delta g_{BPL}$. The so called "mass reduction effect" was already introduced in Fig. 6. The result is a significantly reduced omission error (Fig. 14 d).

This difference field in Figs. 14 c and d can be considered as errors made when computing Bouguer anomalies from pure satellite models, which are then further used for lithospheric modelling. Table 1 gives an overview of the main statistical parameters of the gravity anomaly fields shown in Fig. 14.

896 Figure 14: Full page width

 897
898 Fig. 14. Free-air gravity anomalies (mGal) of the South Atlantic region based on
899 satellite-only model GOCO05S (a) resolved up to degree 280, combined gravity
900 model EIGEN-6C4 (b) resolved up to degree 2160, omission error of a satellite-only
901 model (c) and omission error after reduction of topographic signals (d).

Table 1: Main statistical parameters of gravity fields of the South Atlantic region.

Gravity field	Figure	min	max (mGal)	std.dev.
		(mGal)		(mGal)
GOCO05S (d/o 280)	14 a	-199.8	116.1	18.8
EIGEN-6C4 (d/o 2160)	14 b	-227.7	453.8	21.3
GOCO05S omission error	14 c	-166.7	415.1	10.8
GOCO05S omission error,	14 d	-143.1	112.8	7.1
topo-reduced				

907 4. Benefits for combined interpretations

909	However, in relation with the two key questions asked in Section 2.3
910	(processing, quality and secondly availability for interpretations at continental
911	margins) we have to respond to them in the light of interpretations of solid Earth
912	structures. For example a precise geoid can be used to identify global and deep
913	anomalies related to mantle lithosphere and deeper structures. Gravity anomalies,
914	being first order radial derivatives of the gravitational potential, are sensitive to gravity
915	effects of the entire lithosphere, and in particular to the crustal and upper crustal
916	structures and density variations e.g. at active and passive continental margins. As it
917	has been shown above (Fig. 14), each combination of satellite gravity data with

terrestrial gravity data can be used for all interdisciplinary interpretations techniques, e.g., "back stripping" in basin modelling at the African continental margin (Dressel et al. 2015) which also includes thermal subsidence in the reconstruction of the passive margins through time or 3D modelling of Moho undulations. The new database was also used to reconstruct the Gondwana continent (Braitenberg, 2015). Fig. 15 refers to the isostatic residual anomaly in the Southern Atlantic. It was calculated by Klinge (2016) on base of the corresponding formula for "ISA" in Section 2.3 and the EIGEN-6C4 model also portrayed in Fig. 14 (b).

Both anomaly maps are rather similar and caused by the main tectonic features of the South Atlantic: the "highs" which are caused by the Mid Atlantic ridge, the extended "lows" of the four basins in front of South America (Argentinean and Brazilian basins) and South Africa (Cape and Angola basins). The hotspot trail (e.g. Torsvik et al., 2009 among others) is visible in the structure of the SW-NE trending Walvis Ridge offshore South Africa and the corresponding trace of the Rio Grande Rise at the western side. To the North of the Romanche Fracture Zone between Fortaleza in the west and Lagos in the East the Sierra Leone Rise is located. Even the regions of salt deposits offshore Brazil and West Africa (blueish colors indicating low gravity values) and the magmatic margins at both sides of the margins (reddish colors and high gravity values) can be distinguished in the satellite derived fields. The very short wavelengths in the gravity field correspond to masses that are located in the crust and lithosphere - they were already mentioned in the sketch of Fig. 8 and mark places of different density contrast at the margins. Other examples were given in Bouman et al. (2014), Gutknecht et al. (2014), and Hosse et al. (2014).

942 Figure 15: one and a half page width

Fig. 15. The isostatic residual field was calculated by Klinge (2016) in the framework 945 of his MSc thesis. Reference depth $T_0 = 30$ km and $T_e = 20$ km (elastic thickness

	38
946	which was kept constant over the entire area). The figure shows the residual gravity
947	field in the Southern Atlantic Ocean of the combined EIGEN-6C4 model (Förste et al.,
948	2014). It correlates well with bathymetric/topographic structures e.g. the Mid Atlantic
949	Rift (MAR) and portrays also the effect of geological bodies: the positive anomalies in
950	the area of Windhoek and Buenos Aires. Along the Mid-ocean rift axes positive
951	anomalies of up to 40 mGal exist. MAR = Mid Atlantic rift.
952	
953	4.1 The continental margins of the South Atlantic
954	
955	New light can be shed on the gravity structures of South Atlantic oceanic
956	margins at regional (Figs. 16, 17, 19 and 20) and more local scales (Figs. 18 and 21).
957	By the help of these new compiled maps we will show that modern satellite gravity
958	fields described in Section 4 can support (1) interpretations of the lithospheric
959	structures in the South Atlantic and its passive margins and (2) provide much more
960	details in the gravity field than it was showed along the oversimplified profiles of Figs.
961	7 and 8.
962	With reference to the Fig. 14, the following sequence of Figs. (16 – 21) contains
963	always the same information for comparative reasons: the two gravity fields based on
964	the "satellite only" model GOCO05S (a) and the "combined model" EIGEN-6C4 (b),
965	and additionally Figs. 18 and 19 include the omission errors without (c) and with (d)
966	calculated topographic reductions.
967	Table 2 provides a summary of the standard deviations of the gravity fields
968	shown in these figures. d/o refer to the spherical harmonic analysis: to d egree and
969	order of the expansion.
970	
971	Table 2: Standard deviations (mGal) of the gravity fields shown in Figures 16 to 21.

Region	Figure	GOCO05S	EIGEN-6C4	GOCO05S	GOCO05S

		(d/o 280)	(d/o 2160)	omission	omission
				error	error, topo-
					reduced
Argentinean	16	22.4	24.6	9.8	7.1
coast					
Brazilian coast	17	15.9	18.8	10.8	6.3
Falkland Bank	18	24.4	25.3	7.3	5.9
African coast	19	19.3	21.5	10.6	7.3
Equatorial	20	19.3	23.9	14.3	9.8
African margin					
Tristan da Cunha	21	6.9	12.3	10.3	4.8
isle					

Continental gravity edge effects indicate a fast change from positive to negative anomalies as it is normal for the transition from oceanic to continental crust. In Fig. 16 the positive anomalies indicate in the offshore area the seaward dipping reflectors (SDR) which are of magmatic origin (e.g. Blaich, 2011; Franke et al. 2006; Section 2). The negative anomalies (greenish and blueish colors) offshore are caused by the sedimentary infill of the margin basins e.g. Colorado and Salado (e.g. Autin et al., 2013; 2016). Onshore positive anomalies follow W-E trending topographic features (Salado and Colorado Basin) and in the western continental part of the maps the topography of the Southern Central Andes. Figure 16: Full page width Fig. 16. Detailed picture of the free-air gravity field along the Argentinean coast compiled by the GOCO05S (a) and the EIGEN-6C4 (b) models. The lower two

988 figures indicate the omission errors without (c) and with topographic correction (d).
989 For more information refer to manuscript. The continental areas are marked by
990 transparent overlays.

In general the series of the following figures will portray similar gravity
anomalies (both magnitude and trend of anomalies). It is no wonder that all EIGEN6C4 compilations consist of more structural details than the GOCO05S models which
base on data in the orbit height of some 250 km where small local gravity anomalies
are not detectable.

Figs. 17 (a) and (b) shows that the "central Atlantic segment" is dominated by high density rocks which cause positive anomalies. The positive gravity offshore between 40° - 30° longitude is caused by the "Rio Grande High" which marks the most western edge of the hot spot trace which starts at the position of the Tristan da Cunha hotspot area. The negative gravity anomalies close to the Brazilian coast are caused by negative densities of salt accumulation here (Mohriak, 2014). The SDRs with their high rock densities (Section 2.2) of the southern segment are not documented here with high resolution; they are too small to be resolved in detail as we show already in Fig. 3. However, at a larger scale the belt of positive gravity marks the area of SRDs quite well.

1008 Figure 17: Full page width

1010 Fig. 17. The gravity fields (a) GOCO5S and (b) EIGEN6C4 along the Brazilian coast
1011 and offshore regions of the "central segment" of the southern Atlantic. Figures
1012 content is equal to Figs. 14 and 16. However the omission errors are not portrayed
1013 here.

1 2	1015	The resolution of gravity anomaly in the off-shore area of the Falkland Bank
3 4	1016	and the Scotia Plate with the Eastern Sandwich trench allows the separation of
5 6	1017	subduction related trench lithosphere, the eastern border of the Sandwich Plate, and
7 8	1018	the southern rim with the Antarctic Plate (low gravity corresponding to blueish colors
9 10	1019	in Fig. 18) from high density rocks of the Scotia Plate and Sandwich Isles (yellow and
11 12	1020	reddish colors in Fig. 18 (a and b). Exactly here in a region with rather complex
13 14 15 16 17 18 19 20 21	1021	interplay of different plates the resolution of gravity fields before the era of the
	1022	modern satellite missions was extremely low and often hindered a tectonic
	1023	interpretation of lithosphere at medium scale. The Scotia Plate in the center (reddish
	1024	colors in Fig. 18) is clearly separated from the other plates of the region (South
	1025	American plate to the North, Antarctic plate to the South, Scotia plate to center.
22 23	1026	
24 25	1027	Figure 18: One and a half page width
26 27	1028	
28 29 30 31 32 33 34 35 36 37 38 39 40	1029	Fig. 18. The gravity field of the Falkland bank and the Scotia plate with the eastern
	1030	South Sandwich trench after the processing of new satellite gravity (GOCO5S: (a)
	1031	and EIGEN6C4: (b). Figures content is equal to Fig. 14.
	1032	
	1033	Due to the symmetry of evolution of the South American and South African
	1034	margins also the gravity field of the western African margin shows the same general
	1035	features as it was exemplified for the South American margin: in the southern
42 42	1036	segment the magma dominated structures cause small positive gravity anomalies
43 44	1037	and North of the Walvis Ridge the area of salt layers is characterized by negative
45 46	1038	anomalies (blueish colors) in Fig. 19. The SW – NE trending Walvis Ridge separates
47	1039	the domains of magmatic material from salt layers. Positive gravity anomalies of the
49 50	1040	ridge clearly indicate the Tristan da Cunha hotspot trace – as it was already
51 52	1041	explained for the western part of the Southern Atlantic. More to the South at the
53 54	1042	South African tip of the Cape a second ridge (Agulhas Ridge) can be identified.
55 56		
57 58		
59 60		
61		
63		
64 65		

Onshore at the African continent close to the equator the extended gravity low (-50 mGal) of the Congo Basin with its thick sediments dominates the gravity picture. Figure 19: full page width Fig. 19. The gravity field of the African margin in the central and southern segment (Fig.15) after the GOCE gravity (a) and the EIGEN-6C4 data (b) processing. The series of maps correspond to the displayed formats of figures before; transparent overlay mark continental area. One of the most spectacular fracture zones in the Equatorial and Northern South Atlantic connecting Africa and South America is illustrated in Fig. 20 (a and b). Fairhead and Wilson (2005) explain the formation of the fracture system with processes which were related with the opening of the Central and South Atlantic. They state that a differential motion between plate segments was absorbed in the Caribbean and West and Central African rift systems. The fracture system developed due to the temporal different opening phases of the northern and southern Atlantic. Then the two independent spreading centers joined a major shear zone developed between West Africa and the northern margin of Brazil. The maps of satellite gravity image impressively this major shear zone. The gravity map of the EIGEN6C4 model provides a clear and sharp picture of the fractures zones. Figure 20: One a a half page width Fig. 20. The two gravity fields (GOCO5S (a) and EIGEN (b)) of the Equatorial Atlantic

maps corresponds with displayed formats of figures before; transparent overlay mark continental area.

Ocean map major transform structures offshore the African margin. Sequence of
1	4074	
2 3	1071	The limits of resolution of modern satellite only gravity fields (S models) can
4 5	1072	nicely be demonstrated by the gravity field of the Tristan da Cunha Isle, whose
6	1073	gravity field signal is at the edge of the spatial resolution of current satellite gravity
8	1074	missions. Fig. 21 shows that although GOCE is able to detect the gravity field signal
9 10	1075	of this island, it is significantly damped. It should be emphasized, that a constraint
11 12	1076	has been applied to the GOCO05S model in the frame of the gravity modelling
13 14	1077	procedure in order to improve the signal-to-noise ratio at higher degrees, i.e. noise is
15 16	1078	filtered out at the cost of damping also the signal. As already discussed in
17 18	1079	Section 3.2, the strength of constraining the solution was optimized on a global scale.
19 20	1080	Therefore, it is not tailored to small regions with strong gravity field signal, where a
21	1081	weaker constraint would be preferable due to a larger signal-to-noise ratio in this
23	1082	region compared to the global average. If the satellite gravity solution were optimized
24 25	1083	for this specific region, it can be expected that in such a regionally tailored solution
26 27	1084	slightly more signal could be retained. The series of Figs. 21 (a) – 21 (d) shows that
28 29	1085	the satellite gravity fields of both GOCE and EIGEN-6c4 are mainly caused by the
30 31	1086	topography of the island. Perfectly seen is the "ring" of negative anomalies in Fig. 21
32 33	1087	(b) which can be explained by the flexure of oceanic lithosphere due to isostatic
34 35	1088	response of the loaded isle masses. After calculating a topographic correction (Fig.
36 37	1089	21 (d)) an anomaly of some 20 mGal appears. One may speculate if this negative
38 39	1090	anomaly is caused by a mass deficit which is related to the hot spot or to crustal
40	1091	thickening
42	1092	The statistics in Table 2 shows that for such rather small-scale structures the
43	1093	amplitude of the omission error can be larger than the signal captured by GOCE.
45 46	1094	However, Fig. 21d shows that significant parts of this high-frequency gravity signal
47 48	1095	result from topography.
49 50	1096	
51 52	1097	Figure 21: one a half page width
53 54	1098	
55 56		
57 58		
59 60		
61 62		
o∠ 63		
64 65		

1	4000	
2 3	1099	Fig. 21. The Free Air gravity field of the Tristan de Cunha area after the GOCE (a)
4 5	1100	gravity and EIGEN-6C4 (b) data processing. Sequence of the four maps corresponds
6	1101	with displayed formats of figures before; omission error without (c) and (d) with
8	1102	topographic correction. The limits of resolution of satellite observations can nicely be
9 10	1103	demonstrated by these gravity fields.
11 12	1104	
13 14	1105	Figure 21a: Small column size
15 16	1106	
17 18	1107	Fig. 21a. In addition to what we interpret in Fig. 21 this sketch can explain the typical
19 20	1108	negative ring around the positive anomaly in the last figure: the central mass causes
21	1109	the positive anomaly while the sediments around the central mass cause a
22	1110	symmetrical gravity low. The extent of deformed crust below the mass crust depends
24 25	1111	on the rigidity of the surrounding crust: the left situation (rigidity R1) demonstrates a
26 27	1112	case with extreme high rigidity, on the right a lower crustal rigidity R2 was assumed.
28 29	1113	
30 31	1114	4.2 Validation of terrestrial gravity by GOCE data
32 33	1115	
34 35	1116	The GOCE mission provided not only new geoid and gravity fields, but also
36 37	1117	gravity gradient data. Representing the second derivatives of the gravitational
38 39	1118	potential, they are more sensitive to the density structures of the upper crust than
40	1119	gravity data normally are. Additionally, gravity gradients provide a better resolution of
41	1120	flanks of geological structures, faults, lineaments or even large intrusions at
43 44	1121	continental margins. Gradient data from satellite missions have the potential to
45 46	1122	identify the extent of different structures with varying densities even in the lower crust
47 48	1123	(e.g. Ebbing et al., 2013). Panet et al. (2014) even identify correlations of certain
49 50	1124	components of the gravity gradient tensor with lower mantle structures.
51 52	1125	For gravity interpretations at larger wavelengths the new satellite gravity

1125 For gravity interpretations at larger wavelengths the new satellite gravity 1126 database will help to identify a density zonation and segmentation in horizontal and

vertical directions in the lithosphere. As shown in Section 3.2, GOCE satellite-only gradient data provide a spatial (horizontal) resolution in the range of less than 100 km. However, for many structures - in particular for offshore studies of Applied Geophysics - this spatial resolution is not yet sufficient, because smaller crustal structures cause anomalies with smaller spatial wavelengths. Therefore, terrestrial and airborne gravity measurements have not become obsolete even in the modern satellite era, but on the contrary they complement satellite observations on the short-wavelength scale where satellite data lack sensitivity.

In addition to their very high accuracy in the long to medium wavelength
range, modern satellite gravity data definitely provide significant added value in the
geophysical gravity fields processing domain, especially for:

a) Validation of heterogeneous terrestrial gravity data bases and identification
of outliers;

b) Fill-in of regions with sparse terrestrial data coverage or even data gaps.

As an example of the first task (a), Fig. 22 a shows the difference between a terrestrial gravity data base of South America and GOCO05S, resolved up to degree 200. To bring them to the same spatial resolution, the terrestrial data have been expanded as part of a global $0.25^{\circ} \times 0.25^{\circ}$ terrestrial gravity anomaly grid into a spherical harmonic series to degree 720, and then have been cut at degree 200. Fig. 22 a clearly indicates systematic differences, which can be attributed to errors of the terrestrial data, because of the globally homogeneous accuracy of less than 1 mGal for the satellite model. Based on this result, the terrestrial database can be further screened for outliers and suspicious observations (either of the gravity value itself or the attached height information, Hosse et al., 2014). This information can then be used to derive empirical error estimates of the terrestrial dataset, which can be further used for a spatially depending weighting scheme in the frame of a combined solution with satellite data (Fecher et al., 2013, 2016). The implicit assumption is that the data quality of a terrestrial observation is already reflected in its long-wavelength

component. By means of this procedure, satellite data get a higher weight in regions
where a lower accuracy of terrestrial data is suspected.
Figure 22: Full page width
Fig 22. (a) Gravity anomaly differences (mGal) between a South American terrestrial
database (kindly provided by the US National Geospatial-Intelligence Agency) and
GOCO05S, consistently resolved up to degree 200; b) empirical error estimates

1163 (mGal) derived from the difference field (after: Fecher et al. (2015), modified).

1165 It should be emphasized, that this validation procedure can be applied in any 1166 region on Earth. Thereby, a globally uniform satellite gravity model provides the 1167 chance to estimate a-posteriori the accuracy and reliability even of historical gravity 1168 data bases (terrestrial, ship- and air-borne), for which only incomplete or even no 1169 meta-information about the measurement process and conditions is available.

Also Bomfim et al. (2013) describe how gradients of the GOCE mission can help to estimate systematic errors in terrestrial gravity data in the cratonal basins (e.g. Amazon and Parnaiba Basins) in Brazil. Here they calculate an average value of terrestrial gravity anomaly and compare its long- and medium-wavelength content of the terrestrial gravity with the GOCE gravity field. The analysis shows that where terrestrial data are sparse and therefore require an improvement in data coverage, satellite data can be substituted in order to represent the gravity field correctly. The method they proposed can be used directly to control other gravity databases and constitutes as a tool for the quality assessment of terrestrial gravity observations, both on- and offshore.

1180The second task (b) also addressed the heterogeneity of terrestrial gravity1181data. There are many regions worldwide where terrestrial data are of very bad quality

or not available/accessible at all (refer to Fig. 2). In these regions, data from satellitegravity missions are the only available data source.

These examples demonstrate, that although satellite missions provide (only) long to medium wavelength gravity field data, they are able to provide new gravity field information especially in regions where up to now the gravity field has been practically unknown. This regional model can then been used as constraint for an improved lithospheric density model and the derivation of the state of stress of the subduction zone (Gutknecht et al., 2014), clearly demonstrating the added value of GOCE especially in these data-critical onshore regions.

1192 5. Conclusions and outlook

The resolution of "satellite only data" up to now does not fall below a resolution of 80 - 100 km. This is still the borderline for studies presented in the above mentioned Sections. In summary we have to say that rather small complex structures related e.g. to the "seaward dipping reflectors at passive continental margins (SDR)" with small size and density contrast cannot be resolved as separated anomalies in the orbit heights of recent satellite missions (e.g. Schaller et al. 2015). For this purpose terrestrial gravity data have to be combined with satellite data in gravity models e.g. GOCO5C. The interpretations of Section 4.1. showed that gravity and its gradients from the modern satellite missions support interpretations at a medium scale - at passive continental margins and elsewhere.

Modelers of lithospheric structures at continental margins hope that medium scale gravity data from the recent and future satellite missions (GRACE and/or GOCE; GRACE follow on) can support combined interpretation together with seismological and gravity studies. For rather local models (wavelengths of gravity anomalies are smaller than 20 km) both resolution and quality of satellite only gravity data have to be seen still reluctant until today. However, there is no doubt that combinations with

terrestrial gravity data bases and satellite gravity with a spatial resolution of 10 - 20 km can provide detailed insight in the structural behavior of continental margins. For modelling at continental scales Fig. 2 demonstrated that terrestrial databases often are of inhomogeneous distribution (e.g. in South America), just if gravity data are sampled over long time-consuming field campaigns with big human efforts: there remain big gaps in the data base. They are mainly caused by limited access to the terrain in remote areas of the world – high mountains, deserts, swamps and jungle. Even more field procedures and technical instrumentation varied over time and together with missing other metadata a homogeneous data base can be established only with big effort and high costs. Here the new data bases already helped in a spectacular way: Hosse et al. (2014) and Gutknecht et al. (2014) replaced the incomplete terrestrial gravity data base by homogeneously measured satellite gravity and gravity gradient data for lithospheric modelling. New data were applied to the calculation of GPE (gravity potential energy), stress distributions and combined interpretation of complex geologic structures. Satellite gravity information was also used for validation and cleaning of inhomogeneous gravity databases taking the benefit of very homogeneous error characteristics and accuracy of global satellite gravity data (Hosse et. al, 2014; Bomfim et al., 2013). The high spatial resolution of terrestrial gravity combined with the homogeneous lower-orbit satellite data leads to more detailed and better-constrained lithospheric density models, and hence improves our knowledge about structure, evolution and state of stress in the lithosphere basing on the consistency in the long-to-medium wavelengths, down to 10 – 50 km.

At the beginning (Section 1.1) we mentioned the calculation/recalculation of the COB from an integrated interpretation of gravity, magnetic, seismic, electrical methods and geology (Torsvik et al., 2009). We did not deal with the calculation of COB, however, we think that the combined satellite fields can successfully replace

L 2	1238	the terrestrial gravity data which have to be used in former times. Because we
5 1 -	1239	analyzed Free Air gravity from the GOCE mission, in Fig. 23 topographic features on-
5	1240	and offshore are enhanced. These enhancements indicate clearly the slopes of the
7 3	1241	continental shelf regions of the Southern Atlantic.
€)	1242	
L 2	1243	Figure 23: Full page width
3 1	1244	
5	1245	Fig. 23. The third derivations of the gravitational potential and the resulting total
- 7 3	1246	gradient of the vertical gravity gradient were calculated from the GOCO5C model
2 2	1247	(expansion to degree 720). It provides already good insight into local gravity field
L	1248	structures particularly at the margins by the derivations of the vertical gradient (V_{zz}).
3	1249	
± 5	1250	In the near future complementary information from seismic and magnetics
5 7	1251	could be included in a joint inversion for lithospheric modelling also at passive
3 9	1252	continental margins. ESA's magnetic field mission Swarm was successfully launched
) L	1253	in November 2013 and provides valuable information of the long to medium
2 3	1254	wavelength Earth's magnetic field and its temporal variations with an accuracy on the
1 5	1255	nT- (nano tesla) level (http://esamultimedia.esa.int/multimedia/publications/BR-302/).
5 7	1256	The value of the mission for the determination of the crustal remanent magnetic field
3	1257	will increase in the future, because the three satellites will continuously lower their
)	1258	orbit altitudes during mission lifetime, thus also increasing their sensitivity for detail
2	1259	magnetic field structures. However, a joint interpretation of remanent magnetic and
> 1 -	1260	gravity field is only possible in the case of common sources, i.e. similar contrasts in
5	1261	density and magnetization. In this case Poisson's equation can be applied, which
7 3	1262	links the magnetic and gravity potential fields. Swarm is already now a very valuable
))	1263	tool to determine the electric conductivity of the Earth's mantle and thus provides very
L 2	1264	important information on the thermochemical and compositional structure of the
3 1	1265	Earth.

1 2	1266	Several concepts for future satellite mission constellations to explore the
3 4	1267	Earth's potential fields are under development and investigation. A strong need by
5 6	1268	the user communities was expressed in terms of a joint IUGG resolution adopted at
7 9	1269	the IUGG General Assembly 2015 (IUGG, 2015). The science requirements and user
9	1270	needs for a future gravity field mission constellation were consolidated (Pail et al.,
11	1271	2015a) also under active participation of the geophysical user community. In addition
12 13	1272	to an improved temporal resolution for the detection of co- and post-seismic
14 15	1273	deformation, an increased spatial resolution together with an improved accuracy will
16 17	1274	shift the capabilities to use satellite-based gravity observations for geophysical
18 19	1275	interpretation in passive continental margins, and elsewhere, to even more small-
20 21	1276	
22	1270	
24	1278	Acknowledgements
26	1270	Acknowledgements
27	1279	
29 30	1280	The research partly described here in this paper was part of the Priority Program
31 32	1281	SAMPLE (South Atlantic Margin Processes and Links with onshore Evolution). It is
33 34	1282	financed by the Deutsche Forschungsgemeinschaft (DFG), Bonn which is thankfully
35 36	1283	acknowledged. HJG thanks M. Scheck-Wenderoth and members of her research
37 38	1284	team at GeoForschungsZentrum Potsdam for their continuous interest and many
39 40	1285	fruitful discussions over the last years. The satellite part of the paper was elaborated
41 42	1286	in a second DFG Priority Program "Mass Transport and Mass Distribution". HJG and
43 44	1287	RP are deeply grateful to their research teams at the Christian Albrechts Universität
45 46	1288	Kiel, Technische Universität München and Friedrich-Schiller-Universität, Jena. We
47 48	1289	thank Reiner Rummel and Jörg Ebbing for their intensive "test reading" and fruitful
49	1290	suggestions. Carla Braitenberg, Bruno Meurers and an anonymous reviewer
50 51	1291	improved an earlier version of the paper by their careful reviews.
52 53	4000	
54 55	1292	
56 57		
58 59		
60 61		
62 63		
64 65		
05		

1293 References

5 6	1294	
7 8 9 10 11	1295 1296 1297 1298	Autin, J., Scheck-Wenderoth, M., Loegering, M.J., Anka, Z., Vallejo, E., Rodriguez, J.F.,Dominguez, F., Marchal, D., Reichert, C., di Primio, R., Götze, HJ., 2013. Colorado Basin 3D structure and evolution, Argentine passive margin. Tectonophysics 604, 264–279, doi:10.1016/j.tecto.2013.05.019
12 13 14 15 16	1299 1300 1301 1302	Autin, J., Scheck-Wenderoth, M., Götze, HJ., Reichert, Ch., Marchal, D., 2016. Deep structure of the Argentine margin inferred from 3D gravity and temperature modelling, Colorado Basin. Tectonophysics 676, pp. 198-210, doi.org/10.1016/j.tecto.2015.11.023.
17 18	1303	Baeschlin, C. F., 1948. Lehrbuch der Geodäsie. Verlag Orell Füssli, Zürich.
19 20 21 22 23	1304 1305 1306 1307	Bauer, K., Neben, S., Schreckenberger, B., Emmermann, R., Hinz, K., Fechner, N., Gohl, K., Schulze, A., Trumbull, R.B., Weber, K., 2000. Deep structure of the Namibia continental margin as derived from integrated geophysical studies. Journal of Geophysical Research 105, pp. 25 829 - 25,853.
24 25 26	1308 1309	Basile, C., 2015. Transform continental margins - Part 1: Concepts and models. Tectonophysics, Elsevier, no. 661, pp.1-10. 10.1016/j.tecto.2015.08.034
27 28 29	1310 1311	Benioff, H., 1954. Orogenesis and deep crustal structure – additional evidence from seismology, Bulletin of the Seismological Society of America, 66, 385–400.
30 31 32 33	1312 1313 1314	Blaich, O. A., Faleide, J. I., Tsikalas, F., 2011. Crustal breakup and continent-ocean transition at South Atlantic conjugate margins, Journal of Geophysical Research. 116, B01402, doi:10.1029/2010JB007686.
34 35 36 37	1315 1316 1317	Bocher, M., Coltice, N., Fournier, A. and Tackley, J.P., 2016. A sequential data assimilation approach for the joint reconstruction of mantle convection and surface tectonics. Geophysical Journal International, 204, pp. 200-214.
38 39 40 41	1318 1319 1320	Boltwood, B., 1907. The Ultimate Disintegration Products of the Radio-active Elements. Part II. The disintegration products of uranium. American Journal of Science series, 4, 23, 77–88. doi:10.2475/ajs.s4-23.134.78.
42 43 44 45	1321 1322 1323	Bomfim, E.P., Braitenberg, C. and Molina, E.C., 2013. Mutual evaluation of global gravity models (EGM2008 and GOCE) and terrestrial data in Amazon Basin, Brazil. Geophysical Journal International, 14 pages, doi: 10.1093/gji/ggt283.
46 47 48 49	1324 1325 1326	Bond, G.C., Nickelson, P.A., Kominz, M. A., 1984. Breakup of supercontinent between 625 Ma and 55 Ma, New evidence and implicationes for continental histories. Earth and Planetary Science Letters, 70, 325-345.
50 51 52 53 54 55	1327 1328 1329 1330	Bouman J., Ebbing J., Meekes S., Fattah R.A., Fuchs M., Gradmann S., Haagmans R., Lieb V., Schmidt M., Dettmering D., Bosch W., 2015. GOCE gravity gradient data for lithospheric modeling. International Journal of Applied Earth Observation and Geoinformation 35(A): 16-30, Elsevier, 10.1016/j.jag.2013.11.001.
56 57 58 59 60		

1			
2	1331	Bouman, J., Fuchs, M., Lieb, V., Schmidt, M., Ebbing, J., Holzrichter, N., Gradmann,	
3	1332	S., Abdul Fattah, R., Meekes, S., Novak, P., Sebera, J., 2014. GOCE+ GeoExolore -	
4	1333	Final Report ESA, RP-GOCE+-DNT-11, 2,1, 1 – 443.	
5			
6	1334	Braitenberg, C., 2015. Exploration of tectonic structures with GOCE in Africa and	
7	1335	across continents. International Journal of Applied Earth Observation and	
8	1336	Geoinformation 35 pp 88-95	
9	1000		
10	1337	Brockmann, J.M., Zehentner, N., Höck, E., Pail, R., Loth, I., Mayer-Gürr, T., Schuh,	
11	1338	WD., 2014, EGM TIM RL05: An independent Geoid with Centimeter Accuracy	
12	1339	nurely based on the GOCE Mission Geophysical Research Letters Wiley doi:	
13	13/0		
14	1040	10.1002/201402001304.	
15	1341	Bruinsma, S.L., C. Foerste, O. Abrikosov, J.M. Lemoine, J.C. Marty, S. Mulet, M.H.	
16	1342	Rio und S. Bonvalot. 2014. ESA's satellite-only gravity field model via the direct	
17	13/3	approach based on all GOCE data. Geophysical Research Letters (11/21) 7508-	
18	1040		
19	1344	7514, DOI. 10.1002/2014GL062045.	
20	1345	Cannelletti A. Salvi F. Meda M. Cavozzi C. Chowdhury B.R. Nestola V.	
21	13/6	Argnani A. Tsikalas E. Magistroni M. Dalla S. Povori M. Bovilasgua N. 2011	
22	1040	Arginanii, A., Tsikaids, T., Wagistrolli, W., Dalid, S., Noveli, W., Devilacqua, N., 2011.	
23	1347	Pectono-Stratigraphic Evolution of South Atlantic Extensional Rifled Margins:	
24	1348	Constraints from Sandbox Analogue Modeling. Search and Discovery Article, no.	
25	1349	30204.	
26	1250	Callis L. Chaliahkhan, C. and Dunga, H. D. 2010. Coophysical Bassarah Lattara	C
27	1350	Colli, L., Gnelichkhan, S. and Bunge, HP., 2016. Geophysical Research Letters,	\leq
28	1351	<u>Volume 43 Issue 6, pp. 2510-2516.</u>	$\overline{\}$
29	1252	Draggel I. Schook Wandereth M. Casego M. Lawerenz P. Cätze H. I. Beishert	\bigvee
30	1002	Diessel, I., Scheck-wenderoln, M., Cacace, M., Lewerenz, D., Golze, HJ., Reichert,	
31	1353	Ch., 2015. Reconstruction of the southwestern Amcan continential margin by	Ń
32	1354	backward modeling. Marine and Petroleum Geology, 67, DOI:	
33	1355	10.1016/j.marpetgeo.2015.06.006.	C
34	1056	Drinkwater M.D. Eleberghagen D. Haagmans D. Muzi D. Denseeu A. 2002	
35	1330	Dinkwaler, M.R., Floberghagen, R., Haagmans, R., Muzi, D., Popescu, A., 2003.	
36	1357	GOCE: ESA's first Earth Explorer Core mission. In Beutler, G., Drinkwater, M.R.,	
37	1358	Rummel, R., von Steiger, R. (eds.), Earth Gravity Field from Space – From Sensors	
38	1359	toEarth Sciences, Space Sciences Series of ISSI, vol. 17. Kluwer Academic	
39	1360	Publishers, Dordrecht, The Netherlands, S. 419–432, ISBN: 1-4020-1408-2.	
40			
41	1361	Ebbing J., Bouman J., Fuchs M., Lieb V., Haagmans R., Meekes J.A.C., Fattah R.A.,	
42	1362	2013. Advancements in satellite gravity gradient data for crustal studies. Leading	
43	1363	Edge, 32 (8), pp. 900-906.	
44	4004		
45	1364	Ebbing, J., Lundin, E., Olesen, O., Hansen, E.K., 2006. The mid-Norwegian margin:	
46	1365	A discussion of crustal lineaments, mafic intrusions, and remnants of the Caledonian	
47	1366	root by 3D density modelling and structural interpretation. Journal of the Geological	
48	1367	Society, 163, 47-60.	
49			
50	1368	Eldholm, O., Gladczenko, T.P, Skogseid, J., Planke, S., 2000. Atlantic volcanic	
51	1369	margins: a comparative study. In: Nøttvedt, A., Larsen, B.T., Olaussen, S.,	
52	1370	Tørudbakken, B., Skogseid, J., Gabrielsen, R.H., Brekke, H.,Ø. Birkeland (eds.),	
53	1371	Dynamics of the Norwegian Margin. Geological Society of London, Special	
54	1372	Publication 167, 411-428.	
55			
56			
57			
58			
59			
60			
¢⊥			
02 62			
63			

Formatted: English (United States) Formatted: German (Germany)

1		
2	1373	Fairhead, J.D. and Wilson, M. 2005. Plate tectonic processes in the South Atlantic
3	1374	Ocean: do we need deep mantle plumes? In: G.R. Foulder, I.H. Natland, D.C.
4	1075	Decensil D.L. Anderson (Eds.). Distant Diuman, and Daradiama. Casiasisal Casiasis
5	13/5	Preshail, D.L. Anderson (Eds.), Plates, Plumes, and Paradigms, Geological Society
5	1376	of America Special Paper, 388, pp. 537–553.
0 7		
/	1377	Fecher T., Pail R., Gruber T., 2013. Global gravity field modeling based on GOCE
8	1378	and complementary gravity data. International Journal of Applied Earth Observation
9	1379	and Geoinformation. doi: 10.1016/i.jag.2013.10.005.
10		, , , , , , , , , , , , , , , , , , ,
11	1380	Fecher T., Pail R., Gruber T. 2016, GOCO05c - A new combined gravity field model
12	1381	based on full normal equations and regionally varying weighting. Surveys in
13	1001	
14	1382	Geophysics, in review.
15	1000	Feeber T. Deil D. Cruber Th. Helmes C. 2015 Validation of Couth American
16	1383	Fecher I., Pall R., Gruber In., Holmes S., 2015. Validation of South American
17	1384	Terrestrial Gravity Anomalies by GOCE. Geophysical Research Abstracts, 17,
10	1385	EGU2015-4859-1 European Geosciences Union General Assembly 2015, Vienna,
18	1386	14.04.2015.
19		
20	1387	Flament, N., Gurnis, M. and Müller, R.D., 2013, A review of observations and models
21	1388	of dynamic tonography Lithosphere, vol. 5, no. 2, np. 189-210, doi: 10.1130/1.245.1
22	1000	or dynamic topography, Ethosphere, vol. 3, no. 2, pp. 103-210. doi: 10.1130/2243.1
23	1380	Eörste C. Bruinsma, S. J. Abrikosov, O. Lemoine, L.M. Marty, J. C. Elechtner, E.
24	1000	Policies O. Berthelesse E. Discosle D. 2014 ELOEN 204 The latest condition
25	1390	Baimino, G., Bartheimes, F., Biancale, R., 2014. EIGEN-604 The latest combined
26	1391	global gravity field model including GOCE data up to degree and order 2190 of GFZ
20	1392	Potsdam and GRGS Toulouse. GFZ Data Services.
27	1393	http://dx.doi.org/10.5880/icgem.2015.1
28		
29	1394	Franke, D., Neben, S., Schreckenberger, B., Schulze, A., Stiller, M., and Krawczyk,
30	1395	C.M. 2006 Crustal structure across the Colorado Basin, offshore Argentina
31	1000	
32	1396	Geophys. J.Int., 165, 850 – 864.
33	1007	Frenks D. Ladava C. Cakaakal M. Cakaadaakaanaa D. Daishart C. Llina
34	1397	Franke, D., Ladage, S., Schnabel, M., Schreckenberger, B., Reichert, C., Hinz,
35	1398	K.,Paterlini, M., de Abelleyra, J., Siciliano, M., 2010. Birth of a volcanic margin off
36	1399	Argentina, South Atlantic. Geochemistry, Geophysics, Geosystems 11,Q0AB04.
37		
38	1400	Frisch, W. und Meschede, M., 2005. Plattentektonik. Kontinentverschiebung und
20	1401	Gebirgsbildung, Primus Verlag GmbH, 208 Seiten, ISBN-10: 3896785257.
39		
40	1402	Gatti, A., Reguzzoni, M., 2015, Comparison of the space-wise grids with other GOCE
41	1403	solutions Geophysical Research Abstracts Vol. 17 EGU2015-11112 EGU General
42	1404	
43	1404	ASSEMDLY 2015.
44	1/05	Cooffroy I. C. P. 2005 Valconic possive margins, Coossience 337, 1305, 1408
45	1400	Geomoy, E.C.N., 2005. Volcanic passive margins. Geoscience 357, 1395 –1400.
46	1406	dol:10.1016/j.crte.2005.10.006.
47	1407	Correiron I. Lucorcou F. Driggerd F. Discoutach J. O. Disclar, O. L. O. ". D.
48	1407	Gernigon, L., Lucazeau, F., Brigaud, F., Ringenbach, JC., Planke, S., Le Gall, B.,
49	1408	2006. A moderate melting model for the Vøring margin (Norway) based on structural
50	1409	observations and a thermo-kinematical modelling: Implication for the meaning of the
51	1410	lower crustal bodies. Tectonophysics 412 (3-4), 255-278.
52	-	
52	1411	Götze, HJ., 2015, Potential Methods and Geoinformation Systems, In: Freeden, W.,
55	1412	Nashed M.Z. Sonar T. (Eds.): Handbook of Geo-Mathematics. Berlin, Heidelberg
54	1712	
55		
56		
57		
58		
59		
60		
61		
62		
63		
64		
65		
~ ~		

1 2 3 4	1413 1414	Springer Verlag, S. 1-21 ISBN 978-3-642-27793-1, (doi>10.1007/978-3-642-27793- 1_52-2)
5 6 7 8	1415 1416 1417	Grombein, T.; Seitz, K.; Heck, B. 2015. RWI_TOPO_2015: An update of the Rock- Water-Ice topographic gravity field model of the Earth, available from http://www.gik.kit.edu/rwi_model.php
9 10 11	1418 1419	Gutknecht, B.D., Götze, HJ., Jahr, T., Jentzsch, G., Mahatsente, R., Zeumann, S., 2014. Surveys of Geophysics, 35, 1417–1440. DOI 10.1007/s10712-014-9296-9.
12 13 14	1420 1421 1422	Gutknecht, B.D., Köther, N., Mahatsente, R., Götze, H.J., 2011. Utilisation of Gravity Gradients and Invariants for 3D Density Modelling. Proc. General Assembly of the International Union of Geodesy and Geophysics (IUGG), Melbourne, Australia.
16 17 18	1423 1424 1425	Hackney, R. I. and Featherstone, W. E., 2003. Geodetic versus geophysical perspectives of the 'gravity anomaly'. Geophysical Journal International 154 (1), 35-43. doi: 10.1046/j.1365-246X.2003.01941.x
20 21 22	1426 1427 1428	Heit, B., Sodoudi, f., Yuan, X., Bianchi, M., Kind, R., 2007. An S- Receiver Function Analysis of the Lithospheric Structure in South America, Geophyical. Resarch Letters, 34, L14307, doi:10.1029/2007GL030317.
24 25 26 27	1429 1430 1431	Hess, H. H., 1962. History of Ocean Basins. In A. E. J. Engel, Harold L. James, and B. F. Leonard. Petrologic studies: a volume in honor of A. F. Buddington. Boulder, CO: Geological Society of America. pp. 599–620.
28 29 30 31 32	1432 1433 1434 1435	Hinz, K., Neben, S., Schreckenberger, B., Roeser, H.A., Block, M., Goncalves de Souza, K., Meyer, H., 1999. The Argentine continental margin north of 48°S: sedimentary successions, volcanic activity during break-up. Mar. & Petrol. Geol.,16, 1 - 25.
33 34 35 36 37 38 39 40	1436 1437 1438 1439 1440 1441 1442	 Hinze, W.J., Aiken, C., Brozena, J., Coakley, B., Dater, D., Flanagan, G., Forsberg, R., Hildenbrand, T., Keller, G.R., Kellogg, J., Kucks, R., Li, X., Mainville, A., Morin, R., Pilkington, M., Plouff, D., Ravat, D., Roman, D., Urrutia-Fucugauchi, J., Véronneau, M., Webring, M., Winester, D., 2006. New standards for reducing gravity observations: The Revised North American Gravity Database: http://paces.geo.utep.edu/research/gravmag/PDF/Final%20NAGDB%20Report%20091403.pdf
41 42 43 44 45	1443 1444 1445 1446	Hirsch, K.K., Bauer, K., Scheck-Wenderoth, M., 2009. Deep structure of the western South African passive margin e results of a combined approach of seismic, gravity and isostatic investigations. Tectonophysics 470, 57 - 70. <u>http://dx.doi.org/10.1016/j.tecto.2008.04.028</u> .
46 47 48 49	1447 1448 1449	Holzrichter, N., 2013. Processing and interpretation of satellite and ground based gravity data at different lithospheric scales. Dissertation, 126 pages. Christian- Albrechts-Universität zu Kiel. Fakultät für Mathematik und Naturwissenschaften.
50 51 52 53 55 55 55 55 55 55 55 55 55 55 55 55	1450 1451 1452	Hopper, J.R., Funck, T., Tucholke, B.E., Larsen, H.C., Holbrook, W.S., Louden, K.E., Shillington, D., Lau, H., 2004. Geological Society of America. Geology, 32, (1), 93 - 96. DOI 10.1130/G19694.1.

1 2 3 4 5 6	1453 1454 1455 1456	Hosse, M., Pail, R., Horwath, M., Holzrichter, N., Gutknecht, B.D., 2014. Combined Regional Gravity Model of the Andean Convergent Subduction Zone and Its Application to Crustal Density Modelling in Active Plate Margins. Surveys in Geophysics, 35, (6), 1393-1415.
7 8 9	1457 1458	Isacks, B., Oliver, J.,Sykes, L. R., 1968. Seismology and the New Global Tectonics. Journal of Geophysical Research, 73, (18), 5855.
10 11 12 13	1459 1460 1461	IUGG, 2015. Resolutions adpoted by the IUGG Council at the XXVI General Assembly, Prague, Czech Republic, 22 June – 2 July 2015; http://www.iugg.org/resolutions/IUGGResolutions2015.pdf
14 15 16 17	1462 1463 1464	Kalberg, T., 2016. Interpretation tektonomagmatischer Prozesse basierend auf 3D Potentialfeldmodellierungsergebnissen. Dissertation 185 pages. Fachbereich für Geowissenschaften, Universität Bremen.
18 19 20 21 22	1465 1466 1467 1468	Klinge, L., 2016. Gravitational potential energy (GPE) und Stress im südlichen Atlantik (in German). Master Arbeit, 89 pages. Institut für Geowissenschaften, Mathematisch-naturwissenschaftliche Fakultät der Christian-Albrechts-Universität Kiel.
23 24 25 26 27	1469 1470 1471 1472	Köther, N., Götze, HJ., Gutknecht, B.G., Jahr, T., Jentzsch, G., Lücke, O.H., Mahatsentea, R., Sharma, R., Zeumann, S., 2012. The seismically active Andean and Central American margins: Can satellite gravity map lithospheric structures? Journal of Geodynamics, 59– 60, 207– 218.
28 29 30	1473 1474	LaFehr, T.R., 1991. An exact solution for the gravity curvature (Bullard B) correction: Geophysics, 56, (8), 1179–1184, doi: 10.1190/1.1443138.
31 32 33 34	1475 1476 1477	Lallemand S., 2014. Active continental margin. In Encyclopedia of Marine Geosciences, Springer Science, Eds.: Harff, J., Meschede, M., Petersen, S. and Thiede, J., 7 pages, DOI 10.1007/978-94-007-6644-0_102-2.
35 36 37	1478 1479	Li, X. and Götze, HJ., 2001. Ellipsoid, Geoid, Gravity, Geodesy, and Geophysics - A Tutorial. Geophysics, vol. 66, no. 6, 1660-1668.
38 39 40 41 42 43 44 45	1480 1481 1482 1483 1484 1485 1486	Maus, S., Barckhausen, U., Berkenbosch, H., Bournas, N., Brozena, J., Childers, V., Dostaler, F., Fairhead, J.D., Finn, C., von Frese, R. R. B., Gaina, C., Golynsky, S., Kucks, R., Lühr, H., Milligan, P., Mogren, S., Müller, R.D., Olesen, O., Pilkington, M., Saltus, R., Schreckenberger, B., Thébault, E. and Caratori Tontini, F., 2009. EMAG2: A 2-arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements. Geochemistry, Geophysics, Geosystems, vol. 10, no. 8. doi: 10.1029/2009GC002471.
46 47 48 49	1487 1488 1489	Mayer-Gürr, T., Zehentner, N., Klinger, B., Kvas, A., 2014. ITSG-Grace2014: a new GRACE gravity field release computed in Graz. Presented at GRACE Science Team Meeting (GSTM), Potsdam, 29.09.2014.
50 51 52 55 55 55 50 61 62 65 65	1490 1491 1492 1493	Maystrenko, Y.P., Scheck-Wenderoth, M., Hartwig, A., Anka, Z., Watts, A.B., Hirsch, K.K, Fishwick, S. 2013. Salt as a 3D element in structural modeling – Example from the Central European Basin System. Tectonophysics, doi:10.1016/j.tecto.2012.06.030

1		
2	1494	Mikuška, J., Pašteka, R., Marušiak, I., 2006. Estimation of distant relief effect in
3	1495	gravimetry. GEOPHYSICS, 71, (6), J59–J69, doi: 10.1190/1.2338333.
4		
5	1496	Mohriak, W., 2014. Birth and development of continental margin basins: analogies
6	1497	from the South Atlantic, North Atlantic and the Red Sea. Search and Discovery
7	1498	article. http://www.searchanddiscoverv.com/pdfz/documents
8	1499	/2014/41502mohriak/ndx_mohriak.pdf.html
9	1100	
10	1500	Müller, R. D., Sdrolias, M., Gaina, C. and Roest, W.R., 2008. Age, spreading rates,
11	1501	and spreading asymmetry of the world's ocean crust. Geochemistry, Geophysics,
12	1502	Geosystems vol 9 no 4 19 pages doi: 10 1029/2007GC001743
13	1002	
14	1503	Naudy, H. and Neumann R., 1965. Sur la définition de l'anomalie de Bouguer et ses
15		
16	1504	conséquences pratiques, Geophys. Prosp., vol 13, 1-110'Connor, J.M., Jokat, W., le
17	1505	Roex, A.P., Class,C., Wijbrans,J.R., Keßling, S., Kuiper, K.F. and Nebel, O., 2012.
18	1506	Hotspot trails in the South Atlantic controlled by plume and plate tectonic processes.
19	1507	Nature Geoscience 5, pp. 735–738, doi:10.1038/ngeo1583.
20		
21	1508	Oliver, J., Isacks, B., 1967. Deep earthquake zones, anomalous structures in the
22	1509	upper mantle, and the lithosphere. Journal of Geophysical Research, 72 (16), pp.
23	1510	4259-4275.
24		
25	1511	Oncken, O., Chong, G., Franz, G., Giese, P., Götze, HJ., Ramos, V., Strecker, M.
26	1512	and Wigger, P., (Eds), 2006: The Andes - Active Subduction Orogeny., Frontiers in
27	1513	Earth Sciences, 1, Springer Verlag, pp. 570.
28		
29	1514	Pail R., Fecher T., Rexer M. 2015b. Validation of GOCE gravity gradient grids for
30	1515	geophysical applications. Geophysical Research Abstracts, Vol. 17, EGU2015-1652,
3⊥ 20	1516	Poster presented at EGU General Assembly 2015, Vienna.
34 22		
22 21	1517	Pail, R., Bingham, R., Braitenberg, C., Dobslaw, H., Eicker, A., Güntner, A., Horwath,
25	1518	M., Ivins, E., Longuevergne, L., Panet, I., Wouters, B. 2015a. Science and User
35	1519	Needs for Observing Global Mass Transport to Understand Global Change and to
30	1520	Benefit Society. Surveys in Geophysics, 36(6): 743-772, Springer Netherlands, doi:
38	1521	10.1007/s10712-015-9348-9.
39		
40	1522	Pail, R., Goiginger, H., Schuh, WD., Höck, E., Brockmann, J. M., Fecher, T.,
41	1523	Gruber, T., Mayer-Gürr, T., Kusche, J., Jäggi, A., Rieser, D. 2010. Combined satellite
42	1524	gravity field model GOCO01S derived from GOCE and GRACE. Geophysical
43	1525	Research Letters, Vol. 37, L20314, doi:10.1029/2010GL044906.
44		
45	1526	Pail, R., S. Bruinsma, F. Migliaccio, C. Förste, H. Goiginger, WD. Schuh, E. Höck,
46	1527	M. Reguzzoni, J. M. Brockmann, O. Abrikosov, M. Veicherts, T. Fecher, R.
47	1528	Mayrhofer, I. Krasbutter, F. Sansò, and C. C. Tscherning 2011. First GOCE gravity
48	1529	field models derived by three different approaches, Journal of Geodesy, 85(11), 819-
49	1530	843, doi: 10.1007/s00190-011-0467-x.
50		
51	1531	Panet I., G. Pajot-Métivier, M. Greff-Lefftz, L. Métivier, M. Diament & M. Mandea
52	1532	2014. Mapping the mass distribution of Earth's mantle using satellite-derived gravity
53	1533	gradients, Nature Geoscience 7, 131–135, doi:10.1038/ngeo2063.
54		
55		
56		
57		
58		
59		
60		
61		
62		
63		

1		
2	1534	Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.K., 2008. An Earth Gravitational
3	1535	Model to Degree 2160: EGM2008. In: Proceedings of the European Geosciences
4 5	1536	Union General Assembly, April 13–18, Vienna, Austria.
6	1537	Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.K., 2012. The development and
7	1538	evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical
8 9	1539	Research, 117, (B4), 2156 - 2202, doi: 10.1029/2011JB008916.
10	1540	Prance 1 2011 Global Gravity Field Determination Using the GPS Measurements
11	15/1	Made Onboard the Low Earth Orbiting Satellite CHAMP, PhD Thesis, Geodätisch-
12	15/12	geophysikalische Arbeiten in der Schweiz vol. 81. http://www.sgc.ethz.ch/sgc-
13	15/13	yolumos/sqk_81 pdf
14	1040	volumes/sgk of.put
15	1544	Reigber, C., Balmino, G., Schwintzer, P., Biancale, R., Bode, A., Lemoine, JM.,
16	1545	Koenig, R., Loyer, S., Neumayer, H., Marty, J.C., Barthelmes, F., Perossanz, F.,
17	1546	2002. A high quality global gravity field model from CHAMP GPS tracking data and
10	1547	accelerometry (EIGEN-1S). Geophysical Research Letters, 29, 14,
19 20	1548	dx.doi.org/10.1029/2002GL015064
21 21		
22	1549	Reston, T.J., 2009. The structure, evolution and symmetry of the magma-poor rifted
23	1550	margins of the North and Central Atlantic: A synthesis. Tectonophysics 468, 6–27.
24	1551	doi:10.1016/j.tecto.2008.09.002.
25	1552	Rudenko S. Dettmering D. Esselborn S. Schoene T. Egerste C. Lemoine, I-M
26	1552	Ablain M Alexandre D Neumaver K -H 2014 Influence of time variable geopotential
27	1554	models on precise orbits of altimetry satellites, global and regional mean sea level
28	1555	trends. Advances in Space Research. doi: 10.1016/i.asr.2014.03.010
29 20	1000	
31	1556	Salomon, A., Koehn, D., Passchier, C., Hackspacher, P.C. and Glasmacher, U.A.,
32	1557	2014. Contrasting stress fields on correlating margins of the South Atlantic,
33	1558	Gondwana Research, doi.org/10.1016/j.gr.2014.09.006.
34	4550	
35	1559	Schaller. I., Andersen, J., Gotze, HJ., Koproch, N., Schmidt, S., Sobiesiak, M.,
36	1560	Splettstoßer, S., 2015. Segmentation of the Andean margin by isostatic models and
37	1561	gradients. Journal of South American Earth Sciences, 59, 69-85.
38	1562	Scheck-Wenderoth, M., Maystrenko, Y., 2008, How warm are passive continental
39 40	1563	margins? A 3D lithosphere-scale study from the Norwegian margin, Geology, 36, (5),
41	1564	419-422, DOI: 10.1130/G24545A.1.
42		
43	1565	Skogseid, J., Planke, S., Faleide, J.I., Pedersen, T., Eldholm, O., Neverdal, F., 2000.
44	1566	NE Atlantic continental rifting and volcanic margin formation, in Nottvedt, A.e.a., Ed.,
45	1567	Dynamics of the Norwegian Margin, 167: London, Geological Society of London,
46	1568	Special Publications, p. 55–82.
47	1560	Sobiesiak M. Meyer II. Schmidt S. Götze H I. Krawczyk C.M. 2007. Asperity
48 10	1503	deperating upper crustal sources revealed by b value and isostatic residual anomaly
49 50	1570	gride in the area of Antofagasta. Chile Journal of Geophysical Research v. 112
51	1572	B12308 doi: 10.1029/2006 IB004796
52	1072	D12000, d0i. 10.1023/20000D004/30.
53		
54		
55		
56		
57		
50 50		
59 60		
61		
62		
63		

Stadler, G., Gurnis, M., Burstedde, C., Wilcox, L.C., Alisic, L., Ghattas, O., 2010. The Dynamics of Plate Tectonics and Mantle Flow: From Local to Global Scales. Science, Vol. 329, Issue 5995, pp. 1033-1038, DOI: 10.1126/science.1191223. б Szwillus, W., Ebbing, J. and Holzrichter, N., 2016. Importance of far-field topographic and isostatic corrections for regional density modelling. Geo- physical Journal International, 207 (1), pp. 274-287, doi:10.1093/gji/ggw270 Szwillus, W., Götze, H.-J., 2016. Efficient mass correction using an adaptive method. In: R, Pasteka et al., Proceedings of the workshop on Bouguer Anomaly, Bratislava (Slowak Republic). Accepted. Tapley, B.D., Bettadpur, S., Watkins, M., Reigber, C., 2004. The gravity recovery and climate experiment: mission overview and early results. Geophysical Research Letters, 31(9), L09607, AmericanGeophysical Union, http://dx.doi.org/10.1029/2004GL019920. Tašárová, Z., 2007. Towards understanding the lithospheric structure of the southern Chilean subduction zone (36° S – 42° S) and its role in the gravity field. Geophysical Journal International, 170, (3), 995–1014. doi:10.1111/j.1365-246X.2007.03466.x Torge W., 2001. Geodesy, 3rd edition, 416 pages. De Gruyter Berlin, ISBN 3-11-017072-8. Torsvik, T. H., Rousse, S., Labails, C. and Smethurst, M.A., 2009. A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin. Geophysical Journal International, 177, 3, pp. 1315-1333. doi: 10.1111/j.1365-246X.2009.04137.x. Vine, F. J.; Matthews, D. H., 1963. Magnetic Anomalies Over Oceanic Ridges. Nature 199 (4897), 947–949. Wadati, K., 1929. Shallow and deep earthquakes (2nd paper): Geophysical Magazine, 2, 1–36. Wefer, G., Billet, D., Hebbeln, D., Barker Jorgensen, B., Schlüter, M., van Weering, T.C.E., 2003. Eds. Ocean Margin Systems. Springer, pp. 495. Doi.10.007/978/-3-662-05127-6 Wegener, A., 1920. Die Entstehung der Kontinente und Ozeane. In: E. Wiedemann (Herausgeber), Die Wissenschaft, Friedrich Vieweg und Sohn, Braunschweig, 2. Auflage, 66, 1-135. Wenzel H., 1985: Hochauflösende Kugelfunktionsmodelle für das Gravitationspotential der Erde: Wissenschaftliche Arbeiten der Fachrichtung Vermessungswesen der Universität Hannover, 137, 1–155. White, R. S., Smith, L.K., 2009. Crustal structure of the Hatton and the conjugate east Greenland rifted volcanic continental margins, NE Atlantic. Journal of Geophysical Research, 114. B02305. DOI 10.1029/2008JB005856

Insights from recent gravity satellite missions in the density structure of
 continental margins – with focus on the passive margins of the South
 Atlantic

5 Abstract

We focus on new gravity and gravity gradient data sets from modern satellite missions GOCE, GRACE and CHAMP, and their geophysical interpretation at passive continental margins of the South Atlantic. Both sides, South Africa and South America, have been targets of hydrocarbon exploration and academic research of the German Priority Program SAMPLE (South Atlantic Margin Processes and Links with onshore Evolution). The achievable spatial resolution, driven by GOCE, is 70 - 80 km. Therefore, most of the geological structures, which cause a significant gravity effect (by both size and density contrast), can be resolved. However, one of the most important aspects is the evaluation of the omission error, which is not always in the focus of interpreters. It results from high-frequency signals of very rough topographic and bathymetric structures, which cannot be resolved by satellite gravimetry due to the exponential signal attenuation with altitude. The omission error is estimated from the difference of the combined gravity model EIGEN-6C4 and the satellite-only model GOC005S. It can be significantly reduced by topographic reductions. Simple 2D density models and their related mathematical formulas provide insights in the magnitude of the gravity effect of masses that form a passive continental margin. They are contrasted with results from satellite-only and combined gravity models. Example geophysical interpretations are given for the western and eastern margin of the South Atlantic Ocean, where standard deviations vary from 25 – 16 mGal and 21 – 11 mGal, respectively. It could be demonstrated, that modern satellite gravity

data provide significant added value in the geophysical gravity data processing domain and in the validation of heterogeneous terrestrial data bases. Combined models derived from high-resolution terrestrial gravity and б homogeneous satellite data will lead to more detailed and better constrained lithospheric density models, and hence will improve our knowledge about structure, evolution and state of stress in the lithosphere. 1. Motivation and the concept of Plate Tectonics their basic findings in a world embracing synthesis to understand global processes in the Earth interior and at its surface. Most of these processes are generally geothermally driven, and it is easy to accept that their origin lies below the lithosphere, in the Earth's mantle (among others Stadler et al., 2010). Today, the theory of plate tectonics enables us to draw a coherent picture of the Earth's lithosphere. Interactions between the plates at their plate boundaries are responsible for most of the earthquakes that occur here (among many other publications and websites: http://earthquake.usgs.gov/earthquakes/?source=sitenav, http://www.isc.ac.uk/about/ or http://geofon.gfz-potsdam.de/). This paper will review the status of satellite gravity missions and terrestrial data, as well as global gravity models, fields and gradients derived from them. It will focus on their accuracy, resolution and the omission error – which is out of focus of many earth scientists. It is structured as follows: Section 1 defines continent-ocean transitions and recalls some basics in the context of Plate Tectonics concept and passive margins in particular. For those readers who

Geosciences are striving for an interdisciplinary perception to combine

are not familiar with the interpretation of gravity anomalies at a continental
margin in Section 2 the basic concepts are illustrated; this section can be
skipped by experts. Further on the focus is set on the question how (satellite)
gravity interpretations can help to explore these passive margins (Section
2.3). In the course of this paper we will notice later to what extent the new
fields and gradients from recent satellite gravity missions can support
research at the passive margins of the South Atlantic (Section 2.4).

In Section 3 we will demonstrate how this new information augmented
our view on the density structures of the lithosphere particularly at passive
margins of the South Atlantic. At last we describe the benefits for combined
interpretations in Section 4, and merge information from both terrestrial and
satellite gravity fields.

1.1 Short introduction to history of plate margins tectonics

Considering the history of the Plate Tectonic concepts in the early 1960s, Wegener's view on the "the continental drift" (Wegener, 1920) began to be accepted after it was refined and confirmed by geophysical observations namely by early seismological studies on deep earthquakes (Wadati, 1929; Benioff, 1954), later by Isacks et al. (1968), Oliver and Isacks (1967) and paleo-magnetic shipborne observations (Hess, 1962; Vine and Matthews 1963 among others). Together with the techniques of radiometric dating (age determination) published first by Boltwood (1907) geophysicists were able to

date the magnetic mid oceanic reversals by precise physical measurements. They helped to get the modern concept of "plate tectonics" fully accepted. It provides the framework for the interpretation of structures, the history and composition of continental margins. Plate movements and the differences in density of oceanic and continental crust types led to the structural pattern of continental margins and result in a tectonic classification of coastlines as active or passive margins (among others Wefer et al., 2003). Active margins are typical units of the "Circum-Pacific Ring of Fire" in the Pacific where plates are converging and coincide with plate boundaries in a subduction zone. These margins are called *active* (e.g. Oncken et al., 2006; Lallemand, 2014) due to the big variety of tectonic, magmatic and metamorphic processes that occur here. If continental margins mark only the boundary to the oceanic portion of the same tectonic plate, they are called *passive margins*. Passive margins are typical of the Atlantic Ocean between Scandinavia and Greenland (Scheck-Wenderoth and Maystrenko 2008), Iberic peninsula and the East American coast or between Africa and South America (Blaich et al., 2011 and many papers within).

95 1.2 Passive Margins

97 Although we assume that most of the readers are familiar with the 98 concept of plate tectonics we will recall briefly some basics. In particular 99 *passive continental margins* are characterized by a transition of continental 100 into oceanic crust within the same plate. It emerges from the splitting up of 101 continents and the following divergent plate drift that forms new oceanic 102 lithosphere by seafloor spreading at the divergent plate boundary. At the

edges of the Atlantic geophysical investigations identify a laterally 10-15 km thick crustal transition between the thick crust of the continents and the thin oceanic crust. It is interpreted as relicts of thinned, mafic magmas which intruded into continental crust. In addition, passive continental margins are often stretched by intensive fault tectonics. They have a tectonically thinned continental crust, which is characterized by listric faults and tilted fault blocks. Tectonic crustal expansion starts at the time of installation of the continental drift rift system and refines the passive continental margin further (Blaich et al., 2011). These margins are marked by smooth relief due to tectonic inactivity and major sediment accumulation. This phenomenon is due to thermal cooling and sediment loading that led to conditions of subsidence and sediment accumulation, because the margins move away from the spreading center. Irregular subsidence and different sediment load often cause the accumulation of salt diapirs in the sediments of passive continental margins. The tectonic-sedimentary conditions are also favorable for the formation of hydrocarbon deposits and large salt deposits (Mohriak, 2014).

Modern passive margins (Fig. 1) border the oceans formed by the spreading caused by the break-up of the Gondwana supercontinent (e.g. Bond et al., 1984). From Figure 1 one can see that the margins of the South Atlantic Ocean (Cappelletti et al., 2011; Blaich et al., 2011; Mohriak, 2014), the western Indian Ocean, the Arctic and Norwegian seas (Scheck-Wenderoth and Maystrenko, 2008; Ebbing et al, 2006; Skogseid et al., 2000), the magma poor rifted margins of the North and Central Atlantic Ocean (Reston, 2009; Mohriak, 2014) and the margins of Antarctica are part of this system (Kalberg, 2016). A rising convection cell or a plume in the rifting area caused initial

129	rifting and a regional uplift as well as volcanic activities above or below
130	oceanic sea level after an initial period of crustal thinning and erosion. Basile
131	(2015) describe another type of margin: "transform continental margins" by
132	simple kinematic models of transform faulting which cause among two other
133	types "passive transform margins". The satellite gravity picture of the
134	Equatorial Atlantic Ocean will be shown in Section 4.2, Fig. 20.
135	
136	Figure 1: double column
137	
138	Fig. 1. Continental margins on Earth. Blue lines mark passive continental
139	margins mainly surrounding the Atlantic Ocean, the Antarctic Seas, and Indian
140	Ocean; red lines indicate active margins (subduction zones). Continental
141	margins were taken from from Frisch und Meschede (2005). The underlying
142	gravity field is the map of "gravity disturbance" calculated on base of the

143 EIGEN-6C4 model (Förste et al., 2014). Gravity was calculated on a grid of

146 1.3 Volcanic passive margins

0.5° x 0.5°.

These margins present distinctive genetic and structural features, e.g.,
high-rate extension of the lithosphere is associated with catastrophic mantle
melting responsible for the accretion of a thick igneous crust (Geoffroy, 2005).
Typical rifted "magma-dominated" margins are characterized by large volumes
of flood basalts which flow across the continental hinterlands during

continental breakup (among others refer to: Hopper et al., 2004; Eldholm et al., 2000; Gernigon et al., 2006; White and Smith, 2009; O'Connor et al., 2012). Underlying the extrusive lavas at the continent-ocean transition zone, these margins exhibit high seismic velocities in the lower crust of some The deeper crust is characterized by two areas of high seismic velocity (7.2 to 7.4 km/s; Franke et al., 2010)., which are associated with voluminous igneous rocks intruded into the lower crust.

In recent time the question arose in the context of fixing international boundaries offshore of the continents due to economic interests because e.g. hydrocarbon exploration moved further offshore e.g. to explore deep water resources. Toward the definition of this "continent-ocean-boundary, COB" at passive margins one of the crucial questions is how to define these boundaries. Torsvik et al. (2009) described how COB for the South Atlantic margins at both sides can be defined: by the interpretation of seismic, gravimetric, magnetic, bathymetric and geological information. Any identification of the COB is also important for the definition of plate boundaries at the time of break-up which allows the reconstruction of geometry and earlier position of former continents - e.g. in the reconstruction of Pangaea. It is not the aim of this paper to recalculate COBs. However we trust that the processing of gravity field and its second derivatives for recalculation of COB (Torsvik et al., 2009) will benefit from the increase of high resolution satellite derived gravity fields. Later we will return to this point in the conclusion (Section 5) suggesting calculating the 2nd derivative of satellite gravity (derivative of the gravity gradient).

2. Geophysical characteristics of margins

To investigate both active and passive continental margins almost all geophysical methods can help to discover their lithospheric structures: Seismic, potential, electro-magnetic and electrical fields. Recent studies (e.g. Torsvik et al. 2009) show that processes in the lithosphere are linked to the dynamic mantle and dynamic processes have an important influence on the evolution of lithospheric plates, which is manifested in the formation of dynamic topography (e.g. Flament et al., 2013; Colli et al., 2016). A key example for this interaction is the opening history of the Atlantic, where asthenospheric material reaches the surface at the mid-ocean spreading center. The uplift of hot material of the asthenosphere leads to seafloor spreading which manifests itself in the spreading anomalies in the magnetic field. The spreading axes are expressed either by topographic (heights above sea level, e.g. Iceland) or bathymetric heights (below sea level e.g. Atlantic ocean ridge). The worldwide offshore stripe pattern of magnetic anomalies which are located parallel to mid-ocean ridges allow a temporal classification of developed oceanic crust. The EMAG2 total magnetic field model has a reasonable resolution of two arc-minutes (Maus et al. 2009). The model was compiled from ship-, air-borne and satellite data (CHAMP). For the purpose of interpolation of magnetic field anomalies the oceanic crust ages of Müller et al. (2008) were employed (Maus et al. 2009). Hydro-carboniferous exploration targeted most of the passive margins of the world with both refraction and/or reflection seismic.

202	Seismic onshore-offshore investigations of a passive continental margin
203	aim to investigate the transition zone between the oceans and continents, e.g.
204	SE Atlantic and the African continent (Franke et al., 2006; 2010; Bauer et al.,
205	2000; Hirsch et al., 2009; Schnabel et al., 2008). These studies reveal the
206	history and mechanisms of the break-up and its relation to the driving
207	magmatic processes (plume - crust interactions) in the underlying mantle and
208	lithosphere. The South American side of the southern Atlantic was target of
209	multiple seismic investigations since many years (Mohriak, 2014; Blaich et al.,
210	2011; Franke et al. 2006; Heit et al. 2007; Hinz et al., 1999 and many more) to
211	investigate the shelf areas offshore, the continent-ocean transition and the
212	seaward dipping reflectors (SDR) which are characterized by high seismic
213	velocities and related high densities.
214	
215	2.1 The role of gravity field interpretations and prerequisites
046	Demerly
210	The units used for growity field values and its gradients are given in
217	The units used for gravity field values and its gradients are given in
218	mGal (Milligals) and E (Eotvos) – as it is still common use in
219	Geophysics and Geodesy. Converting these units into SI-units, there
220	are: 1 mGal = 10^{-5} m/s ² and E = 10^{-9} s ⁻² .
221	Rock densities are always given in kg/m ³ .
222	First, the situation will be analyzed which was typical before the era of
223	satellite missions which started in the year 2000 with the launch of the
224	CHAMP satellite (refer to Chapter 4). Modelling and interpretation of the
225	Earth's gravity field and its derivatives often had to deal with a merge of data
226	sets with rather different resolution, different age and quality, coverage and

wavelength content. This has been documented in a long list of papers (among many others: Schaller et al., 2015; Bouman et al., 2014; Hosse et al., 2014; Gutknecht et al., 2014; Köther et al., 2012; Tašárová, 2007). These papers have shown that lithospheric models of study regions suffer mainly from two facts: (1) Nearly all information for constrained gravity field modelling of the lithospheric is based on irregularly distributed profiles and (2) large data gaps and partly low data guality due to very limited access and infrastructure. The global gravity model EGM2008 (Pavlis et al. 2012) inherited – and still inherits - these problems related with available terrestrial databases. Pavlis et al. (2008) described the compilation of the EGM2008 gravity which consists of different sources: up to a spatial resolution of approximately 140 km GRACE (Gravity Recovery and Climate Experiment) data have been used, data from 140 km to approx. 10 km spatial resolution are derived from terrestrial and satellite altimetry and so called "fill-in" data (Section 4.2). Today we know that the relative weighting of GRACE with respect to the other datasets was too low, leading to a dominance of terrestrial data errors in spectral regions where better GRACE data would already have been available. Figure 2: double column Fig. 2. This figure portrays the terrestrial data inconsistency which is rather typical for gravity surveys in remote areas (here across the South American continent at a swath between 36°S – 42°S from the passive margin in the East

to the active margin in the West). As an example the different sources of gravity data of the Southern Central American continent are shown together with the visualization of big data gaps (Tašárová, 2007). The green and red points in Chile (CH) and Argentina (AR) are stations in the ARANEDA I and II (University of Chile) datasets; black points in southern Chile and the Arauco Peninsula are ENAP data (Chilean oil industry); the gray dense network in Argentina (AR) show the YPF data (Argentine oil company); yellow points: stations of the MIGRA 2000 dataset, and the MIGRA 2002 data (both measured by the gravity group at the University Kiel) are shown in blue. The brown lines offshore denote the ship-borne gravity data profiles from the German research vessel "Sonne".

Fig. 2 shows the situation some 20 years ago at the central South American subcontinent. For a continental gravity field study the field had to be compiled from very different data sources often without any meta data information - e.g. for gravity data which were measured on behalf of oil companies (grey area in Fig. 2). In other areas, e.g., in the eastern part of Argentina (yellow dots in Fig. 2) data are missing due to difficult or impossible access.

At the end of this Section we will pose the question how large lithospheric structures and how big density differences to their surrounding have to be in order to cause a detectable signal at orbit height of a satellite. This consideration describes the situation at active and passive margins in an analogues manner. In Fig. 3 the effects of gravity and gradients are shown for a simple model. For density contrasts between the values $\Delta \rho = 10^1 - 10^3$ kg/m³ Gutknecht et al. (2011) calculated gravity and gradients at the GOCE satellite orbit height of 255 km resulting from a sphere with minimum

diameters between d = 20 - 200 km (b = 10 - 100 km, refer to Fig. 3) to be tangent to the Earth surface). Within the range of the assumed parameters the minimum diameter required to produce signal differences of 1×10^{-5} ms⁻² and $12 \times 10^{-12} \text{ s}^{-2}$ at orbit height. This is rather close to the expected accuracies of the gravity and vertical gravity gradient of the GOCE mission (recent values are: 0.45 mE for GOCE-only, 0.2 mE for GOCE+GRACE models, cf. also Fig. 13). Fig. 3 conveys that a structure with a diameter of some 45 km and a density contrast of 240 kg m⁻³ could be detected in satellite gravity at orbit height. If the diameter of the model sphere increases to 90 km, its density contrast should not be less than 33 kg m⁻³. The simple model described above fits rather well the dimension of the Jurassic arc batholiths at the Northern Chilean continental margin with diameters of roughly 60 – 120 km (Sobiesiak et al., 2007). This supports the idea that batholithic structures e.g. intrusions at continental margins, can be detected using data of the modern satellite missions- both gravity and gradients. Figure 3: one and a half page width Fig. 3. Gravity and gradient signal caused by a minimum diameter of a sphere with given density contrast in the orbit height of 255 km (Gutknecht et al., 2011). The thick solid and dotted lines represent gravity signals of 1 and 10 mGal at orbit height. The thin dashed and dash-dotted lines represent gradients of 12 and 1000 mE, respectively. The grey shaded area shows results which are based on a possible combination of geometry and density

- parameters of the causing mass anomaly.

306 2.2 Gravity anomalies and isostasy

308	A first look at Fig. 4 provides already helpful information on the gravity
309	gradients of the Earth at the continental margins. The figure bases on the
310	evaluation of gravity field maps from the recent gravity missions. A complete
311	Bouguer anomaly (corrected by the effect of elevation, spherical slab,
312	topography both on- and offshore) was used to calculate the first derivative of
313	the field – the dip curvature of gravity.
314	
315	Figure 4: Full page width
316	
317	Fig 4. Global horizontal gravity gradients. Deep blueish colors mark regions
318	on Earth where the dip curvature (horizontal gradient) of the worldwide
319	Bouguer gravity field (EIGEN-6C4) is small or even zero. The more reddish
320	the colors are the steeper the gradients. The strongest gradients are observed
321	at the active continental margin of Central South America. On the contrary at
322	most of the passive continental margins (Fig. 1) the gradients are rather small.
323	
324	Dark blueish colors indicate rather weak dip curvature which means that
325	horizontal gravity gradients are small, on the contrary reddish tones point to

- 326 strong dip curvature and therefore strong gradients. The active continental
 - 327 margins in the area of the Circum-Pacific are generally marked by reddish

328	colors - strong gradients - which are related with ext	tended density variations
329	in crust and mantle in the transition from oceanic to c	continental margins.
330	Mostly low gradients - light blueish colors - are typica	al for passive continental
331	margins. In order to understand this relationship two	questions arise:
332	(1) How was the gravity anomaly calculated and how	big is its magnitude of
333	the anomaly caused by the mass distribution (both	n topography/bathymetry
334	and densities) at continental margins and	
335	(2) How was the <i>field</i> observed and what is known al	bout accuracy and
336	homogeneity of gravity field observations?	
337	With regard to the first question one has to consid	er that gravity
338	observations at the Earth's surface and the Earth ne	ar space vary from the
339	theoretical "normal" field value. Their magnitude is c	aused not only by the
340	latitude effect but by elevation of observational points	s, the density of cap
341	beneath the station in the underground and the topog	graphic masses in the
342	neighborhood. After correction of earth tidal effects a	and air pressure
343	variations the remaining time invariable parts of the r	neasured signal are:
344	Normal gravity	γο
345	Effect of topographic masses	δg _{TOP}
346	Bouguer slab	δg _{BPL}
347	Elevation effect (free air term)	δg _{NIV}
348	Effect of the crustal root	δg _R
349	Known mass inhomogeneities	δg_{GEOL}
350		

Common representations of gravity measurements in maps and profiles depend on what has been calculated as stated in the table above and added as corrections to the measured gravity field values. From all measured gravity б values the normal gravity (in the height and position of the observable) is subtracted, and therefore the term "gravity anomaly" is defined. This is simply the difference between the observable values to "normal" gravity. In Geophysics we distinguish mainly between three anomalies Free air- (FA), Bouquer- (BA) and isostatic anomaly (ISA) which define gravity in the height of the observation (e.g. Li and Götze, 2001; Hackney and Featherstone, 2003; Naudy et al., 1965; LaFehr, 1991 and many others). With δg_R we describe the effect of a mountain root and define Free Air, Bouguer and isostatic anomalies such as: $FA = \Delta g'_{0} = g_{obs} + \delta g_{NV} \left[+ \delta g_{TOP} \right] - \gamma_{0}$ $BA = \Delta g''_{0} = g_{obs} + \delta g_{NV} + \delta g_{TOP} + \delta g_{BPL} - \gamma_{0}$ $ISA = \Delta g_{ISA} = g_{obs} + \delta g_{NIV} + \delta g_{TOP} + \delta g_{BPL} + \delta g_{R} - \gamma_{0}$

Calculations of the individual correction terms depend on the objective of the survey and are variously complicated to handle. g_{obs} denotes the measured gravity field value. The calculation of the topographical reduction (δg_{Top}) requires precise knowledge of the terrain and surface near densities and today it is most likely calculated by the aid of digital elevation models (DEM), among others refer to (Holzrichter, 2013 and Szwillus and Götze, 2016); it requires the use of a computer and digital elevation data. The effect of topographic masses is normally calculated in a surrounding circular area of 50 km up to 167 km (e.g. La Fehr, 1991; Hinze et al., 2006). However, Mikuška et

				16
376	al. (200	6), Sz	zwillus	and Götze (2016), Szwillus et al., (2016) point to "long
377	distant ı	relief	effects	s" and propose the calculation of <i>all</i> topographic masses on
378	Earth. T	he g	ravity e	effect of a Bouguer slab with a thickness which is defined
379	by the difference between the physical station height and the reference level			
380	(normal	ly the	e geoid	l) should always be calculated by a spherical cap (e.g.
381	Baesch	lin, 19	948). F	For smaller areas (with a reduction radius $R < 20$ km) and
382	modera	te ter	rain ro	ughness the Bouguer slab can easily be calculated by:
383	δ	g bpl	= -2 1	π G ρ (H _S - H _B)
384	V	vith:		
385	G	6	=	Gravitational constant (6.672 \cdot 10 ⁻¹¹ m ³ s ⁻² kg ⁻¹),
386	ρ)	=	crustal density (2 670 kg/m ³); offshore: rock-equivalent
387				density
388	F	ls	=	station height; offshore: ocean depth H_D ,
389	F	Ι _Β	=	reference height (usually it is referred to the geoid).
390				
391	Ir	n the	last st	ep the free air effect δg_{NIV} is calculated by use of the
392	"normal	grad	ient" (0.3085 mGal/m):
393	δ	9niv	= 0.30	085 · (H _S - H _B) mGal/m
394	It has to	o emp	hasize	ed that the above used constant gravity gradient for large
395	scale in	vesti	gations	s has to be replaced by equivalent values of derivation of
396	closed r	nathe	ematic	al expression of the normal gravity which is always latitude
397	and heig	ght de	epend	ent. It was also recommended to calculate an "atmospheric

correction" (Wenzel, 1985) in order to eliminate long wavelengths errors from

the observed gravity field.

400	Note: the terms of "flat" Bouguer slab in δg_{BPL} and the "constant vertical
401	gradient" in $\delta g_{\text{NIV are}}$ in the above formulas are used here for simplification
402	only. Modern satellite gravity field processing at large spatial scales requires a
403	spherical cap calculation and the consideration of latitude and height
404	dependent calculation of the vertical gradient.
405	Special emphasis has to be put on the situation in oceanic regions. If
406	we assume that station heights are equal to geoidal heights (h = 0 m) Bouguer
407	and Free Air anomaly is equal due to:
408	$BA = FA + \delta q_{BB} = FA + [-2 \pi G \circ (H_{S} - H_{B})]$
400	with: $H_{-}H_{-}=0$ m.
403	with $\Pi_s = \Pi_B = 0$ in,
410	It follows that $BA = FA$, in case the FA is already corrected by δg_{TOP} which
411	contains gravity effect of masses at the ocean floor.
412	In oceanic areas the slab density in the Bouguer slab correction term
413	must be modified due to the known water depth "D" and the difference in
414	water- and rock density (Fig. 5). If we assume a crustal rock density of 2 670
415	kg/m ³ and a water density of 1030 kg/m ³ the resulting density for calculations
416	of offshore Bouguer anomalies is $\rho^* = -1$ 640 kg/m ³ .
417	This results in:
418	BA = FA + δg_{BPL} = FA + 2 π G ρ^* (H _S - H _D)
419	
420	Figure 5: Full page width
421	
422	Fig. 5. Illustration for describing the calculation of Bouguer anomalies on
423	continents (A), at the ocean (B) and from satellite (C). (A): On land the
424	reduction density ρ is commonly taken as 2 670 kg m $^{\text{-3}}$. The effect of
	 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424

425	topography is already removed. The thickness of Bouguer slab equals the
426	station height (H_s). (B): In contrast the reduction density at sea is – 1 640 kg
427	m ⁻³ . It is the difference between the sea water density of 1 030 kg m ⁻³ and the
428	rock density of 2 670 kg m ⁻³ ; thickness of the slab now is equal to the different
429	water depths (D). (C): Calculating a Bouguer anomaly in case of satellite
430	gravity a "mass correction" is calculated: $\delta g_{Mass} = \delta g_{Top} + \delta g_{BPL}$
431	
432	2.3 Gravity at passive continental margins
433	
434	In Fig. 6 a very simple Airy-Isostasy model of a passive continental margin is
435	shown. The continental crust is much thicker than the oceanic crust and above
436	the oceanic crust there is the water cover of a few 1000 meters. The specific
437	geometry of the "crust – mantle – water cover" constellation plays an
438	important role on the trend of the gravity field here. Because of the fact that in
439	the example of Fig. 6 there is no topography, the continental margin remains
440	in an isostatic equilibrium, and one can assume that no Free Air anomaly
441	exists.
442	
443	Figure 6: One and half page width
444	
445	Fig. 6. Airy isostatic model at a continent – ocean transition. Notice the thick
446	continental crust and the thin oceanic crust at a passive continental margin
117	Crust and mantle densities are simplified. Passanable contracts which serves
447	
448	large gravity anomalies are related to the water – continent density contrast

and crust – mantle density at the continent of approx. 430 kg m⁻³. Refer to text
for more information.

However, in Fig. 7 (A) strong gravity anomaly results from the same density model (Fig. 7C) which was shown in Fig. 6. The Fig. 7(A) shows the modelled anomaly only for water effect of gravity: related to a model of a "half-indefinite" plate the resulting anomaly is negative and is caused by a strong gradient. Fig. 7 (B) on the other side contains model results which have been done only for the oceanic mantle: now the anomaly is positive and it has a gentle increase because its position is far deeper. Finally Fig. 7(C) demonstrates how the total Free Air anomaly results from the superposition of both effects: the Free Air anomaly is zero in the continental area and over the ocean as well. However, exactly above the margin the gravity field is characterized by a maximum and a minimum that follows. This distribution is a so called "edge" or boundary effect of the Free Air anomaly and is effected by the difference of the steep gradients in the model.

466 Figure 7: one and a half page width

Fig. 7. The principal effects on the gravity field at continental margins have
equal gravity magnitudes but different gradients. In (A) the water effect causes
a steep gradient and in (B) the density surplus of the oceanic mantle is a
deeper seated effect which causes only a gentle gradient. In (C) it is explained
that a Free Air anomaly at a continental margin is caused by both a negative

473 and positive "edge effect" due to the superposition of contributions that have474 equal magnitudes but different gradients.

476 The trends of a Free air and Bouguer anomalies are shown in Fig. 8. 477 Here modelling again gets use of a "half indefinite" thin plate for the offshore 478 area (water). It is "zero" over the continent zero and over the oceanic area 479 "positive" ($\rho_w = 1030 \text{ kg/m}^3$). The half of the whole Free Air anomaly maximum 480 is accomplished exactly over the edge of the continent.

482 Figure 8a-b: Full page width

483 Figure 8c: One and a half page width

Fig. 8. Free Air anomaly and Bouquer anomaly at continental margins which is also in an isostatic balance. (A) The absolute value of the excess mass $|+\Delta m|$ is equal to the absolute value of the deficient mass $|-\Delta m|$. Therefore the integral of gravity change with respect to the x-coordinate is zero: $\int \Delta g \, dx =$ 0. (B) The Bouguer correction at the ocean (see Fig. 3) applied to the Free Air anomaly in (A) yields the general form of the Bouguer anomaly at passive continental margins. (C) The "geological" mass inhomogeneities at the continental margins (seaward dipping reflectors, magmatic remnants, salt structures etc.) cause rather local gravity anomalies which superimpose the regional gravity wavelengths – which are effected by the "simple" structures in (A) and (B).
The gravity fields in Figs. 7 and 8 are caused by the over simplified density structure at the "modelled margin" in Fig. 6. In the real world these margins show a rather complicated picture of gravity distribution due to mass inhomogeneities in the Earth's crust and lithosphere (and even in the mantle) which are the results of the long-lasting history of the breakup of the Gondwana supercontinent. This becomes guite clear if looking at the processed gravity fields which are shown in the series of figures (Fig. 14 through 21) in Section 4. Their interpretation in terms of regional tectonic and distribution of rock densities will help to provide a rather detailed insight into the causing structure (geometry) and density distribution of the passive margins in the South Atlantic region.

Most aspects of the calculated anomalies, both Free Air and Bouguer, which were discussed before, are typical for nearly all of the continental passive and active margins on Earth. In the next Section the focus will be set on the situation in the Southern Atlantic between Africa and South America – the research area of the German Priority Program 1375 "SAMPLE" of the German Science Foundation – DFG (https://www.sample-spp.de/). The acronym stands for "South Atlantic Margin Processes and Links with onshore Evolution". In this interdisciplinary project the primary research areas are the mantle dynamics and magmatic processes, the lithospheric structure, deformation processes and rifted margin formation, the post-rift topographic evolution and many more. In the following Section we will concentrate on this part of the world because a big variety of data and information is available to responds to one of the key questions – how modern satellite missions can contribute to the interpretations and to the understanding of the transition from continental to oceanic lithosphere.

523 2.4 Focus region: South Atlantic passive margins

To study deeper structures and the overall evolution of conjugate passive continental margins of the South African and South American continents 3D structural models have been designed and evaluated by SAMPLE scientists and their international partners: They constructed detailed density models at both sides of the Southern Atlantic Ocean and a rather preliminary density model for the oceanic part in course of a master thesis (Klinge, 2016). These models are constrained by information and data from boreholes, refraction and reflection seismic, seismological tomography and potential field data – mainly gravity field data. Geophysical fields and observations map geometry and distribution of physical properties of the transitional structures of both crust and lithospheric mantle. Model results (Fig. 9) show (Maystrenko et al., 2013; Autin et al., 2016) that basin centers at the western (Argentinean) side are oriented west-east and therefore oblique to the mid ocean rift axis while at the other (African) side basin centers extend parallel to the ocean rift in north-south direction.

541 Figure 90: One and a half page width

542 Figure 9u: One and a half page width

Fig. 9. For illustration this figure portrays a 3D density model of the SW
African continental margin (above, modified after Maystrenko et al., 2013),
and the density structure at the Argentinean side (below, Autin et al., 2016).

Apart from these structural differences both sides of the Southern Atlantic reveal similar distributions in temperature and density. Small thicknesses and density modifications in the lithospheric mantle point to small lateral variations of heat transfer into the overlaying crust. However, more relevant for the crustal heat field are lateral thickness changes of the crystalline crust which produce the bigger part of radiogenic heat. This contrasts observations and modelling results at passive continental margins in the area of the Northern Atlantic (Scheck-Wenderoth and Maystrenko, 2008). They found that the oceanic part of lithospheric mantle is much thinner and characterized by smaller densities which cause higher temperatures in the upper crust of the ocean.

To contrasting large scale paleostress fields on the correlating margins of the South Atlantic Salomon et al. (2014) point to in their studies of the South Atlantic. They asked themselves "how passive" continental margins across the globe currently are. Following the results of several other studies these margins experience a variety of stress states and undergo significant vertical movements, as they were deduced from studies of paleo-stresses at both sides of the Southern Atlantic. Here, the bounding continents consist of very different recent geological histories: Africa experiencing continental rifting whereas South America is influenced by subduction on the Pacific side. It is not clear to what extent the Atlantic continental margins are subject to the

stress fields, indicating that variable plate boundary forces play a major role in margin evolution. In Fig. 10 we show the situation at the S-American and S-African margin with reference of the paleo-stress field, as it was published by Salomon et al. (2014). Their findings demand careful modelling of both continental margins and a geophysical database which is able to resolve even very small modifications of physical parameters and their structures; refer also to Fig 9 (a) and (b) and the 3D density modelling of lithospheric by Maystrenko et al. (2013) and Autin et al. (2016). Figure 10: Faull page width

Fig. 10. The sketch (Salomon et al., 2014) portrays an E-W cross-Section between South Africa and South America which summarize the situation of their obtained paleo stresses. It shows that the African margin is controlled by extension while compression characterizes the situation at the South American side. Salomon et al. (2014) explained the extensional state in the east by the existing "African superplume" and the compression in the west by the Andean subduction zone.

Novel satellite gravity missions aim at a breakthrough in recovering the Earth's gravity and magnetic fields, their gradients as well as their temporal

variation. Static anomalies in potential fields (refer to Figs. 14 through 21) are
caused by irregular mass distribution on and within the Earth, temporal
variations of the gravity field are associated with mass transport processes in
the Earth system, such as dynamic processes on the Earth's surface, in
lithosphere and upper mantle.

3. Modern satellite gravity missions

The launch of the first generation of satellite gravity missions (Fig. 11) has revolutionized our knowledge of the global Earth's gravity field and its temporal changes. The German CHAMP (Challanging Minisatellite payload; mission period 2000-2010; Reigber et al., 2002; http://op.gfz-potsdam.de/champ/) mission, the US/German GRACE (Gravity Recovery and Climate Experiment; mission period 2002-ongoing; Tapley et al., 2004; http://www.csr.utexas.edu/grace/) mission, and the European GOCE (Gravity field and steady-state Ocean Circulation Explorer; mission period 2009-2013; Drinkwater et al., 2003; http://www.esa.int/Our Activities/Observing the Earth/The Living Planet Programm e/Earth_Explorers/GOCE/ESA_s_gravity_mission_GOCE) operated by the European Space Agency (ESA), improved significantly the coverage and availability of high resolution and precisely measured data. These gravity missions are the only measurement technique that can directly observe mass changes on a global scale, and thus they provide a unique observation system for monitoring mass transport in the Earth system. For modern magnetic field observation, apart from the CHAMP mission (2000-2010), with ESA's three SWARM satellites that have been successfully launched in November 2013 also gradients observations have become available (http://esamultimedia.esa.int/multimedia/publications/BR-302/).

Figure 11: one and a half page width

Fig. 11. Satellite gravity missions CHAMP (left), GRACE (center) und GOCE (right).

623 (Sources: CHAMP: GFZ Potsdam, GRACE: NASA, GOCE: ESA Medialab)

625 In these missions, three measurement concepts are implemented:

1. Observation of orbit perturbations of low-flying satellites due to the varying gravitational attraction, by Global Positioning System (GPS), with an accuracy of 2-3 cm. Non-gravitational forces acting on the satellite, such as drag of the residual atmosphere or solar radiation pressure, are measured by an accelerometer and corrected for in the frame of the gravity field modelling. This satellite tracking technique between a low Earth orbiter (LEO) and high-flying GPS satellites is called satellite-to-satellite tracking in high-low mode (SST-hl), and is implemented in all three missions CHAMP, GRACE and GOCE. It is the primary measurement technique of CHAMP.

2. Observation of orbit differences (ranges) and their temporal change (range rates) between two LEO satellites. This satellite-to-satellite tracking in low-low mode (SST-II) concept is realized by the GRACE mission. It consists of two identical satellites following each other on the same orbit with an average distance of 200 km. The inter-satellite ranging is performed by means of a K-band microwave system with micrometer accuracy, and shall be done by laser interferometry in future gravity missions in order to further increase the ranging accuracy.

645 3. Observation of acceleration differences on very short baselines (satellite
646 gravity gradiometry, SGG), representing second order derivatives of the
647 gravitational potential *V* in all three spatial directions. This concept was

applied by the GOCE mission. Its core measurement, the gravity gradiometer, was composed of 6 accelerometers fixed on 3 orthogonal axes symmetrically around the center of mass of the satellite, measuring acceleration differences on very short baselines of only half a meter in all three spatial dimensions. The achievable performance of satellite gravity missions depends mainly on the observation technique and the orbit altitude. Fig. 12 shows the performance of different mission concepts in terms of the degree error median, which describes the average signal or noise amplitude at a certain degree n of the spherical harmonic series expansion of the gravitational potential V in spherical coordinates (with radius *r*, co-latitude \mathcal{G} , longitude λ):

$$V(r, \vartheta, \lambda) = \frac{GM}{R} \sum_{n=0}^{N_{\text{max}}} \left(\frac{R}{r}\right)^{n+1} \sum_{m=0}^{n} \overline{P}_{nm}(\cos\vartheta) \left[\overline{C}_{nm}\cos(m\lambda) + \overline{S}_{nm}\sin(m\lambda)\right]$$
659

661 where *G* is the gravitational constant, *M* the mass of the Earth, *R* the mean Earth 662 radius, \bar{P}_{nm} the fully normalized Legendre polynomials of degree *n* and order *m*, and 663 { $\bar{C}_{nm}, \bar{S}_{nm}$ } the corresponding (Stokes) coefficients (e.g Torge, 2001). Therefore, the 664 degree error median describes the achievable gravity field accuracy at a certain 665 spatial (half) wavelength λ . The wavelength λ is linked to the harmonic degree *n* by

667
$$\lambda = 20\ 000 \ \text{km/n}$$

669 As an example, a harmonic degree of n = 200, which was the minimum target 670 resolution for the GOCE mission, corresponds to a spatial wavelength of λ = 671 20 000 km/n = 100 km.

672 As a reference, the stippled black curve in Fig. 12 shows the gravity field673 signal itself. Correspondingly, the cross-over point of a mission performance curve

with the black stippled curve indicates at which harmonic degree the signal-to-noiseratio is '1'.

677 Figure 12: One and a half page width

Fig. 12. Absolute gravity signal and error estimates of different observation concepts as a function of the harmonic degree *n* (bottom axis) and spatial wavelength λ (top axis).

From the orbit information (SST-hl) only the long-wavelength features of the gravity field can be extracted. Although this observation type is not a direct gravity field functional, it can be interpreted as disturbing acceleration acting on the orbit, and thus the first order spatial derivative of the gravitational potential $\partial V/\partial x_i$. As a representative of this measurement concept, the grey dot-and-dashed line curve shows the performance of the CHAMP-only model AIUB-CHAMP 03S (Prange, 2011), which is based on 8 years of CHAMP kinematic orbit data. The grey curve shows the performance of the recent GRACE-only model ITSG-Grace2014 (Mayer-Gürr et al., 2014), which is based on almost 11 years of K-

band inter-satellite ranging data following the SST-II concept (and supported by SST-

693 hl in the very low degrees). Compared to CHAMP, the superior measurement

694 principle of SST-II results in a significantly better accuracy in the low to medium

695 degree range as well as a higher spatial resolution. This can be explained by the fact

that the SST-II concept can be interpreted as a measurement of acceleration

697 differences on long baselines of about 200 km. The excellent performance of GRACE

698 in this spectral range makes this mission sensitive to the tiny temporal variations of

699 the Earth's gravity field, which are 4 - 5 magnitudes smaller than the static signal.

700 The black solid curve shows the performance of GOCE, represented by the

701 GOCE-only model GOCE-TIM-R5 (Brockmann et al., 2014). It is mainly based on the

measurement technique of SGG and again SST-hl in the low degrees, because SGG alone (green curve) is weak in this spectral range due to the specific noise characteristics of the gravity gradiometer instrument. Measuring acceleration differences on very short baselines of about half a meter, which approximate second order derivatives of the gravitational potential $\partial^2 V/(\partial x_i \partial x_j)$, enables a further increase of sensitivity for high-frequency signals. GOCE starts to become superior over GRACE approximately at degree n = 115. 3.1 Global Gravity Field Models Gravity field models including GOCE data from the complete mission period are meanwhile available. While the model GOCE-TIM-R5, which is based on the time-wise approach (Pail et al., 2011), is based purely on GOCE data, GOCE-DIR-R5, which is based on the direct method (Bruinsma et al., 2014), contains also GRACE and satellite laser ranging (SLR) data. Further satellite-only models are, e.g., EIGEN-6S2 (Rudenko et al., 2014), or the S-models of the GOCO series (Pail et al., 2010). The maximum degree of expansion of these models is driven by the resolution of GOCE, and varies from n = 280 to 300, corresponding to about 70 km spatial wavelength. This makes clear that all medium scaled geological structures at continental margins and elsewhere in the world which cause a significant gravity effect can be detected (resolved) in the GOCE gravity field. Combination models (notice the "C" in the field identifier) including also terrestrial, air- and shipborne as well as altimetric gravity are, e.g., the already mentioned pre-GOCE model EGM2008 (Pavlis et al. 2012), EIGEN-6C4 (Förste et al., 2014), and GOCO05C (Fecher et al., 2013, 2016). These models extend the spatial resolution beyond degree 2000 (which corresponds to 10 km wavelength). However, it should be noticed that there are many regions with sparse and/or low-quality terrestrial data, where it has to be questioned if such a high resolution is

731 America and also for the passive continental margins of the South Atlantic.

733 3.2 Products for use in Earth sciences interpretation

735 Specifically regarding GOCE-related data, modelers and other users have the736 choice among basically three representations of gravity field products:

738 3.2.1 Spherical harmonic coefficients

The most commonly used representation of the global gravitational potential V is its series expansion into spherical harmonics (Section 3). There corresponding fully normalized spherical harmonic (Stokes) coefficients $\{\overline{C}_{nm}, \overline{S}_{nm}\}$ represent the model parameters, and are usually the target quantity when deriving the model from the original gravity field data. The advantage of using this representation is that it can be considered as a weighted average of the original measurement data, so that the original noise level is significantly reduced due to this averaging. Based on the set of spherical harmonic coefficients any arbitrary gravity anomaly can be derived at the Earth's surface or at any height in outer space. All the global gravity models discussed above are given in this parametrization.

751 3.2.2 Original gravity gradients along the satellite's orbit

In principle, also the gravity gradient time series for all six tensor components measured along GOCE's satellite orbit can be used for geophysical modelling (refer e.g. to Fig. 3). They represent the most original measurements. However, it has to be considered that they are measured in a rotating reference frame, the so-called "gradiometer reference frame" (GRF), which means that tensor rotations of the base functions have to be applied to exploit them to the best possible extent. Additionally, they are affected by the colored noise characteristics of the GOCE gradiometer (Pail et al., 2011), so that a single point-wise gravity gradient observation is affected by large instrument noise, and therefore by itself has a low signal-to-noise ratio. All these drawbacks make it difficult to use this data type directly for geophysical modelling.

765 3.2.3 Gravity gradient grids

A reasonable compromise between the use of spherical harmonics and original gravity gradients (see above) results in the use of gravity gradient grids, which are usually defined in a well-oriented radial (North-East-up) frame at a constant altitude. They are computed from the original gravity gradients defined in the GRF by means of regional gravity processing methods. In fact, they are the spatial equivalent of the spherical harmonic representation, but much easier to use and interpret. Pure GOCE gravity gradient grids result from the space-wise method (Gatti and Reguzzoni, 2015). In the frame of the ESA project GEOExplore global grids of all six components of the gravity gradient tensor, based on a combination of GOCE and GRACE data, and defined in a radial Earth-fixed reference frame at two altitudes of 225 km and 255 km, have been derived (Bouman et al., 2015). Since these grid values are products of "averaging" original gradient data, the error level should be similar as that of gradients synthesized from global spherical harmonic models.

There is an ongoing discussion whether the gradient data contain more (highfrequency) signal than global gravity models that have been derived from them. The answer to this question lies in the constraints applied to these models. Constraints applied to global gravity models are usually designed to optimize the signal-to-noise ratio on a global scale. This means that in regions of very rough topography and therefore high-frequency gravity signals there is the tendency to constrain the system too strongly. Regional gravity solutions techniques, which are usually applied to generate gridded gravity gradient products, allow for regionally optimized constraints, but on the cost of global homogeneity. In Pail et al. (2015b) it could be shown, that compared to global models the gravity gradient grids are affected by a higher noise level.

The achievable accuracy and sensitivity of current gravity field models or corresponding gravity (gradient) grids can be expressed by cumulative quantities, which describe the estimated cumulative error at a certain harmonic degree (or the corresponding spatial wavelength). Fig. 13 shows cumulative gravity anomaly errors (a), as well as cumulative vertical gravity gradient errors at GOCE satellite altitude of 250 km (b), and ground level (c), for the GRACE models ITSG-GRACE2014s, the pure GOCE model GOCE-TIM-R5, the combined satellite-only model GOCO05S and the combined models EGM2008 (pre-GOCE) and GOCO05C (including GOCE data).

From Fig. 13 we can learn which geological structure at passive continental margins (or elsewhere) can be resolved by the different gravity model types. Assuming that the geological structure/mass anomaly generates a gravity anomaly with a certain spatial wavelength on the Earth's surface, Fig. 13a then provides the accuracy in mGal with which this anomaly can been captured. (The connection from the size of a disturbing body to the resulting gravity signal is made in Fig. 3.). As an example, a gravity signal with 100 km spatial wavelength at the Earth's surface could be measured by satellites with an accuracy of about 0.5 mGal (black dashed and solid grey curves). It can clearly be seen that the accuracy for shorter wavelength signals dramatically decreases, and is already larger than 2 mGal for gravity signals with approx. 80 km spatial wavelength. Beyond this resolution, satellites cannot significantly contribute anymore, and high-accuracy terrestrial information, as it was included, e.g., in

Fig. 13. Cumulative gravity anomaly errors in (mGal) (a); vertical gravity gradient
errors in (mE) at 250 km (b), and ground level (c). This figure shows the generally
dramatic increase of the gravity gradient errors at ground level as a result of
downward continuation.

GOCO05C (solid black curve), is necessary to resolve smaller-scale geological structures. This becomes immediately clear if looking at the series of Figs. 14 through 21: most of the anomaly sizes at the margins of the South Atlantic are smaller than 80 km. On the other hand we state that the regional gravity field caused at the ocean-continent transition can satisfyingly be resolved by satellite only models (S models). Fig. 13a also shows the major step forward due to satellite missions compared to pre-GOCE models such as EGM2008 (black dot-and-dashed line) especially in the long to medium wavelengths for gross interpretations at a continental scale.

Fig. 13b shows a similar representation when using *gravity gradients* at satellite altitude as basis information for geophysical modelling of geological structures. Pure GOCE-only models such as GOCE-TIM-R5 (dashed black curve) provide gravity gradients at satellite altitude with standard deviations of 0.45 mE for gravity signals with a spatial resolution of 100 km. These values can be decreased further to 0.25 mE by combination with GRACE information, as it was done, e.g., in the GOC005S model (solid grey curve). Evidently, GRACE alone (dashed grey curve) results in very high error amplitudes in the higher degrees, demonstrating the dominant impact of GOCE at shorter wavelengths. Modern combined gravity models such as GOCO05C (solid black curve) further increase the performance in the short842 wavelength range by complementing the satellite data by ground data over the 843 continents and satellite altimetry over the oceans. Also here the improvement 844 compared to pre-GOCE combined models such as EGM2008 (black dot-and-dashed 845 line curve) is significant. Recently gradients of the satellite gravity field came into the 846 focus for modelling purposes which can support interdisciplinary interpretations 847 (Ebbing et al., 2013; Schaller et al., 2015; Götze, 2015).

In Fig. 13b a very interesting feature is the flat curve of the combined gravity model GOCO05C beyond degree 250. This results from the fact that beyond this degree the signal amplitude of gravity gradients is already below the mE level, i.e., due to signal attenuation with altitude there is no significant gradient signal left in orbit altitude beyond this degree, because most parts have been "filtered out" due to upward continuation. Inversely, this also means that GOCE has captured 97% of the amplitude of the gradient signal that exists in orbit altitude.

The picture changes completely (Fig. 13c) when continuing the gradient information down to ground level. Here the GOCE model (black dashed curve) and the GOCE+GRACE combination (solid grey curve) perform practically identical, again showing the dominance of GOCE compared to GRACE at shorter scales. However, also here for gravity signals with spatial scales below 80 - 100 km a combination with terrestrial/airborne gravity information is necessary to achieve acceptable accuracies (solid black curve), so that the gravity field information can be used for local geophysical modelling of short-scale density structures.

864 3.3 Not always in focus: the omission error

866 In order to perform a complete evaluation of the impact of modern satellite 867 missions for deriving density structure of continental margins, one of the most 868 important aspects is the evaluation of the *omission error*. It results from high-869 frequency signals, which cannot be resolved by satellite gravimetry due to the

exponential signal attenuation with altitude. These missing signals of satellite-only
models are an important issue for the determination of near-surface density
variations, but also shallow lithospheric structures.

Fig. 14 shows gravity anomaly fields for the South Atlantic region. Fig. 14 a is based on the GOC005S model resolved up to its maximum resolution of degree n =280 (~ 70 km), while Fig. 14 b displays the free-air gravity anomalies based on EIGEN-6C4 with its maximum resolution of degree n = 2160 (10 km). Comparing these two figures, the current limits of satellite-only models regarding their spatial resolution becomes evident, and can only be coped with by combination with complementary data sources from terrestrial/airborne/shipborne gravimetry, and satellite altimetry over the oceans, as it was done in EIGEN-6C4. An estimate of the omission error (Fig. 14 c) for satellite gravity models is given by the difference of EIGEN-6C4 and GOCO05S, being equivalent to the difference of the Figs. 14 a and b. Evidently, very rough topographic and bathymetric structures, generating high-frequency gravity field anomalies and steep slopes, cannot be resolved by the satellite data. However, usually these topographic features are not the main focus of geophysical modelling and interpretation, but rather sub-surface lithospheric structures. Therefore, a topographic reduction was applied, using the RWI TOPO 2015 topographic potential model (Grombein et al., 2015) and thus taking away the effect of topographic masses up to zero level: $\delta q_{TOP} + \delta q_{BPL}$. The so called "mass reduction effect" was already introduced in Fig. 6. The result is a significantly reduced omission error (Fig. 14 d).

This difference field in Figs. 14 c and d can be considered as errors made when computing Bouguer anomalies from pure satellite models, which are then further used for lithospheric modelling. Table 1 gives an overview of the main statistical parameters of the gravity anomaly fields shown in Fig. 14.

897 Figure 14: Full page width

899	Fig. 14. Free-air gravity anomalies (mGal) of the South Atlantic region based on
900	satellite-only model GOCO05S (a) resolved up to degree 280 , combined gravity
901	model EIGEN-6C4 (b) resolved up to degree 2160, omission error of a satellite-only
902	model (c) and omission error after reduction of topographic signals (d).

Table 1: Main statistical parameters of gravity fields of the South Atlantic region.

Gravity field	Figure	min	max (mGal)	std.dev.
		(mGal)		(mGal)
GOCO05S (d/o 280)	14 a	-199.8	116.1	18.8
EIGEN-6C4 (d/o 2160)	14 b	-227.7	453.8	21.3
GOCO05S omission error	14 c	-166.7	415.1	10.8
GOCO05S omission error,	14 d	-143.1	112.8	7.1
topo-reduced				

908 4. Benefits for combined interpretations

However, in relation with the two key questions asked in Section 2.3 (processing, quality and secondly availability for interpretations at continental margins) we have to respond to them in the light of interpretations of solid Earth structures. For example a precise geoid can be used to identify global and deep anomalies related to mantle lithosphere and deeper structures. Gravity anomalies, being first order radial derivatives of the gravitational potential, are sensitive to gravity effects of the entire lithosphere, and in particular to the crustal and upper crustal structures and density variations e.g. at active and passive continental margins. As it has been shown above (Fig. 14), each combination of satellite gravity data with

terrestrial gravity data can be used for all interdisciplinary interpretations techniques, e.g., "back stripping" in basin modelling at the African continental margin (Dressel et al. 2015) which also includes thermal subsidence in the reconstruction of the passive margins through time or 3D modelling of Moho undulations. The new database was also used to reconstruct the Gondwana continent (Braitenberg, 2015). Fig. 15 refers to the isostatic residual anomaly in the Southern Atlantic. It was calculated by Klinge (2016) on base of the corresponding formula for "ISA" in Section 2.3 and the EIGEN-6C4 model also portrayed in Fig. 14 (b).

Both anomaly maps are rather similar and caused by the main tectonic features of the South Atlantic: the "highs" which are caused by the Mid Atlantic ridge, the extended "lows" of the four basins in front of South America (Argentinean and Brazilian basins) and South Africa (Cape and Angola basins). The hotspot trail (e.g. Torsvik et al., 2009 among others) is visible in the structure of the SW-NE trending Walvis Ridge offshore South Africa and the corresponding trace of the Rio Grande Rise at the western side. To the North of the Romanche Fracture Zone between Fortaleza in the west and Lagos in the East the Sierra Leone Rise is located. Even the regions of salt deposits offshore Brazil and West Africa (blueish colors indicating low gravity values) and the magmatic margins at both sides of the margins (reddish colors and high gravity values) can be distinguished in the satellite derived fields. The very short wavelengths in the gravity field correspond to masses that are located in the crust and lithosphere – they were already mentioned in the sketch of Fig. 8 and mark places of different density contrast at the margins. Other examples were given in Bouman et al. (2014), Gutknecht et al. (2014), and Hosse et al. (2014).

943 Figure 15: one and a half page width

Fig. 15. The isostatic residual field was calculated by Klinge (2016) in the framework 946 of his MSc thesis. Reference depth $T_0 = 30$ km and $T_e = 20$ km (elastic thickness

which was kept constant over the entire area). The figure shows the residual gravity field in the Southern Atlantic Ocean of the combined EIGEN-6C4 model (Förste et al., 2014). It correlates well with bathymetric/topographic structures e.g. the Mid Atlantic Rift (MAR) and portrays also the effect of geological bodies: the positive anomalies in the area of Windhoek and Buenos Aires. Along the Mid-ocean rift axes positive anomalies of up to 40 mGal exist. MAR = Mid Atlantic rift. 4.1 The continental margins of the South Atlantic New light can be shed on the gravity structures of South Atlantic oceanic margins at regional (Figs. 16, 17, 19 and 20) and more local scales (Figs. 18 and 21). By the help of these new compiled maps we will show that modern satellite gravity fields described in Section 4 can support (1) interpretations of the lithospheric structures in the South Atlantic and its passive margins and (2) provide much more details in the gravity field than it was showed along the oversimplified profiles of Figs. 7 and 8. With reference to the Fig. 14, the following sequence of Figs. (16 - 21) contains always the same information for comparative reasons: the two gravity fields based on the "satellite only" model GOC005S (a) and the "combined model" EIGEN-6C4 (b), and additionally Figs. 18 and 19 include the omission errors without (c) and with (d) calculated topographic reductions. Table 2 provides a summary of the standard deviations of the gravity fields shown in these figures. d/o refer to the spherical harmonic analysis: to degree and

- **o**rder of the expansion.

Table 2: Standard deviations (mGal) of the gravity fields shown in Figures 16 to 21.

Region	Figure	GOCO05S	EIGEN-6C4	GOCO05S	GOCO05S

		(d/o 280)	(d/o 2160)	omission	omission
				error	error, topo-
					reduced
Argentinean	16	22.4	24.6	9.8	7.1
coast					
Brazilian coast	17	15.9	18.8	10.8	6.3
Falkland Bank	18	24.4	25.3	7.3	5.9
African coast	19	19.3	21.5	10.6	7.3
Equatorial	20	19.3	23.9	14.3	9.8
African margin					
Tristan da Cunha	21	6.9	12.3	10.3	4.8
isle					

Continental gravity edge effects indicate a fast change from positive to negative anomalies as it is normal for the transition from oceanic to continental crust. In Fig. 16 the positive anomalies indicate in the offshore area the seaward dipping reflectors (SDR) which are of magmatic origin (e.g. Blaich, 2011; Franke et al. 2006; Section 2). The negative anomalies (greenish and blueish colors) offshore are caused by the sedimentary infill of the margin basins e.g. Colorado and Salado (e.g. Autin et al., 2013; 2016). Onshore positive anomalies follow W-E trending topographic features (Salado and Colorado Basin) and in the western continental part of the maps the topography of the Southern Central Andes. Figure 16: Full page width Fig. 16. Detailed picture of the free-air gravity field along the Argentinean coast compiled by the GOCO05S (a) and the EIGEN-6C4 (b) models. The lower two

figures indicate the omission errors without (c) and with topographic correction (d).
For more information refer to manuscript. The continental areas are marked by
transparent overlays.

In general the series of the following figures will portray similar gravity
anomalies (both magnitude and trend of anomalies). It is no wonder that all EIGEN6C4 compilations consist of more structural details than the GOCO05S models which
base on data in the orbit height of some 250 km where small local gravity anomalies
are not detectable.

Figs. 17 (a) and (b) shows that the "central Atlantic segment" is dominated by high density rocks which cause positive anomalies. The positive gravity offshore between 40° - 30° longitude is caused by the "Rio Grande High" which marks the most western edge of the hot spot trace which starts at the position of the Tristan da Cunha hotspot area. The negative gravity anomalies close to the Brazilian coast are caused by negative densities of salt accumulation here (Mohriak, 2014). The SDRs with their high rock densities (Section 2.2) of the southern segment are not documented here with high resolution; they are too small to be resolved in detail as we show already in Fig. 3. However, at a larger scale the belt of positive gravity marks the area of SRDs quite well.

1009 Figure 17: Full page width

1011 Fig. 17. The gravity fields (a) GOCO5S and (b) EIGEN6C4 along the Brazilian coast
1012 and offshore regions of the "central segment" of the southern Atlantic. Figures
1013 content is equal to Figs. 14 and 16. However the omission errors are not portrayed
1014 here.

The resolution of gravity anomaly in the off-shore area of the Falkland Bank and the Scotia Plate with the Eastern Sandwich trench allows the separation of subduction related trench lithosphere, the eastern border of the Sandwich Plate, and the southern rim with the Antarctic Plate (low gravity corresponding to blueish colors in Fig. 18) from high density rocks of the Scotia Plate and Sandwich Isles (yellow and reddish colors in Fig. 18 (a and b). Exactly here in a region with rather complex interplay of different plates the resolution of gravity fields before the era of the modern satellite missions was extremely low and often hindered a tectonic interpretation of lithosphere at medium scale. The Scotia Plate in the center (reddish colors in Fig. 18) is clearly separated from the other plates of the region (South American plate to the North, Antarctic plate to the South, Scotia plate to center. Figure 18: One and a half page width Fig. 18. The gravity field of the Falkland bank and the Scotia plate with the eastern South Sandwich trench after the processing of new satellite gravity (GOCO5S: (a) and EIGEN6C4: (b). Figures content is equal to Fig. 14. Due to the symmetry of evolution of the South American and South African margins also the gravity field of the western African margin shows the same general features as it was exemplified for the South American margin: in the southern segment the magma dominated structures cause small positive gravity anomalies and North of the Walvis Ridge the area of salt layers is characterized by negative anomalies (blueish colors) in Fig. 19. The SW – NE trending Walvis Ridge separates the domains of magmatic material from salt layers. Positive gravity anomalies of the ridge clearly indicate the Tristan da Cunha hotspot trace – as it was already explained for the western part of the Southern Atlantic. More to the South at the

1043 South African tip of the Cape a second ridge (Agulhas Ridge) can be identified.

1044 Onshore at the African continent close to the equator the extended gravity low (-50
1045 mGal) of the Congo Basin with its thick sediments dominates the gravity picture.
1046

1047 Figure 19: full page width

Fig. 19. The gravity field of the African margin in the central and southern segment
(Fig.15) after the GOCE gravity (a) and the EIGEN-6C4 data (b) processing. The
series of maps correspond to the displayed formats of figures before; transparent
overlay mark continental area.

1053One of the most spectacular fracture zones in the Equatorial and Northern1054South Atlantic connecting Africa and South America is illustrated in Fig. 20 (a and b).1055Fairhead and Wilson (2005) explain the formation of the fracture system with1056processes which were related with the opening of the Central and South Atlantic.1057They state that a differential motion between plate segments was absorbed in the1058Caribbean and West and Central African rift systems. The fracture system developed1059due to the temporal different opening phases of the northern and southern Atlantic.1060Then the two independent spreading centers joined a major shear zone developed1061between West Africa and the northern margin of Brazil. The maps of satellite gravity1062image impressively this major shear zone. The gravity map of the EIGEN6C4 model1063provides a clear and sharp picture of the fractures zones.

1065 Figure 20: One a a half page width

1067 Fig. 20. The two gravity fields (GOCO5S (a) and EIGEN (b)) of the Equatorial Atlantic
1068 Ocean map major transform structures offshore the African margin. Sequence of
1069 maps corresponds with displayed formats of figures before; transparent overlay mark
1070 continental area.

The limits of resolution of modern satellite only gravity fields (S models) can nicely be demonstrated by the gravity field of the Tristan da Cunha Isle, whose gravity field signal is at the edge of the spatial resolution of current satellite gravity missions. Fig. 21 shows that although GOCE is able to detect the gravity field signal of this island, it is significantly damped. It should be emphasized, that a constraint has been applied to the GOCO05S model in the frame of the gravity modelling procedure in order to improve the signal-to-noise ratio at higher degrees, i.e. noise is filtered out at the cost of damping also the signal. As already discussed in Section 3.2, the strength of constraining the solution was optimized on a global scale. Therefore, it is not tailored to small regions with strong gravity field signal, where a weaker constraint would be preferable due to a larger signal-to-noise ratio in this region compared to the global average. If the satellite gravity solution were optimized for this specific region, it can be expected that in such a regionally tailored solution slightly more signal could be retained. The series of Figs. 21 (a) - 21 (d) shows that the satellite gravity fields of both GOCE and EIGEN-6c4 are mainly caused by the topography of the island. Perfectly seen is the "ring" of negative anomalies in Fig. 21 (b) which can be explained by the flexure of oceanic lithosphere due to isostatic response of the loaded isle masses. After calculating a topographic correction (Fig. 21 (d)) an anomaly of some 20 mGal appears. One may speculate if this negative anomaly is caused by a mass deficit which is related to the hot spot or to crustal thickening..

The statistics in Table 2 shows that for such rather small-scale structures the
amplitude of the omission error can be larger than the signal captured by GOCE.
However, Fig. 21d shows that significant parts of this high-frequency gravity signal
result from topography.

1098 Figure 21: one a half page width

Fig. 21. The Free Air gravity field of the Tristan de Cunha area after the GOCE (a) gravity and EIGEN-6C4 (b) data processing. Sequence of the four maps corresponds with displayed formats of figures before; omission error without (c) and (d) with topographic correction. The limits of resolution of satellite observations can nicely be demonstrated by these gravity fields. Figure 21a: Small column size Fig. 21a. In addition to what we interpret in Fig. 21 this sketch can explain the typical negative ring around the positive anomaly in the last figure: the central mass causes the positive anomaly while the sediments around the central mass cause a symmetrical gravity low. The extent of deformed crust below the mass crust depends on the rigidity of the surrounding crust: the left situation (rigidity R1) demonstrates a case with extreme high rigidity, on the right a lower crustal rigidity R2 was assumed. 4.2 Validation of terrestrial gravity by GOCE data The GOCE mission provided not only new geoid and gravity fields, but also gravity gradient data. Representing the second derivatives of the gravitational potential, they are more sensitive to the density structures of the upper crust than gravity data normally are. Additionally, gravity gradients provide a better resolution of flanks of geological structures, faults, lineaments or even large intrusions at continental margins. Gradient data from satellite missions have the potential to identify the extent of different structures with varying densities even in the lower crust (e.g. Ebbing et al., 2013). Panet et al. (2014) even identify correlations of certain components of the gravity gradient tensor with lower mantle structures. For gravity interpretations at larger wavelengths the new satellite gravity

database will help to identify a density zonation and segmentation in horizontal and

vertical directions in the lithosphere. As shown in Section 3.2, GOCE satellite-only gradient data provide a spatial (horizontal) resolution in the range of less than 100 km. However, for many structures - in particular for offshore studies of Applied Geophysics - this spatial resolution is not yet sufficient, because smaller crustal structures cause anomalies with smaller spatial wavelengths. Therefore, terrestrial and airborne gravity measurements have not become obsolete even in the modern satellite era, but on the contrary they complement satellite observations on the short-wavelength scale where satellite data lack sensitivity.

In addition to their very high accuracy in the long to medium wavelength
range, modern satellite gravity data definitely provide significant added value in the
geophysical gravity fields processing domain, especially for:

a) Validation of heterogeneous terrestrial gravity data bases and identification
of outliers;

b) Fill-in of regions with sparse terrestrial data coverage or even data gaps.

As an example of the first task (a), Fig. 22 a shows the difference between a terrestrial gravity data base of South America and GOC005S, resolved up to degree 200. To bring them to the same spatial resolution, the terrestrial data have been expanded as part of a global $0.25^{\circ} \times 0.25^{\circ}$ terrestrial gravity anomaly grid into a spherical harmonic series to degree 720, and then have been cut at degree 200. Fig. 22 a clearly indicates systematic differences, which can be attributed to errors of the terrestrial data, because of the globally homogeneous accuracy of less than 1 mGal for the satellite model. Based on this result, the terrestrial database can be further screened for outliers and suspicious observations (either of the gravity value itself or the attached height information, Hosse et al., 2014). This information can then be used to derive empirical error estimates of the terrestrial dataset, which can be further used for a spatially depending weighting scheme in the frame of a combined solution with satellite data (Fecher et al., 2013, 2016). The implicit assumption is that the data quality of a terrestrial observation is already reflected in its long-wavelength

1156 component. By means of this procedure, satellite data get a higher weight in regions1157 where a lower accuracy of terrestrial data is suspected.

1159 Figure 22: Full page width

Fig 22. (a) Gravity anomaly differences (mGal) between a South American terrestrial

1162 database (kindly provided by the US National Geospatial-Intelligence Agency) and

1163 GOCO05S, consistently resolved up to degree 200; b) empirical error estimates

1164 (mGal) derived from the difference field (after: Fecher et al. (2015), modified).

1166 It should be emphasized, that this validation procedure can be applied in any 1167 region on Earth. Thereby, a globally uniform satellite gravity model provides the 1168 chance to estimate a-posteriori the accuracy and reliability even of historical gravity 1169 data bases (terrestrial, ship- and air-borne), for which only incomplete or even no 1170 meta-information about the measurement process and conditions is available.

Also Bomfim et al. (2013) describe how gradients of the GOCE mission can help to estimate systematic errors in terrestrial gravity data in the cratonal basins (e.g. Amazon and Parnaiba Basins) in Brazil. Here they calculate an average value of terrestrial gravity anomaly and compare its long- and medium-wavelength content of the terrestrial gravity with the GOCE gravity field. The analysis shows that where terrestrial data are sparse and therefore require an improvement in data coverage, satellite data can be substituted in order to represent the gravity field correctly. The method they proposed can be used directly to control other gravity databases and constitutes as a tool for the quality assessment of terrestrial gravity observations, both on- and offshore.

1181 The second task (b) also addressed the heterogeneity of terrestrial gravity
1182 data. There are many regions worldwide where terrestrial data are of very bad quality

б or not available/accessible at all (refer to Fig. 2). In these regions, data from satellite aravity missions are the only available data source.

These examples demonstrate, that although satellite missions provide (only) long to medium wavelength gravity field data, they are able to provide new gravity field information especially in regions where up to now the gravity field has been practically unknown. This regional model can then been used as constraint for an improved lithospheric density model and the derivation of the state of stress of the subduction zone (Gutknecht et al., 2014), clearly demonstrating the added value of GOCE especially in these data-critical onshore regions.

- 5. Conclusions and outlook

The resolution of "satellite only data" up to now does not fall below a resolution of 80 - 100 km. This is still the borderline for studies presented in the above mentioned Sections. In summary we have to say that rather small complex structures related e.g. to the "seaward dipping reflectors at passive continental margins (SDR)" with small size and density contrast cannot be resolved as separated anomalies in the orbit heights of recent satellite missions (e.g. Schaller et al. 2015). For this purpose terrestrial gravity data have to be combined with satellite data in gravity models e.g. GOCO5C. The interpretations of Section 4.1. showed that gravity and its gradients from the modern satellite missions support interpretations at a medium scale - at passive continental margins and elsewhere.

Modelers of lithospheric structures at continental margins hope that medium scale gravity data from the recent and future satellite missions (GRACE and/or GOCE; GRACE follow on) can support combined interpretation together with seismological and gravity studies. For rather local models (wavelengths of gravity anomalies are smaller than 20 km) both resolution and quality of satellite only gravity data have to be seen still reluctant until today. However, there is no doubt that combinations with

terrestrial gravity data bases and satellite gravity with a spatial resolution of 10 - 20km can provide detailed insight in the structural behavior of continental margins. For modelling at continental scales Fig. 2 demonstrated that terrestrial databases often are of inhomogeneous distribution (e.g. in South America), just if gravity data are sampled over long time-consuming field campaigns with big human efforts: there remain big gaps in the data base. They are mainly caused by limited access to the terrain in remote areas of the world – high mountains, deserts, swamps and jungle. Even more field procedures and technical instrumentation varied over time and together with missing other metadata a homogeneous data base can be established only with big effort and high costs. Here the new data bases already helped in a spectacular way: Hosse et al. (2014) and Gutknecht et al. (2014) replaced the incomplete terrestrial gravity data base by homogeneously measured satellite gravity and gravity gradient data for lithospheric modelling. New data were applied to the calculation of GPE (gravity potential energy), stress distributions and combined interpretation of complex geologic structures. Satellite gravity information was also used for validation and cleaning of inhomogeneous gravity databases taking the benefit of very homogeneous error characteristics and accuracy of global satellite gravity data (Hosse et. al, 2014; Bomfim et al., 2013). The high spatial resolution of terrestrial gravity combined with the homogeneous lower-orbit satellite data leads to more detailed and better-constrained lithospheric density models, and hence improves our knowledge about structure, evolution and state of stress in the lithosphere basing on the consistency in the long-to-medium wavelengths, down to 10 – 50 km.

At the beginning (Section 1.1) we mentioned the calculation/recalculation of the COB from an integrated interpretation of gravity, magnetic, seismic, electrical methods and geology (Torsvik et al., 2009). We did not deal with the calculation of COB, however, we think that the combined satellite fields can successfully replace

1239	the terrestrial gravity data which have to be used in former times. Because we
1240	analyzed Free Air gravity from the GOCE mission, in Fig. 23 topographic features on-
1241	and offshore are enhanced. These enhancements indicate clearly the slopes of the
1242	continental shelf regions of the Southern Atlantic.
1243	
1244	Figure 23: Full page width
1245	
1246	Fig. 23. The third derivations of the gravitational potential and the resulting total
1247	gradient of the vertical gravity gradient were calculated from the GOCO5C model
1248	(expansion to degree 720). It provides already good insight into local gravity field
1249	structures particularly at the margins by the derivations of the vertical gradient (V_{zz}).
1250	
1251	In the near future complementary information from seismic and magnetics
1252	could be included in a joint inversion for lithospheric modelling also at passive
1253	continental margins. ESA's magnetic field mission Swarm was successfully launched
1254	in November 2013 and provides valuable information of the long to medium
1255	wavelength Earth's magnetic field and its temporal variations with an accuracy on the
1256	nT- (nano tesla) level (http://esamultimedia.esa.int/multimedia/publications/BR-302/).
1257	The value of the mission for the determination of the crustal remanent magnetic field
1258	will increase in the future, because the three satellites will continuously lower their
1259	orbit altitudes during mission lifetime, thus also increasing their sensitivity for detail
1260	magnetic field structures. However, a joint interpretation of remanent magnetic and
1261	gravity field is only possible in the case of common sources, i.e. similar contrasts in
1262	density and magnetization. In this case Poisson's equation can be applied, which
1263	links the magnetic and gravity potential fields. Swarm is already now a very valuable
1264	tool to determine the electric conductivity of the Earth's mantle and thus provides very
1265	important information on the thermochemical and compositional structure of the
1266	Earth.

Several concepts for future satellite mission constellations to explore the Earth's potential fields are under development and investigation. A strong need by the user communities was expressed in terms of a joint IUGG resolution adopted at the IUGG General Assembly 2015 (IUGG, 2015). The science requirements and user needs for a future gravity field mission constellation were consolidated (Pail et al., 2015a) also under active participation of the geophysical user community. In addition to an improved temporal resolution for the detection of co- and post-seismic deformation, an increased spatial resolution together with an improved accuracy will shift the capabilities to use satellite-based gravity observations for geophysical interpretation in passive continental margins, and elsewhere, to even more small-scale structures.

 1279 Acknowledgements

The research partly described here in this paper was part of the Priority Program SAMPLE (South Atlantic Margin Processes and Links with onshore Evolution). It is financed by the Deutsche Forschungsgemeinschaft (DFG), Bonn which is thankfully acknowledged. HJG thanks M. Scheck-Wenderoth and members of her research team at GeoForschungsZentrum Potsdam for their continuous interest and many fruitful discussions over the last years. The satellite part of the paper was elaborated in a second DFG Priority Program "Mass Transport and Mass Distribution". HJG and RP are deeply grateful to their research teams at the Christian Albrechts Universität Kiel, Technische Universität München and Friedrich-Schiller-Universität, Jena. We thank Reiner Rummel and Jörg Ebbing for their intensive "test reading" and fruitful suggestions. Carla Braitenberg, Bruno Meurers and an anonymous reviewer improved an earlier version of the paper by their careful reviews.

1294 References

Autin, J., Scheck-Wenderoth, M., Loegering, M.J., Anka, Z., Vallejo, E., Rodriguez, J.F., Dominguez, F., Marchal, D., Reichert, C., di Primio, R., Götze, H.-J., 2013. Colorado Basin 3D structure and evolution, Argentine passive margin. Tectonophysics 604, 264–279, doi:10.1016/j.tecto.2013.05.019 Autin, J., Scheck-Wenderoth, M., Götze, H.-J., Reichert, Ch., Marchal, D., 2016. Deep structure of the Argentine margin inferred from 3D gravity and temperature modelling, Colorado Basin. Tectonophysics 676, pp. 198-210, doi.org/10.1016/j.tecto.2015.11.023. Baeschlin, C. F., 1948. Lehrbuch der Geodäsie. Verlag Orell Füssli, Zürich. Bauer, K., Neben, S., Schreckenberger, B., Emmermann, R., Hinz, K., Fechner, N., Gohl, K., Schulze, A., Trumbull, R.B., Weber, K., 2000. Deep structure of the Namibia continental margin as derived from integrated geophysical studies. Journal of Geophysical Research 105, pp. 25 829 - 25,853. Basile, C., 2015. Transform continental margins - Part 1: Concepts and models. Tectonophysics, Elsevier, no. 661, pp.1-10. 10.1016/j.tecto.2015.08.034 Benioff, H., 1954. Orogenesis and deep crustal structure – additional evidence from seismology, Bulletin of the Seismological Society of America, 66, 385-400. Blaich, O. A., Faleide, J. I., Tsikalas, F., 2011. Crustal breakup and continent-ocean transition at South Atlantic conjugate margins, Journal of Geophysical Research. 116, B01402, doi:10.1029/2010JB007686. Boltwood, B., 1907. The Ultimate Disintegration Products of the Radio-active Elements. Part II. The disintegration products of uranium. American Journal of Science series, 4, 23, 77-88. doi:10.2475/ajs.s4-23.134.78. Bomfim, E.P., Braitenberg, C. and Molina, E.C., 2013. Mutual evaluation of global gravity models (EGM2008 and GOCE) and terrestrial data in Amazon Basin, Brazil. Geophysical Journal International, 14 pages, doi: 10.1093/gji/ggt283. Bond, G.C., Nickelson, P.A., Kominz, M. A., 1984. Breakup of supercontinent between 625 Ma and 55 Ma, New evidence and implicationes for continental histories. Earth and Planetary Science Letters, 70, 325-345. Bouman J., Ebbing J., Meekes S., Fattah R.A., Fuchs M., Gradmann S., Haagmans R., Lieb V., Schmidt M., Dettmering D., Bosch W., 2015. GOCE gravity gradient data for lithospheric modeling. International Journal of Applied Earth Observation and Geoinformation 35(A): 16-30, Elsevier, 10.1016/j.jag.2013.11.001.

Bouman, J., Fuchs, M., Lieb, V., Schmidt, M., Ebbing, J., Holzrichter, N., Gradmann, S., Abdul Fattah, R., Meekes, S., Novak, P., Sebera, J., 2014. GOCE+ GeoExolore -Final Report ESA, RP-GOCE+-DNT-11, 2.1, 1 – 443. Braitenberg, C., 2015. Exploration of tectonic structures with GOCE in Africa and across continents. International Journal of Applied Earth Observation and б Geoinformation, 35, pp. 88-95. Brockmann, J.M., Zehentner, N., Höck, E., Pail, R., Loth, I., Mayer-Gürr, T., Schuh, W.-D., 2014. EGM_TIM_RL05: An independent Geoid with Centimeter Accuracy purely based on the GOCE Mission. Geophysical Research Letters, Wiley, doi: 10.1002/2014GL061904. Bruinsma, S.L., C. Foerste, O. Abrikosov, J.M. Lemoine, J.C. Marty, S. Mulet, M.H. Rio und S. Bonvalot. 2014. ESA's satellite-only gravity field model via the direct approach based on all GOCE data. Geophysical Research Letters, 41(21), 7508-7514, DOI: 10.1002/2014GL062045. Cappelletti, A., Salvi, F., Meda, M., Cavozzi, C., Chowdhury, B.R., Nestola, Y., Argnani, A., Tsikalas, F., Magistroni, M., Dalla, S., Roveri, M., Bevilacqua, N., 2011. Tectono-Stratigraphic Evolution of South Atlantic Extensional Rifted Margins: Constraints from Sandbox Analogue Modeling. Search and Discovery Article, no. 30204. Colli, L., Ghelichkhan, S. and Bunge, H. -P., 2016. Geophysical Research Letters, Volume 43 Issue 6, pp. 2510-2516. Dressel, I., Scheck-Wenderoth, M., Cacace, M., Lewerenz, B., Götze, H.-J., Reichert, Ch., 2015. Reconstruction of the southwestern African continental margin by backward modeling. Marine and Petroleum Geology, 67, DOI: 10.1016/j.marpetgeo.2015.06.006. Drinkwater, M.R., Floberghagen, R., Haagmans, R., Muzi, D., Popescu, A., 2003. GOCE: ESA's first Earth Explorer Core mission. In Beutler, G., Drinkwater, M.R., Rummel, R., von Steiger, R. (eds.), Earth Gravity Field from Space – From Sensors toEarth Sciences, Space Sciences Series of ISSI, vol. 17. Kluwer Academic Publishers, Dordrecht, The Netherlands, S. 419–432, ISBN: 1-4020-1408-2. Ebbing J., Bouman J., Fuchs M., Lieb V., Haagmans R., Meekes J.A.C., Fattah R.A., 2013. Advancements in satellite gravity gradient data for crustal studies. Leading Edge, 32 (8), pp. 900-906. Ebbing, J., Lundin, E., Olesen, O., Hansen, E.K., 2006. The mid-Norwegian margin: A discussion of crustal lineaments, mafic intrusions, and remnants of the Caledonian root by 3D density modelling and structural interpretation. Journal of the Geological Society, 163, 47-60. Eldholm, O., Gladczenko, T.P, Skogseid, J., Planke, S., 2000. Atlantic volcanic margins: a comparative study. In: Nøttvedt, A., Larsen, B.T., Olaussen, S., Tørudbakken, B., Skogseid, J., Gabrielsen, R.H., Brekke, H.,Ø. Birkeland (eds.), Dynamics of the Norwegian Margin. Geological Society of London, Special Publication 167, 411-428.

Fairhead, J.D. and Wilson, M. 2005. Plate tectonic processes in the South Atlantic Ocean: do we need deep mantle plumes? In: G.R. Foulger, J.H. Natland, D.C. Presnall, D.L. Anderson (Eds.), Plates, Plumes, and Paradigms, Geological Society of America Special Paper, 388, pp. 537–553. Fecher T., Pail R., Gruber T., 2013. Global gravity field modeling based on GOCE and complementary gravity data. International Journal of Applied Earth Observation and Geoinformation, doi: 10.1016/j.jag.2013.10.005. Fecher T., Pail R., Gruber T. 2016. GOCO05c - A new combined gravity field model based on full normal equations and regionally varying weighting. Surveys in Geophysics, in review. Fecher T., Pail R., Gruber Th., Holmes S., 2015. Validation of South American Terrestrial Gravity Anomalies by GOCE. Geophysical Research Abstracts, 17, EGU2015-4859-1 European Geosciences Union General Assembly 2015, Vienna, 14.04.2015. Flament, N., Gurnis, M. and Müller, R.D., 2013. A review of observations and models of dynamic topography, Lithosphere, vol. 5, no. 2, pp. 189-210. doi: 10.1130/L245.1 Förste, C., Bruinsma, S. L., Abrikosov, O., Lemoine, J.-M., Marty, J. C., Flechtner, F., Balmino, G., Barthelmes, F., Biancale, R., 2014. EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services. http://dx.doi.org/10.5880/icgem.2015.1 Franke, D., Neben, S., Schreckenberger, B., Schulze, A., Stiller, M., and Krawczyk, C.M., 2006. Crustal structure across the Colorado Basin, offshore Argentina. Geophys. J.Int., 165, 850 – 864. Franke, D., Ladage, S., Schnabel, M., Schreckenberger, B., Reichert, C., Hinz, K., Paterlini, M., de Abellevra, J., Siciliano, M., 2010. Birth of a volcanic margin off Argentina, South Atlantic. Geochemistry, Geophysics, Geosystems 11,Q0AB04. Frisch, W. und Meschede, M., 2005. Plattentektonik. Kontinentverschiebung und Gebirgsbildung. Primus Verlag GmbH, 208 Seiten. ISBN-10: 3896785257. Gatti, A., Reguzzoni, M., 2015. Comparison of the space-wise grids with other GOCE solutions. Geophysical Research Abstracts, Vol. 17, EGU2015-11112, EGU General Assembly 2015. Geoffroy, L.C.R., 2005. Volcanic passive margins. Geoscience 337, 1395 –1408. doi:10.1016/j.crte.2005.10.006. Gernigon, L., Lucazeau, F., Brigaud, F., Ringenbach, J.-C., Planke, S., Le Gall, B., 2006. A moderate melting model for the Vøring margin (Norway) based on structural observations and a thermo-kinematical modelling: Implication for the meaning of the lower crustal bodies. Tectonophysics 412 (3-4), 255-278. Götze, H.-J., 2015. Potential Methods and Geoinformation Systems. In: Freeden, W., Nashed, M.Z., Sonar, T. (Eds.): Handbook of Geo-Mathematics. Berlin, Heidelberg,

_	1412 1413	Springer Verlag, S. 1-21 ISBN 978-3-642-27793-1, (doi>10.1007/978-3-642-27793- 1_52-2)
2 3 1 5 5	1414 1415 1416	Grombein, T.; Seitz, K.; Heck, B. 2015. RWI_TOPO_2015: An update of the Rock- Water-Ice topographic gravity field model of the Earth, available from http://www.gik.kit.edu/rwi_model.php
/ })	1417 1418	Gutknecht, B.D., Götze, HJ., Jahr, T., Jentzsch, G., Mahatsente, R., Zeumann, S., 2014. Surveys of Geophysics, 35, 1417–1440. DOI 10.1007/s10712-014-9296-9.
2 2 3 4	1419 1420 1421	Gutknecht, B.D., Köther, N., Mahatsente, R., Götze, H.J., 2011. Utilisation of Gravity Gradients and Invariants for 3D Density Modelling. Proc. General Assembly of the International Union of Geodesy and Geophysics (IUGG), Melbourne, Australia.
5 7 3	1422 1423 1424	Hackney, R. I. and Featherstone, W. E., 2003. Geodetic versus geophysical perspectives of the 'gravity anomaly'. Geophysical Journal International 154 (1), 35-43. doi: 10.1046/j.1365-246X.2003.01941.x
) 2 3 4	1425 1426 1427	Heit, B., Sodoudi, f., Yuan, X., Bianchi, M., Kind, R., 2007. An S- Receiver Function Analysis of the Lithospheric Structure in South America, Geophyical. Resarch Letters, 34, L14307, doi:10.1029/2007GL030317.
5 5 7 8	1428 1429 1430	Hess, H. H., 1962. History of Ocean Basins. In A. E. J. Engel, Harold L. James, and B. F. Leonard. Petrologic studies: a volume in honor of A. F. Buddington. Boulder, CO: Geological Society of America. pp. 599–620.
) 2 3 4	1431 1432 1433 1434	Hinz, K., Neben, S., Schreckenberger, B., Roeser, H.A., Block, M., Goncalves de Souza, K., Meyer, H., 1999. The Argentine continental margin north of 48°S: sedimentary successions, volcanic activity during break-up. Mar. & Petrol. Geol.,16, 1 - 25.
5 7 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1435 1436 1437 1438 1439 1440 1441	 Hinze, W.J., Aiken, C., Brozena, J., Coakley, B., Dater, D., Flanagan, G., Forsberg, R., Hildenbrand, T., Keller, G.R., Kellogg, J., Kucks, R., Li, X., Mainville, A., Morin, R., Pilkington, M., Plouff, D., Ravat, D., Roman, D., Urrutia-Fucugauchi, J., Véronneau, M., Webring, M., Winester, D., 2006. New standards for reducing gravity observations: The Revised North American Gravity Database: http://paces.geo.utep.edu/research/gravmag/PDF/Final%20NAGDB%20Report%200
5 7 3 9	1442 1443 1444 1445	Hirsch, K.K., Bauer, K., Scheck-Wenderoth, M., 2009. Deep structure of the western South African passive margin e results of a combined approach of seismic, gravity and isostatic investigations. Tectonophysics 470, 57 - 70. <u>http://dx.doi.org/10.1016/j.tecto.2008.04.028</u> .
- 2 3 1 5	1446 1447 1448	Holzrichter, N., 2013. Processing and interpretation of satellite and ground based gravity data at different lithospheric scales. Dissertation, 126 pages. Christian-Albrechts-Universität zu Kiel. Fakultät für Mathematik und Naturwissenschaften.
> 7 3 9	1449 1450 1451	Hopper, J.R., Funck, T., Tucholke, B.E., Larsen, H.C., Holbrook, W.S., Louden, K.E., Shillington, D., Lau, H., 2004. Geological Society of America. Geology, 32, (1), 93 - 96. DOI 10.1130/G19694.1.
2		

Hosse, M., Pail, R., Horwath, M., Holzrichter, N., Gutknecht, B.D., 2014. Combined Regional Gravity Model of the Andean Convergent Subduction Zone and Its Application to Crustal Density Modelling in Active Plate Margins. Surveys in Geophysics, 35, (6), 1393-1415. Isacks, B., Oliver, J., Sykes, L. R., 1968. Seismology and the New Global Tectonics. Journal of Geophysical Research, 73, (18), 5855. IUGG, 2015. Resolutions adpoted by the IUGG Council at the XXVI General Assembly, Prague, Czech Republic, 22 June – 2 July 2015; http://www.iugg.org/resolutions/IUGGResolutions2015.pdf Kalberg, T., 2016. Interpretation tektonomagmatischer Prozesse basierend auf 3D Potentialfeldmodellierungsergebnissen. Dissertation 185 pages. Fachbereich für Geowissenschaften, Universität Bremen. Klinge, L., 2016. Gravitational potential energy (GPE) und Stress im südlichen Atlantik (in German). Master Arbeit, 89 pages. Institut für Geowissenschaften, Mathematisch-naturwissenschaftliche Fakultät der Christian-Albrechts-Universität Kiel. Köther, N., Götze, H.-J., Gutknecht, B.G., Jahr, T., Jentzsch, G., Lücke, O.H., Mahatsentea, R., Sharma, R., Zeumann, S., 2012. The seismically active Andean and Central American margins: Can satellite gravity map lithospheric structures? Journal of Geodynamics, 59-60, 207-218. LaFehr, T.R., 1991. An exact solution for the gravity curvature (Bullard B) correction: Geophysics, 56, (8), 1179–1184, doi: 10.1190/1.1443138. Lallemand S., 2014. Active continental margin. In Encyclopedia of Marine Geosciences, Springer Science, Eds.: Harff, J., Meschede, M., Petersen, S. and Thiede, J., 7 pages, DOI 10.1007/978-94-007-6644-0_102-2. Li, X. and Götze, H.-J., 2001. Ellipsoid, Geoid, Gravity, Geodesy, and Geophysics - A Tutorial. Geophysics, vol. 66, no. 6, 1660-1668. Maus, S., Barckhausen, U., Berkenbosch, H., Bournas, N., Brozena, J., Childers, V., Dostaler, F., Fairhead, J.D., Finn, C., von Frese, R. R. B., Gaina, C., Golynsky, S., Kucks, R., Lühr, H., Milligan, P., Mogren, S., Müller, R.D., Olesen, O., Pilkington, M., Saltus, R., Schreckenberger, B., Thébault, E. and Caratori Tontini, F., 2009. EMAG2: A 2-arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements. Geochemistry, Geophysics, Geosystems, vol. 10, no. 8. doi: 10.1029/2009GC002471. Mayer-Gürr, T., Zehentner, N., Klinger, B., Kvas, A., 2014. ITSG-Grace2014: a new GRACE gravity field release computed in Graz. Presented at GRACE Science Team Meeting (GSTM), Potsdam, 29.09.2014. Maystrenko, Y.P., Scheck-Wenderoth, M., Hartwig, A., Anka, Z., Watts, A.B., Hirsch, K.K, Fishwick, S. 2013. Salt as a 3D element in structural modeling – Example from the Central European Basin System. Tectonophysics, doi:10.1016/j.tecto.2012.06.030

Mikuška, J., Pašteka, R., Marušiak, I., 2006. Estimation of distant relief effect in gravimetry. GEOPHYSICS, 71, (6), J59–J69, doi: 10.1190/1.2338333. Mohriak, W., 2014. Birth and development of continental margin basins: analogies from the South Atlantic, North Atlantic and the Red Sea. Search and Discovery article, http://www.searchanddiscovery.com/pdfz/documents /2014/41502mohriak/ndx mohriak.pdf.html Müller, R. D., Sdrolias, M., Gaina, C. and Roest, W.R., 2008. Age, spreading rates, and spreading asymmetry of the world's ocean crust. Geochemistry, Geophysics, Geosystems, vol. 9, no. 4., 19 pages, doi: 10.1029/2007GC001743. Naudy, H. and Neumann R., 1965. Sur la définition de l'anomalie de Bouquer et ses conséquences pratiques, Geophys. Prosp., vol 13, 1-110'Connor, J.M., Jokat, W., le Roex, A.P., Class, C., Wijbrans, J.R., Keßling, S., Kuiper, K.F. and Nebel, O., 2012. Hotspot trails in the South Atlantic controlled by plume and plate tectonic processes. Nature Geoscience 5, pp. 735–738, doi:10.1038/ngeo1583. Oliver, J., Isacks, B., 1967. Deep earthquake zones, anomalous structures in the upper mantle, and the lithosphere. Journal of Geophysical Research, 72 (16), pp. 4259-4275. Oncken, O., Chong, G., Franz, G., Giese, P., Götze, H.-J., Ramos, V., Strecker, M. and Wigger, P., (Eds), 2006: The Andes - Active Subduction Orogeny., Frontiers in Earth Sciences, 1, Springer Verlag, pp. 570. Pail R., Fecher T., Rexer M. 2015b. Validation of GOCE gravity gradient grids for geophysical applications. Geophysical Research Abstracts, Vol. 17, EGU2015-1652, Poster presented at EGU General Assembly 2015, Vienna. Pail, R., Bingham, R., Braitenberg, C., Dobslaw, H., Eicker, A., Güntner, A., Horwath, M., Ivins, E., Longuevergne, L., Panet, I., Wouters, B. 2015a. Science and User Needs for Observing Global Mass Transport to Understand Global Change and to Benefit Society. Surveys in Geophysics, 36(6): 743-772, Springer Netherlands, doi: 10.1007/s10712-015-9348-9. Pail, R., Goiginger, H., Schuh, W.-D., Höck, E., Brockmann, J. M., Fecher, T., Gruber, T., Mayer-Gürr, T., Kusche, J., Jäggi, A., Rieser, D. 2010. Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophysical Research Letters, Vol. 37, L20314, doi:10.1029/2010GL044906. Pail, R., S. Bruinsma, F. Migliaccio, C. Förste, H. Goiginger, W.-D. Schuh, E. Höck, M. Reguzzoni, J. M. Brockmann, O. Abrikosov, M. Veicherts, T. Fecher, R. Mayrhofer, I. Krasbutter, F. Sansò, and C. C. Tscherning 2011. First GOCE gravity field models derived by three different approaches, Journal of Geodesy, 85(11), 819-843, doi: 10.1007/s00190-011-0467-x. Panet I., G. Pajot-Métivier, M. Greff-Lefftz, L. Métivier, M. Diament & M. Mandea 2014. Mapping the mass distribution of Earth's mantle using satellite-derived gravity gradients, Nature Geoscience 7, 131–135, doi:10.1038/ngeo2063.
Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.K., 2008. An Earth Gravitational Model to Degree 2160: EGM2008. In: Proceedings of the European Geosciences Union General Assembly, April 13–18, Vienna, Austria. Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.K., 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical б Research, 117, (B4), 2156 - 2202, doi: 10.1029/2011JB008916. Prange, L., 2011. Global Gravity Field Determination Using the GPS Measurements Made Onboard the Low Earth Orbiting Satellite CHAMP. PhD Thesis, Geodätisch-geophysikalische Arbeiten in der Schweiz, vol. 81. http://www.sqc.ethz.ch/sqc-volumes/sgk-81.pdf Reigber, C., Balmino, G., Schwintzer, P., Biancale, R., Bode, A., Lemoine, J.-M., Koenig, R., Loyer, S., Neumayer, H., Marty, J.C., Barthelmes, F., Perossanz, F., 2002. A high quality global gravity field model from CHAMP GPS tracking data and accelerometry (EIGEN-1S). Geophysical Research Letters, 29, 14, dx.doi.org/10.1029/2002GL015064 Reston, T.J., 2009. The structure, evolution and symmetry of the magma-poor rifted margins of the North and Central Atlantic: A synthesis. Tectonophysics 468, 6-27. doi:10.1016/j.tecto.2008.09.002. Rudenko S., Dettmering D., Esselborn S., Schoene T., Foerste C., Lemoine J-M, Ablain M, Alexandre D, Neumayer K.-H., 2014. Influence of time variable geopotential models on precise orbits of altimetry satellites, global and regional mean sea level trends. Advances in Space Research, doi: 10.1016/j.asr.2014.03.010. Salomon, A., Koehn, D., Passchier, C., Hackspacher, P.C. and Glasmacher, U.A., 2014. Contrasting stress fields on correlating margins of the South Atlantic, Gondwana Research, doi.org/10.1016/j.gr.2014.09.006. Schaller. T., Andersen, J., Götze, H.-J., Koproch, N., Schmidt, S., Sobiesiak, M., Splettstößer, S., 2015. Segmentation of the Andean margin by isostatic models and gradients. Journal of South American Earth Sciences, 59, 69-85. Scheck-Wenderoth, M., Maystrenko, Y., 2008. How warm are passive continental margins? A 3D lithosphere-scale study from the Norwegian margin. Geology, 36, (5), 419-422, DOI: 10.1130/G24545A.1. Skogseid, J., Planke, S., Faleide, J.I., Pedersen, T., Eldholm, O., Neverdal, F., 2000. NE Atlantic continental rifting and volcanic margin formation, in Nottvedt, A.e.a., Ed., Dynamics of the Norwegian Margin, 167: London, Geological Society of London, Special Publications, p. 55-82. Sobiesiak, M., Meyer U., Schmidt S., Götze H.-J., Krawczyk C.M., 2007. Asperity generating upper crustal sources revealed by b value and isostatic residual anomaly grids in the area of Antofagasta, Chile. Journal of Geophysical Research, v. 112, B12308, doi: 10.1029/2006JB004796.

Stadler, G., Gurnis, M., Burstedde, C., Wilcox, L.C., Alisic, L., Ghattas, O., 2010. The Dynamics of Plate Tectonics and Mantle Flow: From Local to Global Scales. Science, Vol. 329, Issue 5995, pp. 1033-1038, DOI: 10.1126/science.1191223. Szwillus, W., Ebbing, J. and Holzrichter, N., 2016. Importance of far-field topographic and isostatic corrections for regional density modelling. Geo- physical Journal International, 207 (1), pp. 274-287, doi:10.1093/gij/ggw270 Szwillus, W., Götze, H.-J., 2016. Efficient mass correction using an adaptive method. In: R, Pasteka et al., Proceedings of the workshop on Bouguer Anomaly, Bratislava (Slowak Republic). Accepted. Tapley, B.D., Bettadpur, S., Watkins, M., Reigber, C., 2004. The gravity recovery and climate experiment: mission overview and early results. Geophysical Research Letters, 31(9), L09607, AmericanGeophysical Union, http://dx.doi.org/10.1029/2004GL019920. Tašárová, Z., 2007. Towards understanding the lithospheric structure of the southern Chilean subduction zone $(36^{\circ} \text{ S} - 42^{\circ} \text{ S})$ and its role in the gravity field. Geophysical Journal International, 170, (3), 995-1014. doi:10.1111/j.1365-246X.2007.03466.x Torge W., 2001. Geodesy, 3rd edition, 416 pages. De Gruyter Berlin, ISBN 3-11-017072-8. Torsvik, T. H., Rousse, S., Labails, C. and Smethurst, M.A., 2009. A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin. Geophysical Journal International, 177, 3, pp. 1315-1333. doi: 10.1111/j.1365-246X.2009.04137.x. Vine, F. J.; Matthews, D. H., 1963. Magnetic Anomalies Over Oceanic Ridges. Nature 199 (4897), 947–949. Wadati, K., 1929. Shallow and deep earthquakes (2nd paper): Geophysical Magazine, 2, 1-36. Wefer, G., Billet, D., Hebbeln, D., Barker Jorgensen, B., Schlüter, M., van Weering, T.C.E., 2003. Eds. Ocean Margin Systems. Springer, pp. 495. Doi.10.007/978/-3-662-05127-6 Wegener, A., 1920. Die Entstehung der Kontinente und Ozeane. In: E. Wiedemann (Herausgeber), Die Wissenschaft, Friedrich Vieweg und Sohn, Braunschweig, 2. Auflage, 66, 1-135. Wenzel H., 1985: Hochauflösende Kugelfunktionsmodelle für das Gravitationspotential der Erde: Wissenschaftliche Arbeiten der Fachrichtung Vermessungswesen der Universität Hannover, 137, 1–155. White, R. S., Smith, L.K., 2009. Crustal structure of the Hatton and the conjugate east Greenland rifted volcanic continental margins, NE Atlantic. Journal of Geophysical Research, 114. B02305. DOI 10.1029/2008JB005856

CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL

INSTITUT FÜR GEOWISSENSCHAFTEN

Abteilung Geophysik, Otto-Hahn-Platz 1, 24118 Kiel

Datum:March 24, 2017

 Telefon:
 +49 (0)431 880-3805

 FAX:
 +49 (0)431 880-1387

 E-mail:
 hajo@geophysik.uni-kiel.de

 http://www.gravity.uni-kiel.de

Ladies and Gentlemen,

This an invited manuscript by me and Roland Pail for the "Passive margin" issue.

Please, start with the review process.

Regards,

₩-

H.-J. Götze