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Abstract 

Chemical reduction has long dominated the thinking about the mechanism of aqueous 

contaminant removal in the presence of metallic iron (e.g. Fe0/H2O systems). However, a 

large body of experimental evidence indicates that chemical reduction is not adequate to 

explain satisfactorily the efficiency of Fe0/H2O systems for several substances or classes of 

substances. By contrast, the alternative approach, that contaminants are fundamentally 

adsorbed and co-precipitated by iron corrosion products seems to provide a better explanation 

of observed efficiency. The new approach is obviously not really understood. The present 

communication aims at clarifying this key issue. It seems that a paradigm shift is necessary 

for the further development of the iron technology. 

Key words: Contaminant removal, Paradigm shift, Removal mechanism, Water treatment; 

Zerovalent iron. 

1 Introduction 

The publication by Thomas Kuhn (1962) of his book “The structure of scientific revolutions” 

is the starting point of the frequent use of the word “paradigm” in many fields of science. 

Kuhn characterized a paradigm as a shared theory of the nature of something or of how it 

operates, together with a related set of problems to be solved and a kit of tools or methods for 

approaching those problems (Heaney, 2003; Rowbottom, 2011). Researchers introduced into 

the field, learned about the paradigm. Their challenge is to apply some tools of the prevailing 

paradigm to clarify some of its unsolved problems. For the field of water treatment with 

metallic iron (Fe0), it is safe to say that contaminant reduction by Fe0 constitutes the basis of 

its operative paradigm. 

Since the introduction of Fe0 for water treatment in 1990 (Reynolds et al., 1990; Gillham and 

O’Hannesin, 1994), contaminants have been reported to be removed by reductive 

transformations (Matheson and Tratnyek, 1994; Weber, 1996; O’Hannesin and Gillham, 

1998; Comba et al., 2011). Clearly, contaminants were considered to be removed because of 

their chemical transformations possibly making them less harmful (degradation) or less 

mobile (precipitation). Accordingly, the case for which contaminant reduction products may 

be more toxic than parent contaminants (e.g. CCl4) is still actively discussed (Jiao et al., 2009; 
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Alvarado et al., 2010). Moreover, the formation of the universal oxide film on the Fe0 surface 

(reactivity loss) and the pore filling by iron corrosion products (permeability loss) have been 

regarded as the major inhibitive factors for the process of contaminant removal (Henderson 

and Demond, 2007; Ghauch, 2008a; Simon et al., 2008; Li and Benson, 2010). Accordingly, 

three major opened problems of the Fe
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0 technology are: (i) how can harmful reaction products 

be removed? (ii) how can reactivity loss be prevented? and how can permeability loss be 

properly considered? 

Several analytical tools and complicated experimental devices has been used during the past 

two decades to search for answers to these three questions (Wilderer et al., 2002; McGuire et 

al., 2003; Simon et al., 2004). Even today, a cursory survey of the literature on Fe0 technology 

will find, in the introduction of virtually every paper, some such phrases as “…Fe0 is proved 

to be particularly suitable for the decontamination of halogenated organic compounds, but 

subsequent studies have confirmed the possibility of using Fe0 for the reduction of nitrate, 

bromated, chlorate, nitro aromatic compounds, brominated pesticides. Fe0 proved to be 

effective in removing arsenic, lead, uranium and hexavalent chromium...” (Groza et al., 

2009). It is important to notice that “contaminant reduction” and “contaminant removal” are 

mostly randomly interchanged. 

It should be explicitly stated that some researchers have insisted on the importance of 

adsorption and/or co-precipitation in the process of aqueous contaminant removal by Fe0 

(Burris et al., 1995; Allen-King et al., 1997; Lackovic et al., 2000; Lavine et al., 2001; 

Furukawa et al., 2002; Ritter et al., 2002; Wilkin and McNeil, 2003; Su and Puls, 2004; 

Mielczarski et al., 2005). However, their argumentation was limited either (i) to inorganic 

contaminants (e.g. Lackovic et al., 2000; Wilkin and McNeil, 2003), (ii) to selected organic 

species (e.g. Mielczarski et al., 2005) or (iii) to investigations on the impact of iron corrosion 

products as contaminant scavengers (Furukawa et al., 2002, Jia et al. 2007) or reducing agents 

(Refait et al., 1998; Ritter et al., 2002; O’Loughlin et al., 2003; O’Loughlin and Burris, 2004; 

Chaves, 2005 ; Liang and Butler, 2011). For example, Furukawa et al. (2002) stated that 

under oxic conditions, ferrihydrite may be one of the most abundant iron corrosion products 

and may play an important role in adsorbing contaminants. In such situations, the use of Fe0 

reactive walls “may be extended to applications that require contaminant adsorption rather 

than, or in addition to, redox-promoted contaminant degradation”. On the other hand, the 

findings of Lackovic et al. (2000) that arsenic is not removed by a reductive transformation 

process war clearly presented as an exception. It is important to note that results from the very 

first peer-reviewed articles on the Fe0/H2O systems where uncertain about the real 
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mechanisms of contaminant removal (Table 1). However, the hypothesis of contaminant 

reduction was favored without experimental proofs (e.g. mass balance) (e.g. Lee et al., 2004). 

As stated by O’Hannesin and Gillham (1998), it was a “broad consensus”. 

The kit of tools to investigate contaminant reduction includes a large number of highly 

sophisticated instruments for determining contaminant concentration and speciation, 

identifying contaminant reaction products and iron corrosion products as well (McGuire et al., 

2003). Further used tools aimed at properly model experimental data and thus design field Fe0 

treatment units (e.g. field reactive walls, household filters) (Schüth et al., 2003; VanStone et 

al., 2005; Li et al., 2006; Kouznetsova et al., 2007; Klammler and Hatfield, 2008; Li and 

Benson, 2010; Jeen et al., 2011). Additionally, researchers were organized in networks (e.g. 

PRBT - the US Permeable Reactive Barriers Action Team; RUBIN - the German Permeable 

Reactive Barrier Network; PRB-Net - the Permeable Reactive Barrier Network in the United 

Kingdom) having the goal to accelerate the development of the promising Fe0 technology. 

Thus, it would seem that the role of reductive transformation in the process of contaminant 

removal by Fe0 fulfils all of the criteria for a true paradigm. 

It should be acknowledged that the reductive transformation concept has been a fruitful 

paradigm, fueling substantial progress for the achieved acceptance of the Fe0 technology 

(Bigg and Judd, 2000; Scherer et al., 2000; Henderson and Demond, 2007; Laine and Cheng, 

2007; Cundy et al., 2008; Thiruvenkatachari et al., 2008; Groza et al., 2009; Muegge and 

Hadley, 2009; Phillips et al., 2010). Nevertheless, a growing body of evidence indicates that 

factors other than reductive transformations contribute importantly to the process of 

contaminant removal in Fe0/H2O systems. These factors included adsorption, co-precipitation 

and adsorptive size exclusion. 

2 Limits of the reductive transformation concept 

Concordant reports on enhanced Fe0 reactivity towards aqueous contaminant removal with 

decreasing particle size have been reported. As a consequence nano-scale Fe0 (nano-Fe0) has 

been suggested and is currently injected in the subsurface for groundwater remediation (Wang 

and Zhang, 1997; Comba et al., 2011; Shi et al., 2011). Another common tool to enhance Fe0 

reactivity is the use of bimetallic materials (Fe/Cu, Fe/Ni, Fe/Pd) (Muftikian et al., 1995). 

However, neither the use of nano-Fe0 (Noubactep and Caré, 2010a) nor that of bimetallic 

systems (Noubactep, 2009a) is consistent with the fact that contaminants should be reduced 

by Fe0. While the plating metal (e.g. Cu0, Ni0, Pd0) are concurrent reagents for Fe0 oxidation, 

nano-Fe0 will be readily oxidized by water which is in stoichiometric excess relative to 
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dissolved contaminants. These both facts (“anomalies”) are the first arguments against the 

view that contaminants are quantitatively removed by reductive transformations. 

Several other experimental results seem to have stretched the reductive transformation 

paradigm to the point where it may no longer be intellectually satisfying. Among these results 

(Noubactep, 2007; Noubactep, 2010a, Scott et al. 2011 and ref. therein): (i) the quantitative 

removal of species like ZnII which is not reducible by Fe0 or the quantitative removal of MoVI 

which is not readily adsorbed on iron oxides (at pH > 6), (ii) the quantitative removal of 

organic species in Fe0 beds which were proven non reducible by Fe0 in batch systems (Lai et 

al., 2006), (iii) the existence of the lag time in the process of contaminant removal in batch 

systems (Schreier and Reinhard, 1994; Hao et al., 2005). Where the reductive transformation 

paradigm is not useful, researchers have favored selective adsorption or microbial processes 

to explain observed results (Lai et al., 2006). However, this approach can be regarded as a 

falsification of the reductive transformation paradigm since it assumed that adsorption is only 

important when reduction is not favorable. Moreover, contaminant co-precipitation with 

precipitating and transforming iron oxides is considered only for specific cases as discussed 

above. This is the juncture (proliferation of anomalies) at which Kuhn observes that 

paradigms tend to shift (Heaney, 2003). 

The expression "paradigm shift" is believed to be misused or overused in science. For this 

reason this communication proposes that the reductive transformation paradigm is giving way 

to a successor that seems to provide an operationally superior and an intellectually more 

attractive rationalization of the process of aqueous contaminant removal by Fe0. 

It must be acknowledged that the principle that contaminants are quantitatively removed in 

Fe0/H2O systems has never been in question. The sole discussion is about the occurrence of 

reduction (if applicable) and its extent (Lee et al., 2004). The next section will briefly present 

a different view on the process of contaminant removal which is the essence of the alternative 

paradigm. The new concept suggests in analogy with the historical work of Yao et al. (1971) 

that contaminants are collected in Fe0 beds (deep bed filters) by in situ generated FeII/FeII-

species regardless if they are chemically transformed or not. 

3 Adsorption/co-precipitation concept 

The concept that contaminants are fundamentally adsorbed and/or co-precipitated onto/with 

iron corrosion products in Fe0/H2O systems is extensively presented is several recent articles 

(e.g. Noubactep, 2010a; 2010b; 2011). The concept arose from a fortuitous observation during 

experiments on the process of uranium removal in “Fe0/MnO2/H2O” systems [“Fe0”, “MnO2” 

and “Fe0 + MnO2”] (Noubactep et al., 2003) and is supported by results from all other 
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branches of science involving aqueous iron corrosion (Noubactep, 2009b; Noubactep and 

Schöner, 2009; Noubactep and Schöner, 2010). 

In the mentioned experiments, MnO2 and waterworks sludge (aged iron oxides – Fe2O3) were 

used as relevant adsorbents and their impact on the process of UVI removal by Fe0 was 

characterized. Results showed that none of the adsorbents could significantly accelerate UVI 

removal. Moreover, MnO2 essentially retarded UVI removal and the lag time was proportional 

to the available amount of MnO2. These results indicated that UVI is mostly removed by in-

situ generated iron corrosion products. Aged Fe2O3 could not significantly impact UVI 

removal. MnO2 essentially retarded the removal process. This delay is due to the fact that iron 

hydroxides are not precipitated in the vicinity of Fe0 but rather at the surface of MnO2. The 

process of reductive dissolution of MnO2 by FeII is a well-documented geochemical process 

(Stone, 1987; Stone and Ulrich, 1989; Postma and Appelo, 2000; Kang et al., 2006). 

A close consideration of the impact of MnO2 on the process of UVI removal by Fe0 suggested 

that UVI removal is a characteristic of corroding iron. In other words, UVI removal is not 

necessarily a reductive process or a result of any specific interactions between UVI and Fe0. 

Specific interactions between contaminants and Fe0 (and iron oxides) will certainly favour the 

removal process but are not the determinant factors (Scott et al., 2011). Accordingly, a 

Fe0/H2O system can be regarded as a domain of precipitating iron hydroxide (Noubactep, 

2009c). In such a system, any inflowing contaminant will be adsorbed and co-precipitated. 

Additionally, FeII and H/H2 from continuously corroding Fe0 are reducing agents for reducible 

contaminants in the system but the extent of contaminant reduction is difficult to discuss 

because generated iron oxides must be digested for contaminant speciation and mass balance 

calculations. On the other hand, contaminants enmeshed in the matrix of iron corrosion are 

stable for long time under environmental conditions whether they are chemically transformed 

or not (Noubactep et al. 2006). 

The presentation above has explained why all classes from aqueous contaminants may be 

quantitatively removed by Fe0. It is clear from this presentation that parent contaminants and 

their reaction products are all removed in Fe0/H2O systems. This is consistent with view that 

in a Fe0 bed in situ generated Fe hydroxides and oxides act as contaminant “collectors” (Yao 

et al., 1971). Accordingly, one of the three major opened problems (how can harmful reaction 

products be removed?) from the reductive transformation concept is solved. The remaining 

two problems are: (i) How can reactivity loss be prevented? and (ii) How can permeability 

loss be properly considered? Answering these questions is over the scope of this 

communication. However, it should be pointed out that recent theoretical works have shown 
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that to sustain system permeability, Fe0 should be admixed to inert materials in a volumetric 

ratio lesser than 52 %. In other words an efficient Fe
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0 bed could be regarded as a Fe0 amended 

sand filter. A proposed tool to sustain reactivity is to use Fe0/MnO2 mixtures (Noubactep et 

al., 2010). 

The concept presented in this section clearly belittles the importance of reduction in the 

process of aqueous contaminant removal in Fe0/H2O systems. There is increasing evidence 

that this concept is not yet understood by authors which have referenced related papers. The 

next section will address this issue. 

4 Argumentation against the new concept 

The concept regarding adsorption and co-precipitation as the fundamental mechanisms of 

contaminant removal in Fe0/H2O systems has been experimentally validated using methylene 

blue as model contaminant (Noubactep, 2009d). The concept has recently been verified using 

clofibric acid (Ghauch et al., 2010a) and diclofenac (Ghauch et al., 2010b). Moreover, the 

similitude between contaminant removal with elemental metals and electrocoagulation has 

been excellently presented by Bojic et al. (2004; 2007; 2009). Nevertheless, there are 

currently five types of arguments in the literature belittling the significance of this concept: (i) 

the concept is wrongly referenced (Luna-Velasco et al., 2010; Yuan et al., 2010) (argument 

1), (iia) the concept is hardly acceptable because the reductive transformation concept is 

widely accepted in the scientific community, (iib) self-citation is always used to support the 

validity of the new the concept (Kang and Choi, 2009) (argument 2), (iii) Good results on 

removal of inorganic species by Fe0 are unacceptably generalized (Ebert et al., 2007; 

Tratnyek and Salter, 2010) (argument 3), (iv) data are needed to support the repeated claims 

which negate more than one decade intensive research (Ebert et al., 2007; Tratnyek and 

Salter, 2010) (argument 4), and (v) authors of the correct references deliberately further 

referenced the concept or not (argument 5). For example, Flury and his colleagues (Flury et 

al., 2009a; 2009b) referenced Noubactep (2006) in a paper for Applied Geochemistry 

(available online 24 December 2008) and not in the paper for Environmental Science & 

Technology (accepted May 14, 2009). In the meantime, three other more elaborated papers on 

the new concept were available. Second example: Lo and co-workers have correctly 

referenced the concept in 2008 (Rao et al., 2009 - accepted 11 December 2008) and not in 

several subsequent works (e.g. Liu et al., 2009, Mak et al., 2009; 2011). Short comments on 

individual arguments will be given bellow. 

Argument 1: The concept was introduced in 2007 in an open access journal (Noubactep, 

2007). There is no reason why so many researchers could ignore or wrongly reference it. 
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Referencing articles using or presenting the new concept, co-precipitation is enumerated as a 

“simple” reaction mechanism beside adsorption and reduction (Luna-Velasco, et al. 2010; 

Yuan et al., 2010). The fact, that researchers are ignoring the state-of-the-art knowledge on 

the mechanism of contaminant removal in Fe
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0/H2O systems should be a concern for the whole 

community. 

Argument 2: The consistency of the concept of reductive transformation has been extensively 

discussed while introducing the concept of adsorption/co-precipitation. Researchers should 

have discussed the validity of the new concept instead of simply doubt on its validity. 

Fortunately, Dr. Ghauch who was initially sceptic about the adsorption/co-precipitation 

concept (Ghauch, 2008b) has experimentally verified its efficiency to explain processes which 

are still mistakenly attributed to plated Fe0 (Ghauch et al., 2010b). 

Argument 3: Not all inorganic substances are readily adsorbed onto iron oxides (iron 

corrosion products) (Blowes et al., 2000). For example, MoVI is very poorly adsorbed on iron 

oxides at pH > 6.0 (Scott et al., 2011 and references therein) but was reported to be 

successfully removed by Fe0 (Morrison et al., 2002; 2006). On the other hand, many organic 

compounds are readily adsorbed onto iron oxides (Tipping and Higgins, 1982; Tipping, 1986; 

Gu et al., 1994, Satoh et al., 2006; Hanna and Boily, 2010; Eusterhues et al., 2011). Besides 

these hard facts from the geochemical literature, it has been clearly demonstrated that 

contaminant removal is not primarily a property of contaminants but rather a characteristic of 

aqueous iron corrosion. In other words, contaminants are not removed by Fe0 or Fe oxides 

separately, but during the whole dynamic process of aqueous iron corrosion. In Fe0 beds, 

adsorptive size exclusion in a deep bed filtration mode sustains the removal efficiency. The 

argument of self-citation is not acceptable because nobody else has systematically reported on 

the inconsistency of the reductive transformation concept. Moreover, authors like Burris et al. 

(1995), Lavine et al. (2001), Mantha et al. (2001), and Odziemkowski (2009), who have 

seriously questioned some aspects of the reductive transformation concept, have been 

constantly referenced. 

Argument 4 is mostly used by reviewers and referees who have rejected several manuscripts 

and proposals. Rejected manuscripts were subsequently accepted by other reviewers 

sometimes from the same journal in a new submission. It is important in this regard to notice 

that many reviewers have argued that the reviews presenting the concept adsorption/co-

precipitation could have never been published in ISI referenced journals (Noubactep, 2006; 

2007) or in journals with higher impact factor (Noubactep, 2008) because of its poor scientific 

quality. While manuscripts could be revised and re-submitted, proposals have been 
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systematically rejected. This is a well-known situation whenever a new view is introduced 

(Alm, 1992; Heaney, 2003). 

Argument 5 suggests that the ground-breaking nature of the concept was not clear to the 

authors who may have been prompted by peer-reviewers to reference related works. 

The comments above showed that no single valid argument against the adsorption/co-

precipitation concept has yet been presented. Moreover, theoretical studies related to this 

concept are a powerful guide for appropriate experimental designs (Noubactep and Caré, 

2010a; 2010b; 2010c; Noubactep et al., 2009; Noubactep et al., 2010; Noubactep and Caré, 

2011). On the other hand, regarding Fe0 beds as "Fe0 amended sand filters" suggests that 

population balance models that account for pore and particle size distributions along with 

pore space topology (e.g. Bedrikovetsky, 2008) describe processes in dynamic Fe0/H2O 

systems with better accuracy than currently used models (Jeen et al. 2011). 

5 Concluding remarks 

The use of Fe0 for water treatment was based on the thermodynamic valid argument that Fe0 

is a relative strong reducing agent (E0 = -0.44 V/ESH). However, this assumption has 

overseen at least two important aspects of aqueous iron corrosion and their thermodynamics: 

(i) solubility of iron hydroxides, and (ii) adhesion of oxide scale on metal (Noubactep, 2010a; 

2010b). In fact, whether contaminant reduction by Fe0 (direct reduction) occurs and 

contributes significantly to the process of contaminant removal remains unclear. However, it 

is certain that several groups of contaminants are quantitatively removed in Fe0/H2O systems 

and that these contaminants are adsorbed and co-precipitated (Noubactep, 2009d; Ghauch et 

al., 2010a; 2010b). Adsorbed and co-precipitated contaminants could be further reduced by 

electrons from Fe0 (direct reduction) but more likely by electrons from FeII or H/H2 (indirect 

reduction). Additionally, some contaminants could be oxidized in the systems by in-situ 

generated Fenton-like reagents (Ghauch et al., 2010b). It is the aim of this communication to 

propose the substitution of the reductive transformation concept by the one of adsorption/co-

precipitation (and adsorptive size-exclusion). 

It has been argued that “no paradigm passes painlessly” (Heaney, 2003). The scientific 

objectivity should dictate the fate of any scientific concept regardless from its age or what has 

been invested in it. To the author’s opinion, the proposed paradigm shift does not represent a 

danger for any industry but rather a chance for more systematic system designs. For example 

the elimination of the constrains that contaminants should be reduced implies that surrogate 

parameters (e.g. dissolved organic carbon - DOC) can be used to monitor effluents for 

organics from treatment systems until breakthrough occurs. Afterwards more precise analytic 
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tools are needed to identify escaped organic species. On the other hand, the proposed new 

paradigm has enabled a better bed design and clarified the controversial issue of using inert 

admixture in Fe
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0 beds (Noubactep et al., 2010). Furthermore, the new paradigm is about to re-

vive Fe0 household filters, e.g. the 3-Kolshi filters (Khan et al., 2000; Hussam and Munir, 

2007; Hussam, 2009). The 3-Kolshi filters have been abandoned because of poor design as 

recently demonstrated (Noubactep et al., 2010). The 3-Kolshi filters were replaced by very 

sustainable filters (SONO filters) in which iron shavings/fillings were substituted by a porous 

Fe0-based composite (Hussam and Munir, 2007; Hussam, 2009). 

The adsorption/co-precipitation concept has demonstrated that reduction is less important for 

the process of contaminant removal than had been assumed. Because contaminants are 

progressively enmeshed in the matrix of iron corrosion products, they are even more stable 

than if they were simply reduced or degraded. Accordingly, the proposed paradigm even 

sustains the acceptance of the Fe0 technology. Actually, nobody is in appreciable jeopardy 

from the paradigm shift in course. Researchers are given more possibilities for rationale and 

systematic investigations of contaminant removal in Fe0/H2O systems as they could partly 

paid less attention to contaminant speciation. It is hoped that this opportunity will be used for 

a rapid development of the Fe0 technology and its extension to other applications as recently 

suggested by Antia (2010). 

In conclusion, enhanced collaboration between experimental and modelling scientists is 

needed in order to expedite resolution of the key gaps in the understanding of the operation of 

processes governing the functionality of Fe0 filtration systems. This closed collaboration is 

essential to frame new Fe0 bed models. 
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0/H2O system (1994) and the number of their citations in Scopus (2011/03/27). It can be 

seen that none of these seminal works has demonstrated quantitative contaminant reduction. 

Moreover, the least cited work is the one which has created conditions for favorable 

contaminant reduction (acidification by FeS2). X stands for contaminant; RCl is a chlorinated 

hydrocarbon. 

 

Reference Systems X Findings Citations

Matheson and Tratnyek Fe0/H2O CHxCly Degradation mostly by Fe0 616 

Gillham and O'Hannesin Fe0/H2O RCl Enhanced degradation 597 

Schreier and Reinhard Fe0/H2O C2Cl4 Partial degradation 65 

Lipczynska-Kochany et al. Fe0/FeS2/H2O CCl4 FeS2 accelerates degradation 49 
603 
604 
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