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Abstract 

Metallic iron (Fe0) is often reported as a reducing agent for environmental remediation. There 

is still controversy as to whether Fe0 plays any significant direct role in the process of 

contaminant reductive transformation. The view that Fe0 is mostly a generator of reducing 

agents (e.g. H, H2 and FeII) and Fe oxyhydroxides has been either severely refuted or just 

tolerated. The tolerance is based on the simplification that, without Fe0, no secondary 

reducing agents could be available. Accordingly, Fe0 serves as the original source of electron 

donors (including H, H2 and FeII). The objective of this communication is to refute the named 

simplification and establish that quantitative reduction results from secondary reducing 

agents. For this purpose, reports on aqueous contaminant removal by Al0, Fe0 and Zn0 are 

comparatively discussed. Results indicated that reduction may be quantitative in aqueous 

systems containing Fe0 and Zn0 while no significant reduction is observed in Al0/H2O 

systems. Given that Al0 is a stronger reducing agent than Fe0 and Zn0, it is concluded that 

contaminant reduction in Fe0/H2O systems results from synergic interactions between H/H2 

and FeII within porous Fe oxyhydroxides. This conclusion corroborates the operating mode of 

Fe0 bimetallics as H/H2 producing systems for indirect contaminant reduction.  

Keywords: Adsorption, Contaminant removal, Mechanisms, Reduction, Zerovalent metals. 
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Permeable reactive barriers (or reactive walls) containing metallic iron (Fe0) as reactive 

medium is an established technology for passive groundwater remediation [1-17]. Fe0 media 

have been intensively investigated at laboratory, pilot- and full-scale for the remediation of 

various groups of reducible contaminants including chlorinated solvents, nitroaromatic 

compounds, petroleum hydrocarbon, heavy metals, and radionuclides [4,11,14,18]. 

Quantitative removal of non-reducible contaminants (e.g. ZnII) [19] and micro-organisms 

[20,21] has also been documented. Thus, more than a ‘simple’ reducing agent, Fe0 should be 

regarded as a universal material for aqueous contaminant removal [16,22-26]. The fact that 

contaminant reduction and contaminant removal should not be randomly interchanged has 

been already discussed [27-34]. Accordingly, while quantitative contaminant removal is 

certain, the extent of contaminant reduction (if applicable) is difficult to assess/discuss 

without quantitative speciation and dissolution of iron corrosion products [35-37]. As an 

example, Lee et al. [38] reported that ‘no carbon balances between reactants and products 

have ever been successfully done for many chlorinated hydrocarbons’. Lee et al. [38] 

concluded that this was an indication that the reductive transformation of these contaminants 

is not fully understood. Therefore, the environmental safety of reaction products may be still 

unclear [39,40]. Recent developments in understanding the mechanism of contaminant 

removal in Fe0/H2O systems have shown that original contaminants and their reduction 

products are basically removed by unspecific mechanisms (co-precipitation, size exclusion) 

inherent to aqueous iron corrosion at pH values characteristic for natural waters [27-29,41-

47]. 

Based on the premise that Fe0 is a reducing agent, other metallic elements, including Al0, Cu0, 

Sn0, Ti0 and Zn0 have been (or are currently) tested as alternative barrier materials [48-56]. 

However, the development status for individual metallic elements, including Fe0, is difficult 

to assess. Moreover, it is difficult to relate available information to design criteria because 
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experiments are often designed with own past experience or rules of thumb [15,17,57], mostly 

using Fe
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0/systems are reference. The difficulty arises from the fact that there is neither a 

reference Fe0 material nor a standard protocol to test Fe0 materials.  

There are repeated claims that the adsorption/co-precipitation concept [27,41,42] for 

contaminant removal in Fe0/H2O systems has been introduced by prolifically refuting 

extensive work validating the still prevailing reductive degradation/precipitation concept 

[58,59] without any original experimental work [60-64]. Thus, the adsorption/co-precipitation 

concept has been mostly ignored by the scientific community. Unfortunately, this 

argumentation ignored seven important facts: (i) the reductive degradation/precipitation 

concept has never been univocally accepted [39,65-67], (ii) the author of the adsorption/co-

precipitation concept has initially published on the reductive precipitation by Fe0 using 

uranium as model contaminant [68], (iii) intensive work with methylene blue as model 

contaminant has disproved the reductive degradation/precipitation concept [69-71], (iv) apart 

from Ghauch and his colleagues [61] no other researcher or research group who has initially 

criticized the adsorption/co-precipitation concept has poised to test it, (v) Ghauch et al. [43-

45] have validated the adsorption/co-precipitation concept using various organic pollutants 

including clofibric acid and diclofenac, (vi) chemical reduction is definitively not a stand 

alone removal mechanism for any contaminant [17,28,30,32,47], and (vii) the incriminated 

prolific literature is a peer-reviewed one. To sum up, the adsorption/co-precipitation concept 

is currently dismissed because the reductive degradation/precipitation concept is widely 

accepted [62] or because no laboratory or field work with chlorinated organic compounds has 

been published to support it [63,64]. This attitude has virtually divided the research 

community into two schools (pro and contra one of the concepts), although the adsorption/co-

precipitation concept was clearly introduced as an extension of the then (and still) prevailing 

reductive degradation/precipitation concept while explaining several reported discrepancies 

[41,42]. 
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The present communication aims at further elucidating the contribution of Fe0 in the process 

of contaminant reduction in Fe
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0/H2O systems. For this purpose Al0/H2O, Fe0/H2O and 

Zn0/H2O systems are comparatively discussed for their contaminant removal and their 

contaminant reducing capacity. For the sake of clarity the thermodynamics of involved 

systems will be first discussed. 

2 Thermodynamics of metal/H2O systems 

This section will comparatively discuss the thermodynamics of processes occurring in 

metal/H2O systems (M0/H2O systems) and relevant for metal reactivity yielding contaminant 

removal. These processes include: (i) M0 oxidative dissolution or M0 corrosion, primarily 

yielding metal hydroxides, (ii) M hydroxide stability (solubility or precipitation), and (iii) the 

kinetics of the formation of an oxide scale on M0 surface and its relation to M0 protectiveness 

against further corrosion. 

2.1 Metal oxidative dissolution 

Aqueous M0 corrosion is essentially an electrochemical process (redox reaction) involving the 

anodic dissolution of M0 and an appropriated cathodic reduction. For natural waters the two 

main cathodic reduction reactions are H+ reduction (or H2 evolution – Eq. 1, 1a) and O2 

reduction (O2 adsorption – Eq. 2), depending on the pH value [72-74]. 

Fe0 + 2 H+  ⇒  Fe2+  + H2      (1) 

Fe0 + 2 H2O  ⇒  Fe(OH)2  + H2     (1a) 

2 Fe0 + O2  + 2 H2O ⇒  2 Fe2+  + 4 OH-    (2) 

As a rule H2 evolution is characteristic for low pH values (≤ 4.0) and O2 adsorption for higher 

pH value (> 4.0). However, both cathodic reactions occur to different extents or with different 

kinetics at all pH values [75,76]. In particular, O2 adsorption (pH > 4.0) is accompanied by 

metal oxyhydroxide precipitation [74,77,78]. The pH range of natural waters (4 ≤ pH ≤ 10) is 

exactly the area of remediation with M0/H2O systems and corresponds to slow dissolution 
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kinetics of Al0, Fe0 and Zn0. These slow dissolution kinetics are coupled to the low solubility 

of Al, Fe and Zn in this pH range, as will be discussed in the next section.  
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Table 1 summarizes the standard electrode potentials of water constituents (H+, O2) and 

relevant redox couples for Al0/H2O (AlIII/Al0), Fe0/H2O (FeII/Fe0 and FeIII/FeII), and Zn0/H2O 

(ZnII/Zn0) systems [79]. It can be seen from Tab.1 that Al0 is a stronger reducing agent than 

Zn0 and Fe0. On the other hand, Fe is available in aqueous systems in two different oxidation 

states (II, III) while dissolved Al and Zn are available only in one oxidation state (III and II 

respectively). Another feature from Tab. 1 is that, Al0 and Zn0 may be oxidized by FeII
(aq or s), 

FeIII
(aq or s), H2 and OH- while Fe0 may be oxidized by FeIII

(aq or s), H2 and OH- [80]. Thus, in 

Al0/Fe0 and Zn0/Fe0 bimetallic systems, apart from electrochemical cells between Al/Zn and 

Fe, Fe0 dissolution is additionally sustained by species that are produced by the oxidation of 

Al/Zn [47]. Remember that the primary iron corrosion products are FeII and H/H2. From the 

E0 values in Tab. 1 the following increasing order of reactivity of discussed metals is: Fe0 < 

Zn0 < Al0. But in all three systems atomic and/or molecular hydrogen (H/H2) are further 

potential reducing agents whose contribution to contaminant reduction should be properly 

considered [65]. Given that H/H2 production is coupled to metal oxidation, the order of 

reactivity by H/H2 will be the same as the one given on the basis of the E0 values. However, 

for H/H2 contaminant reduction is an indirect process as metal is oxidized by water (H+) and 

contaminants are reduced by a product of water reduction (H/H2). 

The next important feature of discussed M0/H2O systems is the presence of metal oxides (in-

situ generated corrosion products). Al, Fe and Zn oxyhydroxides are basically good 

adsorbents for dissolved species. Al and Fe oxyhydroxides have been successfully used in 

drinking water treatment plants [81-85]. The adsorptive characteristics of metal 

oxyhydroxides encompass the adsorption of FeII and H/H2 yielding the powerful reducing 

agent (FeII
(s) and H(s)) as discussed in the literature [39,58]. In particular the use of FeII

(s) for 

contaminant reductive transformation has been extensively investigated during the past two 
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decades [86-93]. While H(s) may be formed in all three systems discussed here, only the 
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0/H2O system is rich in a third reducing agent (FeII
(s)) [80]. As a consequence, it can be 

postulated that any anomaly in the behaviour of the Fe0/H2O system compared to the two 

other systems is ascribed to the presence of FeII
(s) (and to a limited extend to FeII

(aq)). It is the 

objective of this communication to demonstrate that contaminant reduction in Fe0/H2O 

systems under groundwater conditions is mostly driven within the oxide scale on Fe0 by FeII
(s) 

and H(s). For this purpose the importance of the rate of mass transfer within the oxide scale 

will be presented. 

2.2 The solubility of metal hydroxides 

The thermodynamic equilibria involved in metal hydroxide precipitation at the M0 surface can 

be expressed as [78]: 

H2O ⇔ H+ + OH-   Kw = 10-14   (10) 

M(OH)n ⇔ Mn+ + n OH-   Ks = [Mn+][OH-]n  (11) 

The pH value or the concentration of H+ (or OH-) (Eq. 10) is determinant for the Ks value (Eq. 

11). The solubility of studied metal hydroxides at pH 7 are given in Tab. 2 and their pH 

dependence illustrated in Fig. 1. The values for Fig. 1 were calculated using OLI Stream 

Analyser which uses the revised Helgeson–Kirkham–Flowers model for the calculation of 

standard thermodynamic properties of aqueous species and the frameworks of Bromley, 

Zemaitis, Pitzer, Debye-Huckel, and others for the excess terms [94-96]. 

Figure 1 shows that Zn is the most soluble metal for the pH values relevant for natural 

situations (4.5 ≤ pH ≤ 9.5). The behaviour of Fe is strongly dependant on the redox 

conditions. Under anoxic conditions, FeII is the dominant species and its solubility is even 

higher than that of Zn2+. For both species however, the solubility is essentially decreased by 

polymer formation such that the actual solubility is considerably smaller than under 

laboratory conditions [9,97]. The solubility of Al is the lowest around pH 6. Under oxic 

conditions, FeIII is the dominant species and its solubility in the pH range of natural waters is 
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almost constant and equal to 10-7.5 M (mol L-1). For pH > 7.5, Al is more soluble than Fe, 

suggesting that using Al
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0 as groundwater remediation medium could yield elevated dissolved 

Al. The situation is even worse for Zn. The presentation above suggests that, in the 

perspective of obtaining a metal free water, two situations must be discussed: (i) under anoxic 

conditions Al0 is the best reactive medium, and (ii) under oxic conditions Fe0 is the best 

reactive medium. 

Actually, the goal of groundwater remediation using reduced metals including Al0, Fe0 and 

Zn0 is to exploit the oxidative capacity of these metals in passive systems (no energy input, 

little maintenance) for the long term. In other words, contaminant reduction/removal coupled 

to metal corrosion should work alone for up to more than four decades [11,14]. For this 

operation to be successful, the extent of metal oxidation should not be strongly inhibited by 

metal oxyhydroxide precipitation. That is, metal oxides should be as soluble as possible. In 

this regard the general increasing order of suitability is Al0 < Zn0 < Fe0. Under oxic 

conditions, a pH-dependent inversion occurs for Al and Fe for pH > 7.5. Considering further 

the strong decrease of solubility of Fe(OH)2 upon polymer formation, the actual general trend 

could be: Al0 < Fe0 < Zn0.  

In natural waters, electrochemical metal corrosion is always accompanied by the formation of 

scales of: (i) Al2O3 on Al0, (ii) mixed oxides including FeOOH, Fe2O3, Fe3O4 or green rusts 

on Fe0, and (iii) ZnO on Zn0. The extent to which these scales inhibit further corrosion is 

known as protectiveness and will be discussed in the next section. In general, Al2O3 on Al0 

and ZnO on Zn0 are mostly protective and mixed oxides on Fe0 are mostly non-protective.  

2.3 Protectiveness of oxide scale on metals 

When the solubility of a metal hydroxide [M(OH)n] is exceeded, it precipitates [76,78]. 

Precipitation of hydroxides necessarily leads to the formation of an oxide scale on M0 upon 

hydroxide transformation. A hydroxide scale on M0 can slow down the corrosion process by: 

(i) presenting a diffusion barrier for the species involved in the corrosion process, and (ii) 
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covering a portion of M0 surface. As a rule the initial hydroxide scale is porous and thus non-

protective.  
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Hydroxide scales growth extent and their protectiveness depend primarily on the precipitation 

rate. As the M0 surface corrodes under the scale, corrosion continuously undermines the scale. 

As voids are created, they are filled up by the ongoing hydroxide precipitation and so on. 

When the rate of hydroxide precipitation at the M0 surface exceeds the rate of metal 

dissolution (M0 corrosion) dense protective scales form. Vice versa, when the corrosion 

process undermines the newly formed scale faster than precipitation can fill in the voids, a 

porous and non-protective scale forms [76]. 

The presentation above suggests that, thermodynamically more favourable dissolution 

reactions are more likely to yield protective hydroxide scales. Accordingly, under identical 

conditions (e.g. temperature, water chemistry) the general trend for increasing order of 

protective scale formation is Fe0 < Zn0 < Al0. In other words, given that the process of 

oxidative M0 dissolution is inhibited by the process of hydroxide precipitation, Fe0 is more 

suitable than Zn0 and Al0 for long-term passive dissolution (coupled to contaminant removal). 

Because metal hydroxides (e.g. Fe(OH)2, Fe(OH)3) are further transformed to metal oxides 

(e.g. Fe3O4, Fe2O3) (Tab. 2), the compatibility between the crystal structure of metals and 

oxides could help to discuss the adhesion of oxides to the surface of metal as adhesive oxide 

are non permeable [97]. 

A look on the crystal structures of aluminium, iron and their oxides reveals that the unit-cell 

in Al0 and Al2O3 are very similar to one another; thus the formed Al2O3 at the Al0 surface 

adhere tightly to Al0 beneath it. The oxidized surface provides a protective layer that prevents 

water and dissolved species from getting to the Al0 surface. The situation is similar with Zn0 

and ZnO. The unit-cell of Fe0 and Fe-oxides (FeO, FeOOH, Fe2O3, Fe3O4) are not particularly 

closed [98]. There is no tendency for an iron oxide layer to adhere to Fe0. Accordingly, Fe0 

corrosion continues because formed oxide layers are porous and non adherent (thus non-
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protective). This is the reason why despite thermodynamic prediction (Tab. 1), Fe0 is more 

suitable than Al
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0 and Zn0 for environmental remediation [29]. It should be explicitly recalled 

that Fe0 is also the sole metal yielding multivalent ions (FeII and FeIII) upon oxidation. The co-

existence of FeII and FeIII in the oxide scale is an argument against an impervious oxide scale. 

2.4 Partial conclusion 

The present section has demonstrated the synergistic contributions of the thermodynamics of 

M0 corrosion, M hydroxide precipitation and relative structure of M0 and M oxides for the 

long term reactivity of reduced metals for water treatment. It is shown that despite high 

electrode potential (E0 value, Tab. 1) Fe0 is more suitable for long term stand alone reactivity 

thanks of the non-protectiveness of the iron oxide scale on Fe0. This scale is made up of 

mixtures of iron oxide which are initially very porous and whose porosity may decrease with 

age. The change in Fe0 reactivity is not roughly attributed to the formation of an oxide scale 

[8] but to evolution of its porosity. Thus, the mass transfer of species across the oxide scale is 

determinant to identify the relevance of individual reducing agent in the process of 

contaminant removal. 

3 The importance of mass transfer rate 

There is an agreement on the crucial importance of oxide scales on Fe0 for the process of 

contaminant removal in Fe0/H2O systems [3,41,42,99]. However, there is a net discrepancy on 

the role of the oxide scale on the mechanism of contaminant removal [3,99].  

The popular view is that Fe0 acts as a reducing agent (direct reduction) and the oxide film acts 

as ‘mediator’ in the process of contaminant reduction [3,83,100]. Accordingly, three possible 

functions have been attributed to the oxide scale: (i) the oxide scale may serve as a physical 

barrier inhibiting electron transfer from Fe0 to reducible species. The electron transfer (direct 

reduction) may occur through defects like pits; (ii) the oxide scale may mediate electron 

transfer from Fe0 to reducible species by acting as a semiconductor (direct reduction); (iii) the 

oxide scale may act as a coordinating surface containing sites of FeII that complexes (indirect 
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reduction). The presentation above has neglected the reducing role of H/H2. Recently 

however, Jiao et al. [39] have traceably demonstrated that the reduction of carbon 

tetrachloride in Fe
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0/H2O systems is not a direct reduction (electrons from Fe0) but mostly 

resulted from adsorbed H. In other words, Fe0 serves as the original source of electron donors 

(H/H2 and FeII) but is not the immediate electron donor. On the other hand, this model ignored 

the fact that iron corrosion products are generated in-situ in the presence of contaminants. 

Under such circumstances contaminant enmeshment is inevitable [84,101,102]. This 

observation has led to the actual concept for rationalizing the process of contaminant removal 

in Fe0/H2O systems [28-34,41,42]. 

The most recent concept attributes a more important role to oxide scale on Fe0. Fe0/H2O 

systems are regarded as domains of precipitating iron hydroxides and contaminants entering 

this domain are enmeshed by a primary non-specific mechanism [41,42]. It is well-known, 

that the initial oxide scale on Fe0 is porous and thus permeable to water and dissolves species. 

The initial porous scale may be transformed to an impervious one [76]. However, in ideal 

situations, the dynamic process of Fe0 oxidative dissolution will continue until Fe0 is depleted. 

The question is how to dimension a Fe0/H2O system to achieve satisfactorily contaminant 

mitigation? The answer to this question depends on several factors including Fe0 intrinsic 

reactivity, nature of contaminants, O2 availability, water chemistry, water flow rate and bed 

thickness. 

For the design of a Fe0 reactive wall, it is fundamental to know the mass transfer rate which is 

determinant to accurately size the wall. That is to select the Fe0 amount and the wall thickness 

as function of water flow rate to achieve satisfactorily residence time for contaminant 

removal. However, available reaction rates were not consistent between reports because of 

differential Fe0 intrinsic reactivity and differential mixing conditions (mass transfer rate) used 

[38,103,104]. 
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The paramount significance of mixing conditions is due to the fact that mixing significantly 

influences: (i) the rate of Fe
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0 dissolution by transporting resulting FeII, and (ii) the spatial 

location of iron hydroxide precipitation as its production in the vicinity of Fe0 is avoid at high 

mixing intensities. In other words, while mixing solutions to shorten experimental duration 

for investigations in Fe0/H2O systems, serious biases may be introduced that completely 

change the nature of the system [41,42,103,104]. Experimental conditions relevant for field 

situations, should enable the formation and transformation of Fe oxyhydroxides (oxide scale) 

in the vicinity of Fe0. Under such conditions, the synergic effects probably yielding 

quantitative contaminant removal by adsorption, adsorptive size-exclusion, co-precipitation or 

enmeshment are likely to be simulated. According to Noubactep [41,42] these conditions are 

achieved the best under non-disturbed conditions or under shaking intensities lower than 50 

min-1 [103,104]. The next section will comparatively discuss the mechanism of contaminant 

removal in Al0/H2O, Fe0/H2O and Zn0/H2O systems in order to identify the role of Fe0 in the 

process of contaminant removal under conditions relevant to subsurface reactive wall 

situations. A succinct state-of-the-art knowledge on the process of aqueous contaminant 

removal by Al0 and Zn0 is presented in the Appendix. 

4 Mechanism of contaminant removal Fe0/H2O systems 

For the discussion of the process of contaminant removal in Al0/H2O, Fe0/H2O and Zn0/H2O 

systems, an arbitrary contaminant having an electrode potential higher than that of dissolved 

oxygen (E0 > 0.81 V) should be selected (Tab. 1). This is to account for the large spectrum of 

redox conditions that could be encountered in individual systems. Two possible examples are 

chromium (CrVI) and perchlorate (ClO4
-). While CrVI (E0 = 1.51 V) is readily reduced by FeII 

and Fe0, the reduction of ClO4
- (E0 = 1.29 V) by all three reducing agents has been reported to 

be very slow [82,83,85,105-107]. Accordingly, the discussion will be performed on ClO4
- 

removal. The suitability of dissolved ClO4
- for this study is due to his high stability in non-
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acidic aqueous solutions. In fact, ClO4
- behaves as an inert electrolyte in chemical and 

electrochemical studies [85,105]. 
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Table 3 summarizes the results of published works on the mechanism of aqueous ClO4
- 

removal under ambient conditions by Al0, Fe0 and Zn0. The general trend is that ClO4
- 

removal is incomplete. Values of removal efficiencies are not added in Tab. 3 because 

available results are not directly comparable due to differences in the operational design. In 

general quantitative ClO4
- removal is obtained under extreme conditions such as: (i) elevated 

temperatures [106], high metal doses [105] or (iii) with microbial processes [108] or operating 

under particular conditions. 

It is interesting to note that Al0 and Zn0 could not induce ClO4
- reduction. The extent of ClO4

- 

removal certainly depends on the operational condition (metal particle size, metal dose, 

mixing intensity…) but the qualitative absence of reduction suggests that elemental metal 

(M0) is not basically involved in the process of contaminant reduction in M0/H2O systems. 

Accordingly, in Fe0/H2O systems, contaminant reduction is coupled with the complex 

processes occurring within the oxide scale on Fe0 and the reducing agents are (adsorbed) H 

and FeII species. A proper consideration of the thermodynamics of processes occurring in the 

oxide scale on Fe0 and the spatial disposition of Fe0 and the oxide scale has yielded the same 

conclusion [28,29,41,42]. The view that contaminants are quantitatively removed by in-situ 

generated corrosion products and reduction occurs in the body of the oxide scale is validated 

by the approach comparing Fe0 with Al0 and Zn0 for ClO4
- removal. 

5 Toxicity of tested elements 

Aluminium, iron and zinc are 3 potential toxic metals for animal, humans, micro-organisms 

and plants. Accordingly, their toxicity must be discussed before their generalized use in 

environmental remediation strategies. Due to their natural abundance, aluminium and iron 

may be considered harmless for the environment at first glance. However, the use of each of 

the 3 elements must be individually considered at any specific site. 
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The prediction of metal toxicity by evaluation of the relationships between general metal 

properties and toxic effects has been a matter of intensive research. Relevant metal toxicity 

data included exposure times, organisms, effects and effect levels. Commonly used metal 

properties included the oxidation state (OX), the electrochemical potential (E
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0), the ionization 

potential (IP), the atomic radius (AR), the ionic radius (IR), the atomic weight (AW), the 

electronegativity (Xm) and the atomic number (AN) (Tab. 4). Using these parameters and 

revisiting 30 relevant publications, Wolterbeek and Verburg [109] suggested that toxicity 

prediction may be performed on basis of selected metal properties without any adoption to 

specific organisms, without any division of metals into classes, or grouping of toxicity tests. 

The data of Wolterbeek and Verburg [109] suggest that iron and zinc are very similar in their 

general toxicity and are both more toxic than aluminium. This trend is not confirmed by the 

element permissible limits of World Health Organization maximum for drinking water 

(MCL). The MCL values suggest that Al is the most toxic elements while Zn is the less toxic 

one, however, it should be highlighted that for iron, the MCL is based on taste issues. In all 

the cases, the toxicity to be discussed here concerns all organisms likely to be present in the 

environment where a remediation metal/H2O system will be installed. Clearly, beside 

chemical reactivity for long term contaminant removal, the effect of individual metals on the 

environment must be profoundly understood. However, even for iron (including nano-Fe0) 

comprehensive studies are still lacking [15,17]. 

6 Concluding remarks 

This study clearly delineates the synergetic importance of (i) the thermodynamics of iron 

oxidative dissolution, (ii) the thermodynamics of Fe oxides precipitation, and (iii) the kinetics 

of oxide scale growth (thus its porosity) for the process of contaminant removal in Fe0/H2O 

systems. The comparison with Al0/H2O and Zn0/H2O systems has shown that contaminant 

reductive transformation results from complex processes taking place within the oxide scale 

[34,47]. These processes involved secondary reducing agents (H, H2 and FeII) possibly 
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adsorbed to the surface of in situ generated minerals. The contribution of electrons from Fe0 

(direct reduction) for contaminant reduction is not significant.  
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In demonstrating that Fe0 is a not a significant electron source for contaminant reductive 

transformation, this study conciliates two decades of intensive research on remediation with 

Fe0 with almost two centuries aqueous metal corrosion research [47,72,73,77,110-114]. In 

fact, eighteen years ago, Stratmann and Müller [115] demonstrated that, in a Fe0/H2O system, 

Fe0 is oxidized by water and molecular O2 is reduced by FeII (from Fe0 oxidation). Similarly, 

Odziemkowski et al. [65], Lavine et al. [66], Jiao et al. [39] and Ghauch et al. [43-45] could 

not identified any significant contribution of direct reduction (electrons from Fe0) in the 

reduction process of several contaminants. On the other hand, the crucial role of corrosion 

products in the process of contaminant reduction has been demonstrated [39,46, 116-120]. 

The roles of iron hydroxides/oxides have been belittled by the thermodynamic founded 

premise that Fe0 is a reducing agent. However, this widely accepted premise has not properly 

considered the thermodynamics of: (i) the oxide scale formation, and (ii) the adhesion of 

oxide scale to the Fe0 surface. In other words, existing models developed to simulate complex 

geochemical and physical processes that occur in Fe0/H2O systems [8,121-127] have not 

properly considered two important thermodynamic issues. The fact that these models were 

reported successful in representing results of laboratory and field tests [13,124-127] questions 

the validity of models to predict long-term performance of Fe0/H2O systems. Accordingly, 

more reliable models should take into account the evolution of the oxide scale on Fe0 over 

time. For this enterprise to be successful, more time should be devoted to gain reliable data in 

long-term laboratory experiments under relevant conditions. Only such data could enable the 

ascertainment of reliable parameters to be incorporated in sound models. 
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Appendix: Al0 and Zn0 for environmental remediation: state-of-the-art 

For the sake of completeness, the state-of-the-art knowledge on the process of aqueous 

contaminant removal be Al0 and Zn0 is succinctly given here. 

A.1 Al0 for environmental remediation 

Because of the similitude in crystal structure between Al0 and Al2O3 [98], Al0 is rapidly 

covered by an impervious Al2O3-scale rendering Al0 not suitable for environmental 

remediation. Fig. 1 has recalled that Al(OH)3 is very low soluble. Accordingly, reductive 

transformations reported for some contaminants like chlorinated organic compounds [128-

130] were necessarily observed at the beginning of the experiments or under conditions 

disturbing the formation of the oxide scale on Al0. 

Bojic et al. [51,131-133] have presented a micro-alloyed aluminium composite (MAlC) as an 

attractive medium for aqueous contaminant removal by spontaneous reduction–coagulation 

process. Removal by MALC is attractive in terms of both removal efficiency and cost 

effectiveness. The MAlC consists of micro-alloyed aluminium coated over a thin iron net 

[132]. Its mechanism of action is based on the several physico-chemical processes and the in 

situ formation of the coagulant, due to its spontaneous reaction with water. The major 

processes are adsorption, reduction, hydrogenation, hydrolysis and coagulation, operating 

synergistically to degrade and remove variety of pollutants from water [51]. An examination 

of processes occurring in the MAlC treatment shows that Al(OH)3 flocks act as adsorbents 

and/or traps for ions, molecules or suspended particles thus, removing them from the solution 

by sorption, co-precipitation or electrostatic attraction followed by coagulation [51]. This 

global removal mechanism is the one by which Fe0/H2O systems operate. In other words, 

micro-alloying Al enables the formation of a porous oxide layer on Al0. A porous oxide layer 

is permeable for ions because of the many defects in the crystal lattice due to different 
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dimensions and charges of micro-alloyed elements, related to Al3+. Keeping in mind, that 

similar Fe
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0 composites are responsible for the long-term efficiency of SONO arsenic filters 

[134,135] the synthesis of several Fe0 composites containing various amounts of S (and P) 

should be regarded as next generation Fe0 media for site specific applications. Remember that 

S (and P) is an undesirable alloying element in the steel and iron production because of it 

ability to form high reactive electrochemical cells acceleration corrosion. 

A.2 Zn0 for environmental remediation 

Zn0 has been presented as an attractive alternative to Fe0 for environmental remediation [48-

50,54-56,100,136-142]. This is mostly due to the relative high solubility of zinc-bearing 

minerals compared to iron-bearing minerals [143]. Accordingly, Zn0 can maintain its 

reactivity for a longer period of time than Fe0. Fig. 1 corroborates these findings as ZnII is 

essentially more soluble than FeIII. Remember, the oxidation of FeII to FeIII occurs even under 

strong anoxic conditions and that the solubility of polymerised FeII is by far lower than that of 

hydrated FeII [97]. The higher reactivity of Zn0 is necessarily coupled with high ZnII 

concentration. However, effort to monitor and control toxic generated ZnII are recent. For 

example Song et al. [143] positively tested the possibility of using hydroxyapatite in 

combination with Zn0 to control ZnII concentration. In other words, in comparison to Fe0, the 

increased reactivity of Zn0 is coupled with high ZnII concentrations in effluents. Reports on 

Zn-composites similar to MAlC from Bojic et al. [51,131-133] were not found. 
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Figure captions 752 

753 

754 

755 

756 

757 

 

Figure 1: pH dependence of metal hydroxide solubility. A clear pH-dependence of hydroxide 

solubility can be observed. Considered minerals are Al(OH)3, Fe(OH)2, Fe(OH)3 and 

Zn(OH)2. 
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Table 1: Standard electrode potentials of water constituents (H+, O2) and relevant redox 

couples for Al

757 

758 

759 

760 

761 

762 

763 

0/H2O (AlIII/Al0), Fe0/H2O (FeII/Fe0 and FeIII/FeII), and Zn0/H2O 

(ZnII/Zn0)systems. E0 are arranged in increasing order. The lower the E0 value, the stronger 

the reducing capacity of Al0 (Fe0 or Zn0) for the oxidant of a couple. Note that Al3+ can not be 

reduced in Fe0/H2O systems whereas Fe2+ is reduced in Al0/H2O and Zn0/H2O systems. E0 

values are from Gerasimov et al. [79]. 

 

Reaction E° (V) Eq. 

Al0 ⇔ Al3+ + 3 e- -1.66 (3) 

Zn0 ⇔ Zn2+ + 2 e- -0.76 (4) 

Fe0 ⇔ Fe2+ + 2 e- -0.44 (5) 

Fe2+
(s) ⇔ Fe3+

(s) + e- -0.36 to -0.65 (6) 

H+ + e- ⇔ ½ H2 (g) 0.00 (7) 

Fe2+ ⇔ Fe3+ + e- 0.77 (8) 

O2 + 2 H2O + 4 e- ⇔ 4 OH- 0.81 (9) 
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765 
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Table 2: Solubility of metal hydroxides relevant for the discussion in this study at pH 7. Data 

from Lewis [96]. 

765 

766 

767  

Reaction Ks Eq. 

Al+ + 3 OH- ⇔ Al(OH)3 10-8.1 (12) 

Al(OH)3 ⇒ Al2O3  (12a) 

Fe2+ + 2 OH- ⇔ Fe(OH)2 100.16 (13) 

Fe3+ + 3 OH- ⇔ Fe(OH)3 10-7.5 (14) 

Fe(OH)2, Fe(OH)3 ⇒ FeOOH, Fe2O3, Fe3O4  (13a, 14a)

Zn2+ + 2 OH- ⇔ Zn(OH)2 10-1.1 (15) 

Zn(OH)2 ⇒ ZnO  (15a) 
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Table 3: Experimental conditions and mechanism of ClO4
- removal in selected Al0/H2O, 

Al/Fe

769 

770 

771 

772 

0/H2O, Fe0/H2O and Zn0/H2O systems. It is evident that ClO4
- reduction occurs only in 

Fe0-bearing systems. 

 

Medium loading Mixing concentration pH time Mechanism Reference 

 (gL-1) (min-1) (mgL-1)  (h)   

Al 5 to 35 180 10.0 5.2 24 Adsorption [85]  

Fe 400 20 10.2 7.0 336 Partial reduction [105] 

Fe 1000 shaken 1.0 5.0 300 Partial reduction [82] 

Zn 1000 shaken 1.0 5.0 300 No removal [82] 

773 

774 

775 
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Table 4: Characteristic parameters (OX, E0, IP, Xm, AR. IR, AW, and AN) of metals relevant 

for toxicity evaluation, WHO element maximum permissible limits in drinking water (MCL), 

and averaged order numbers of toxicity relative to 80 metal ions after Wolterbeek and 

Verburg [109]. The relative toxicity values are given together with the uncertainties in the 

respective positions. A toxicity value of 80 corresponds to the most toxic element and a value 

of 1 to the least toxic.  

775 

776 

777 

778 

779 

780 

781  

X OX E0 IP Xm AR IR AW AN MCL Toxicity 

 (-) (V) (-) (-) (Å) (Å) (gmol-1) (-) (ppm) (-) 

Al 3 1.662 28.45 1.61 0.54 0.54 26.98 13 0.2 15.1 ± 10.4

Fe 2 0.447 16.19 1.83 1.24 0.61 55.84 26 0.3 36.4 ± 11.5

Fe 3 0.771 30.65 1.83 1.24 0.55 55.84 26 0.3 29.8 ± 9.5 

Zn 2 0.762 17.96 1.81 1.31 0.74 65.37 30 5.0 35.6 ± 6.5 

782 

783 

784 

785 

X = Element, OX = Oxidation state, E0 = electrochemical potential, IP = ionization potential, Xm = 

electronegativity, AR = atomic radius, IR = ionic radius, AW = atomic weight, AN = atomic number. 
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