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Abstract  

Current knowledge of the basic principles underlying the design of Fe0 beds is weak. The 

volumetric expansive nature of iron corrosion was identified as the major factor determining the 

sustainability of Fe0 beds. This work attempts to systematically verify developed concepts. Pumice 

and sand were admixed to 200 g of Fe0 in column studies (50:50 volumetric proportion). Reference 

systems containing 100 % of each material have been also investigated. The mean grain size of the 

used materials (in mm) were 0.28 (sand), 0.30 (pumice) and 0.50 (Fe0). The five studied systems 

were characterized (i) by the time dependent evolution of their hydraulic conductivity 

(permeability) and (ii) for their efficiency for aqueous removal of CuII, NiII, and ZnII (about 0.30 M 

of each). Results showed unequivocally that (i) quantitative contaminant removal was coupled to 

the presence of Fe0, (ii) additive admixture lengthened the service life of Fe0 beds, and (iii) pumice 

was the best admixing agent for sustaining permeability while the Fe0/sand column was the most 

efficient for contaminant removal. The evolution of the permeability was well-fitted by the 

approach that the inflowing solution contained dissolved O2. The achieved results are regarded as 

starting point for a systematic research to optimise/support Fe0 filter design. 

1 Introduction 

Permeable reactive barriers (PRBs) containing metallic iron (Fe0) as reactive medium have been 

developed during the past two decades to an established technology for groundwater remediation 

[1-11]. The original PRB technology containing granular Fe0 has been expanded to the injection of 

nano-scale Fe0 for source remediation [8-11]. To date, more than 180 Fe0 PRBs have been installed 

worldwide [8,11]. Successful accomplishment of remedial goals has been typically reported. At 

some few sites, system failures were recorded [8,12]. Reported failures were attributed to design 

shortcomings due to poor site characterization (reason 1), poor design selection (reason 2) or 

installation at sites where the technology is not an appropriate choice (reason 3) [8,12,13]. 

However, there is clear evidence that the physico-chemistry of the Fe0/H2O system was not properly 
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considered [14]. Accordingly, design shortcomings may have reasons different from or additional to 

reasons 1, 2 and 3. 

A major concern of Fe0 PRBs is related to the reduction of the hydraulic conductivity (permeability 

loss) with time [15-17]. Laboratory and field data have also demonstrated diminished Fe0 reactivity 

with time [9, 18]. Consequently, the sustainability of Fe0 PRBs in terms of both Fe0 reactivity and 

system permeability has been extensively discussed during the past 15 years [1,18-24]. Reported 

results are confusing and even conflicting as demonstrated below for trichloroethene (TCE). 

O’Hannesin and Gillham [1] reported on successful TCE (268 mg/L) reductive degradation by a 

Fe0/sand mixture containing 22 % Fe0 by weight (laboratory and field test). Bi et al. [21] tested 

several weight Fe0/sand mixtures (25/75, 50/50, 75/25, 85/15 and 100/0) for TCE (up to 60 mg/L) 

treatment and reported that the system with less than 50 % Fe0 was not efficient (laboratory test). 

Ruhl et al. [18] evaluated four dual mixtures (Fe0/anthracite, Fe0/gravel, Fe0/pumice and Fe0/sand) 

for TCE (about 10 mg/L) treatment (laboratory test). The used masses of additives varied from 24.4 

g for pumice to 104.3 g for gravel. The used mass of Fe0 was 100 g resulting in Fe0 weight ratios 

varying from 49 % for gravel to 80 % for pumice. Ruhl et al. [18] concluded that tested dual 

systems are not applicable for TCE treatment but “might be applicable for the removal of heavy 

metals”. 

The three examples reveal that researchers use varying experimental procedures to characterize 

processes in Fe0/H2O systems (see Tab. 1) [1,21,25-33]. These procedures differ for instance in Fe0 

intrinsic reactivity, Fe0 pre-treatment, Fe0 mass, Fe0 particle size and shape, used admixing 

additives and their proportions, duration of the experiments, nature and concentration of the 

contaminant, buffer application, solution flow velocity and water chemistry. As a result, many 

different reports for the same compound are available in the literature (even for the same Fe0). 

Water and dissolved inorganic constituents (Ca2+, HCO3
-, Mg2+, O2, PO4

3-, SO4
2-) react with iron 

species (Fe0, FeII and FeIII) to form precipitates that progressively fill the inter-particular porosity 
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within a Fe0 filter. The potential of these in situ generated precipitates to limit the permeability and 

the efficiency of Fe0 PRBs filters has been clearly documented [1,4,6-8]. However, the role of Fe0 

oxidation by water has not always been properly considered and the role of gas (H2) formation in 

porosity/permeability loss has been sometimes overestimated [15,16]. Recent theoretical works 

demonstrated that a Fe0-based filter should be considered as a system in which iron is corroded 

mostly by water and the micro-pollutants are sequestrated in the matrix of precipitation corrosion 

products [14,34-36]. This view corroborates concordant reports regarding Fe0 filters as a long-term 

sink for C, S, Ca, Si, Mg, and N [12,37-39]. 

The present work is an attempt to improve the design of Fe0 filtration systems based on recent 

theoretical studies [14]. In the present work, the efficiency of five different systems (A to E) for 

aqueous contaminant removal is tested in column studies. The volumetric composition of individual 

systems is given as: (A) 100 % sand, (B) 100 % pumice, (C) 100 % Fe0, (D) 50:50 Fe0:pumice, and 

(E) 50:50 Fe0:sand. The model solution contained about 0.30 M of CuII, NiII, and ZnII. The 

evolution of the systems is characterized by determining the (i) extend of contaminant removal, and 

(ii) evolution of hydraulic conductivity. 

2 Materials and methods  

2.1  Chemicals and solutions 

Copper(II) nitrate hydrate (purity 99.999), nickel(II) nitrate hexahydrate (purity 99.999) and zinc(II) 

nitrate hexahydrate (purity 99.000) were obtained from Sigma-Aldrich. All chemicals used for 

experiments and analysis were of analytical grade. The used solutions were obtained by dissolving 

copper nitrate, nickel nitrate and zinc nitrate in distilled water. The molar concentration of the 

resulting solution was as follows: 0.27 M Cu, 0.29 M Ni and 0.37 M Zn. The corresponding mass 

concentrations are 17 mg/L Cu, 17 mg/L Ni, and 23 mg/L Zn. 

2.2 Solid materials 

2.2.1 Porosity of binary granular media 
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The total porosity Φ of a binary granular medium composed of two kinds of particles P1 and P2 

(here P1 corresponds to Fe0 particles) is given by :  
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96 Where: (i) Φinter is inter-particular porosity (ii) Vai, Mai, ρai are respectively the apparent volume of 

the particles i, the mass and the apparent specific weight, and ϕ2  is the intra-particular porosity of 

the particles 2 with 

97 

02 =ϕ  for non porous particles (sand) and 02 ≠ϕ  for porous particles (pumice) 

and (iii) V

98 

99 

100 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

113 

114 

rz is the total packing volume of the granular medium.  

2.2.2 Metallic iron (Fe0) 

The used Fe0 is of the type FERBLAST RI 850/3.5, distributed by Pometon S.p.A., Mestre - Italy. 

The powdered material contents mainly iron (> 99.74 %). Identified impurities included mainly Mn 

(0.26 %), O, S and C. The material is characterized by uniform grain size distribution. The 

coefficient of uniformity U (ratio between the diameters corresponding to 60 and 10 % finer in the 

grain size distribution) is 2. The mean grain size (d50) is about 0.5 mm and the initial porosity of 

used Fe0 medium has been estimated to be Φ0 = 49.6 % (see Tab. 2, Eq. 1). 

2.2.3 Pumice 

The used pumice originates from Lipari (Aeolian Islands, Sicily – Italy). Its mineralogical 

composition was determined as follows: SiO2: 71.75 %; Al2O3: 12.33 %; K2O: 4.47 %; Na2O: 3.59 

%; Fe2O3: 1.98 %; moreover it contains about 4 % of bound water entrapped in the pumice structure 

during the sudden cooling of magma and traces of other compounds (e.g. CaO, SO3, MgO, TiO2, 

FeO, MnO, P2O5). The material is characterized by uniform grain size distribution. The coefficient 

of uniformity U is 1.4. The mean grain size (d50) is about 0.3 mm. This type of pumice has been 

chosen since it was the available fraction closest to Fe0 in dimension. The initial porosity of the 
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115 pumice granular medium has been estimated to be Φ0 = 73.3 % and the inner porosity of the pumice 

(intra particular porosity ϕpp ) to be 41 % (Tab. 2, Eq. 1) through Mercury Intrusion Porosity (MIP) 

measurements under the hypothesis that the relative density (packing) of granular mixtures in the 

columns and during MIP experiments were the same. 
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2.2.4 Sand 

The used quartz sand was obtained from a river quarry. The sand was carefully washed with 

distilled water and sieved before use. The material is characterized by uniform grain size 

distribution. The coefficient of uniformity U is 2.2. The mean grain size (d50) is about 0.28 mm. The 

material was used without any further characterization. The initial porosity of the sand medium has 

been estimated to be Φ0 = 45.0 % (Tab. 2, Eq. 1). 

2.3 Column operation  

Laboratory scale polymethyl methacrylate (Plexiglas) columns were operated in up-flow mode. The 

influent solution was pumped upwards from a single PE bottle using a precision peristaltic pump 

(Ismatec, ISM930). The flow rate was maintained constant at a value of 0.5 mL/min. Tygon tubes 

were used to connect inlet reservoir, pump, columns and outlet. Five plexiglas columns (50 cm 

long, 5.0 cm inner diameter) were used in the experiments (Fig. 1). 

Five different systems were investigated (Systems A through E) (Tab. 3). System A was the 

operational reference system containing only sand (0 % Fe0), System B was the second operational 

reference containing only pumice (0 % Fe0) and system C was a pure iron bed (100 % Fe0). The 

volumetric proportion of Fe0 in the 2 other systems (D, E) was 50 %. In systems C to E, the mass of 

iron was fixed to 200 g. This mass represented either 100 % of the reactive zone (rz) or the relevant 

volumetric proportion of rz (Fig. 1, Tab. 3). In system B the pumice volume was set to be the same 

occupied by Fe0 in system C while the pumice mass was obviously the same as in system E. The 

total porosity of the all systems varies between 45 % and 73 % (Tab. 2, Eq. 1). 
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The hydraulic conductivity [40] was determined during the column tests, by either constant-head (k 

> 10-6 m/s) or variable-head (k < 10-6 m/s) permeability methods, at selected dates to assess the 

permeability of the systems. The experiments were performed at room temperature (21 ± 4 °C). 

Samples for analysis were collected at periodic intervals and the experiments where prolonged until 

contaminant breakthrough (systems A and B) or a significant loss of the hydraulic conductivity 

(systems C to E) was observed. 

2.4  Analytical methods 

Samples from the columns were centrifuged at 3000 rpm (ALC, PK121 Multispeed Centrifuge). 

The supernatant was vacuum filtered through a 0.45 μm glass filters. The aqueous concentrations of 

Cu, Fe, Ni and Zn were then measured by Atomic Absorption Spectrophotometry (AAS - Shimadzu 

AA – 6701F; wavelengths: Cu 324.75 nm, Ni 232.00 nm, Zn 213.86 nm, Fe 248.33 nm) using air-

acetylene flame and according to conventional Standard Methods [41]. The used AAS device was 

calibrated  using three operational standard solutions covering the expected concentration range of 

the samples (after dilution if applicable). Each operational standard solution was prepared by an 

appropriate dilution of a 1000 ppm (Cu(NO3)2, Fe(NO3)3, Ni(NO3)2, Zn(NO3)2) certified atomic 

absorption stock solution from Merck (Germany). The minimum correlation coefficient of 

calibration curves was of 0.997. The pH value was measured by combination glass electrodes 

(WTW GmbH, inolab pH/Cond 720). 

2.4.1 MIP measurements 

MIP measurements have been carried out using a Micromeritics instrument apparatus type 

(AutoPore IV 9500). The instrument is capable of a minimum intruding pressure of 3.4 kPa and a 

maximum pressure of 227 MPa, so that the pore radius ranges from 2.7 nm to 180 μm.  

For pumice particles the measured pore data allow determining the inter-particular and intra-

particular porosities of the pumice particles, the apparent specific weight ρas (defined as the ratio of 

the mass and the apparent volume of the pumice particles) and the specific weight ρs (defined as the 
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ratio of the mass and the volume of the solid phase of the pumice particles). 

2.5 Expression of the experimental results 

In order to characterize the magnitude of tested systems for contaminant removal, the removal 

efficiency (E) and the specific removal (Es) were calculated using Eq. 2 and Eq. 3 [33].  

E = mrem/min*100    (2) 

Es = mrem/mFe*100    (3) 

where min is the mass of contaminant flowed into the column, mrem is the mass of removed 

contaminant, and mFe the mass of Fe0 present in the column. 

2.6 Evaluation of the residual porosity 

When iron corrodes, porous oxide layers are formed at the Fe0/H2O interface. The volume of the 

corrosion product (Voxide) is higher than that of the original metal (VFe). The ratio (η) between the 

volume of expansive corrosion product and the volume of iron consumed in the corrosion process is 

called ‘‘coefficient of volumetric expansion’’ [42,43]. Generally, Voxide is 2.08 to 6.40 times larger 

than V0 (2.08 ≤ η ≤ 6.40 for free expansion).  

At any time (t > 0), Voxide can be calculated using Eq. 4: 

Voxide = η*(V0 –Vt)      (4) 

Where η is the coefficient of volumetric expansion, (V0 –Vt) is the consumed Fe0 volume with V0 

the initial volume of Fe0 and Vt its residual Fe0 at time t.  

The effective volumetric expansion ΔV (Eq. 5) corresponding to the volume of pores that is 

occupied by iron corrosion products is a measure of the extent of porosity loss.  

ΔV = (η - 1)* (V0 –Vt)      (5) 

The residual porosity of the system at time t (Φ(t)) may be estimated by (Eq. 6):  

V
VV1t

rz

t0
0

)).(()( −−η
−Φ=Φ      (6) 186 

187 Where  is the initial porosity of the reactive zone given in Tab. 3, and VΦ0 rz is the volume of the 
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reactive zone.  

3 Results and discussion 

3.1 pH variation and Fe breakthrough 

Metal ions are known to be removed from the aqueous phase in packed Fe0 beds by adsorption, co-

precipitation and adsorptive size-exclusion when the pH > 4.5 [44-48]. Figure 2a clearly 

demonstrates that the pH value of the initial solution (t = 0) and that of the effluent from all 

columns was larger that 5.5. This suggests that contaminant removal could be quantitative (see Tab. 

4) if the residence time is sufficient to enable the formation of enough iron corrosion products for 

contaminant retention in the column. A hint that quantitative contaminant removal was likely is 

given by the evolution of the iron concentration (Fig. 2b). Fig. 2b clearly shows that the effluent 

iron concentration was less than 0.2 mg/L and reached values close to up to 1 mg/L only shortly 

before clogging for the system with 50 % pumice (system E). This observation could be attributed 

to accelerated transport through preferential flow paths [26]. 

3.2 Metal breakthrough 

Fig. 3 and Tab. 4 summarize the results of contaminant removal in systems containing Fe0. It is 

clear from Fig. 3a that no Cu breakthrough occurs. Ni breakthrough occurs first (Fig. 3b). In fact Ni 

breakthrough occurs before day 8 in the system with 100 % Fe0. Zn is the next less retained metal 

with a breakthrough occurring at day 10 in the system with 100 % Fe0 (Fig. 3c). The observed order 

of removal efficiency corresponds to the selectivity sequence for iron oxides and soils: Ni < Zn < 

Cu [49-51]. For example, Fontes and Gomes [50] found that in competitive adsorption CuII 

maintains its strong affinity with the surface, while NiII and ZnII are displaced from the surface. This 

observation corroborates the view that species with higher affinity to iron oxides are better treated 

by Fe0 filters [23,24,52,53]. 

Another important result from Fig. 3 is that no contaminant breakthrough was observed in the 

system with 50 % sand (system D). This system is less porous than the system with 50 % pumice 
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(Tab. 3). The differential behaviour of the systems with pumice and sand (D and E) illustrates the 

dilemma of sustaining efficiency (maximum Fe0 ratio) while maintaining permeability, for instance 

by using porous pumice in place of sand [33]. As discussed in details elsewhere [14,36] this 

dilemma could be solved by using an appropriate thickness of the Fe0-based layer for each relevant 

additive (e.g. activated carbon, anthracite, gravel, pumice, sand) to achieve water treatment under 

site specific conditions. Relevant site specific parameters include the nature of contaminant, the 

water chemistry and the water flow velocity. In other words, a proper design (reason 2, § 1) should 

be extended to the width of the Fe0 PRB, the nature of the admixing agent (e.g. type and grain size 

distribution) and the proportion of Fe0 therein. 

The last important issue on contaminant breakthrough concerns the suitability of specific removal 

(Eq. 3) for a dynamic system in which reactive species are progressively generated. Es values from 

Tab. 4 show that the lowest specific removal (1.74 mg Ni/g Fe0) was obtained in system C (100 % 

Fe0). While this result seems contradictory, it corroborates the view that iron corrosion is self-

inhibitory and that decreasing the proportion of Fe0 is a powerful tool to increase sustainability 

([54] and ref. cited therein). Tab. 5 shows that correcting Es by considering the extent of Fe0 

depletion at tlimit (Es,eff) restores the intuitive trend that “the greater the adsorbent amount, the larger 

the Es value“. Accordingly, the highest Es,eff values were obtained in system C (absolute value) 

which clogged at first. This result corroborates previous findings that filtration systems containing a 

100 % Fe0 layer are efficient but not sustainable [55,56]. Moreover, the fact that the effective 

specific removals for the three systems are similar (4.0 ≤ Es,eff ≤ 6.8) is a hint that the calculation of 

the consumed iron is right. Note that, Es,eff values are derived from Es values on the basis of the 

extent of Fe0 depletion at tlimit (Es, tlimit), not at the depletion at the end of the experiment. This result 

means that no significant breakthrough was observed before tlimit. 

3.3 Hydraulic conductivity 
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The results presented in Fig. 4 clearly demonstrate that the hydraulic conductivity decreases with 

time for the systems containing Fe0 particles (systems C, D, E) then remains constant at time tlimit 

(Tab. 5). 

The initial hydraulic conductivity K0 for all systems is about 5.10-4 m/s. The hydraulic conductivity 

tends to about the limit value Klimit = 5.10-9 m/s at time tlimit. The results show that the decrease of 

the permeability is down to about five orders of magnitude K0/Klimit = 1.10-5 (-). The time tlimit 

seems to depend on the investigated system (Tab. 5). The data in Tab. 5 clearly indicate that Fe0 

admixture with sand and pumice resulted in extended service life. The longest service life was 

observed for the system with pumice particles and is consistent with the fact that intra-particle 

porosity has contributed to increased permeability [57,58].  

Among the proposed models in the literature, the Kozeny-Carman equation is often considered to 

evaluate the evolution of the hydraulic conductivity [59]. This equation was developed after 

considering a porous material as an assembly of capillary tubes and yielded the hydraulic 

conductivity K as function of the porosity Φ, the specific surface S (m2/kg of solids) and a factor C 

to take into account the shape and tortuosity of channels. The first approximation is to accept the 

Kozeny-Carman equation [60-64]: 

)(.)(.)(
Φ−

Φ−
Φ
Φ

=
1

01
0

KtK
23

0   (6) 253 

254 

255 

256 

257 

258 

where K0 is the initial hydraulic conductivity and Φ0 the initial porosity.  

For the evaluation of the residual porosity Φ as a function of the time t, uniform corrosion for 

spherical particles with initial radius R0 (here R0 = 500 μm) is assumed. Individual particles corrode 

independently with the same kinetics until material depletion. Under these assumptions, it is 

considered that the actual radius R(t) of Fe0 particles varies linearly with time t according to:  

t
tRRtR

depletion

0
0

,

.)(
∞

−=   (7) 259 



where t depletion,∞  is the time at Fe0 depletion.  260 

261 

262 

From Eq. 5, 6 and 7, it is possible to simulate the decrease of the hydraulic conductivity as a 

function of time (Figure 4b-d). The modelling has been applied for the coefficient of volumetric 

expansion η = 6.40 in coherence with high O2 levels and for two times at Fe0 depletion ( t depletion,∞ = 

50 days and 62.5 days) [43]. It can be noticed that the maximum volume of Fe

263 

264 

265 

0 which may corrode 

is the one which leads to clogging (VFe,clogging) and is expressed by:  

1
V=V rz0

gingcFe −η
Φ .

log, .  (8) 266 

267 At time tlimit it is assumed that the volume of consumed Fe0 tends to the one leading to the clogging 

of the column ( ).(. log,VV0011Vt gingcFe−=  in calculations) and remains constant for t > tlimit. Under 

these assumptions, the permeability K

268 

269 

270 

271 

272 

limit corresponding to the time tlimit is reached at the clogging 

of the columns (Φ ≈ 0, see Tab. 5). The obtained results show that there is a good agreement 

between experiment and modelling concerning the kinetic of the decrease of the permeability with 

time and the Klimit value. It can be noticed that the linear law for corrosion process (Eq. 7) with the 

two considered times ( t depletion,∞ ) as a first approximation of corrosion kinetic, allows to well 

reproduce the decrease of the permeability at the beginning of the filtration process. However, the 

evolution of the permeability around t

273 

274 

275 

276 

277 

278 

279 

280 

281 

282 

283 

limit can not be accurately predicted.  

The proposed modelling is a first attempt to predict the time-dependent decrease of the hydraulic 

conductivity (permeability loss) on the basis of the volumetric expansion of corroding iron. This 

work shows that the evolution of the hydraulic conductivity may be predicted without considering 

the evolution of the tortuosity or the specific surface in the Kozeny-Carman equation and is the 

consequence of the filling of the porosity by expansive iron corrosion products.  

3.4 Discussion 

The achieved experimental results and the proposed modelling show that there is a significant effect 

of the inner porosity of the pumice (system E). This effect is a clogging delay compared to the 
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Fe0/sand system (Fig. 4). This result is explained by the internal porosity of pumice particles which 

may store iron corrosion products, delaying the filling of the inter-granular porosity. Although 

theoretically sound [58,65,66], this hypothesis has to be confirmed in future works, for instance, 

using X-ray micro-tomography to probe inner porosity of the pumice specimen and considering 

various pumice material with differential pore connectivity.  

For a better understanding of the evolution of the initial porosity as iron corrosion proceeds, it is 

imperative to couple imaging (visualization) and mathematical modelling. The first attempt to 

visualize the deposition of iron particles (nano-scale) in the context of remediation with Fe0 was 

recently published [67]. It is expected that the use of X-ray microtomography visualization (and 

other appropriate techniques) will enable a better understanding of the effects of corrosion products 

on the bed clogging and to interpret the evolution of the residual porosity. 

An increase of the sustainability of the Fe0 bed is noticed (Tab. 5). More iron could be consumed at 

the time tlimit. The extent of Fe0 depletion is increased by using admixtures. This result corroborates 

the view that admixing Fe0 with non-expansive material is a tool to induce sustainability [14,24]. 

Accordingly, the repeatedly reported cost reduction (Fe0 costs) ([21] and ref. cited therein) should 

be regarded as a positive side-effect. In other words, while using admixtures, material wastage [12] 

is avoided and service life is increased. It seems that the Fe0 proportion in efficient real systems 

should be lower than 50 % (1:1, v/v) used here [23,24]. In fact, the efficiently permeable reactive 

barrier at Borden (Ontario, Canada) contained only 22 % Fe0 (w/w) [1]. On the other hand, while 

testing Fe0 for viruses and bacteriophages removal from drinking, Shi et al. [68] found out that a 

sand filter containing only 15 % Fe0 (w/w) was very efficient for microbe removal. The design of 

Shi et al. [68] consisted in a column packed with sand (sand filter) containing a reactive Fe0/sand 

layer (50:50, v/v). While the Fe0/sand ratio was the same as the one discussed here, this work and 

related studies propose that parameters such as the characteristics of the column, the mass of Fe0, 

the chemical reactivity of Fe0, the thickness of the Fe0/sand layer, the proportion of Fe0, the relative 
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size of used particles (δ values), the porosity of the additives are routinely given to enable the 

comparison of results.  

4 Conclusions 

The concept that dual Fe0/inert additive systems are more sustainable than pure Fe0 systems for 

water treatment is validated using pumice and sand as additives and CuII, NiII and ZnII as model 

contaminants. As expected the sand system was more efficient for contaminant removal and the 

pumice system more permeable. The order of contaminant removal efficiency corresponds to the 

selectivity sequence for iron oxides. This observation corroborates the view that chemical reduction 

(if applicable) is of secondary important for the process of contaminant removal. 

The presented work highlights the volumetric expansive nature of iron corrosion as the most 

important clogging factor in water treatment. Filter clogging is demonstrated to be related to pore 

blocking in the inlet zone. Therefore, reliable strategies have to be developed to design sustainable 

Fe0 filters under environmental conditions (water works). Systematic research at laboratory scale is 

needed to understand the impact of various factors on the clogging process. These factors include: 

the temperature, the nature of Fe0 (chemical reactivity) and used additives (reactivity, porosity), the 

shape and dimension of Fe0 and additives, the relative dimensions of Fe0 and additives (δ values) 

and the quality of the inflowing aqueous solution (pH, O2 level, HCO3
-, humic substances, 

contaminants). The possibility to use various Fe0 materials of different reactivity in the treatment 

chains should be carefully considered. For example, a readily reactive Fe0 material (e.g. powdered) 

can be used in the first column(s) as O2 scavenger and substituted when clogging occurs. In such a 

configuration, less reactive materials (e.g. granular) are used in subsequent columns for effective 

water treatment. 

The net output of such a systematic research will be the minimization of uncertainties on the long 

term efficiency (sustainability) of Fe0-based filtration systems, including nano-scale Fe0. The lack 

of systematic approach has already led to difficulties in finding research funding [69] after more 
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than 15 years intensive research. Moreover, there is currently a hindrance in the spreading of this 

efficient technology in Europe [70]. At the term, a small number of avoidable failures could result 

in dismissal of a proven efficient technology. 
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Table 1: Variability of the operational conditions for column experiments as illustrated by the 

dimension of the column (H, D), the nature of contaminants (X), the nature of additives, the Fe0 

mass, and the relative dimension of particles (δ). 

 

X H D Additive Fe0 dFe
(∗) dadditive

(∗) δ (∗∗) Ref. 

 (cm) (cm)  (g) (mm) (mm) (-)  

TCE. PCE 50 3.8 Sand n.a. 0.25 1.315 0.19 [1] 

As 31 2.5 Sand 75 0.42 0.275 0.65 [25] 

NO3
- 30 5 Sand 1636 0.3 n.a. (-) [26] 

Cr 10 2.5 Sand n.a. 1.45 0.638 0.44 [27] 

As 17.8 5.1 Sand 400 0.15 0.4 0.38 [28] 

As 4 0.1 Sand 1.5 n.a. 0.5 (-) [29] 

Cu 45 5 Sand 525 0.7 0.8 0.88 [30] 

TCE 40 1.59 Sand 80 1.355 0.118 0.09 [21] 

As n.a. n.a. Sand n.a. 0.5 0.5 1.0 [31] 

NO3
- 20 2 Sand 90 0.1 0.55 0.19 [32] 

Cu. Ni 50 5 Pumice 240 0.5 0.30 0.6 [33] 

Cu. Ni, Zn 50 5 Sand 200 0.5 0.28 0.6 present 

Cu. Ni, Zn 50 5 Pumice 200 0.5 0.30 0.6 present 

 513 

514 

515 

516 

517 

(∗) dFe and dadditive are the the mean grain size of Fe0 and the additive respectively. 

(∗∗) δ is the diameter ratio of the smaller particle size to the larger one (Fe0 or additive). 
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Table 2: Characteristics of used materials tested by Mercury Intrusion Porosity (MIP). 

 

 Fe0 Pumice Sand 

Specific weight ρs (g/cm3) 7.78 1.92 2.60 

Apparent specific weight ρas (g/cm3) 7.78 1.14 2.60 

Compactness C(-) 0.51 0.45 0.55 

Inter particular porosity Φinter (%) 49.6 54.8 45.0 

Intra particular porosity ϕpp  (%) - 41.0 - 

Porosity Φ0 (%) 49.6 73.3 45.0 
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Table 3: Main characteristics of the studied columns. “rzeff” is the measured reactive zone. The 

estimated porosity is also given.  

System Media Fe0 Fe0 Additive Duration rzeff. Porosity*

  (vol %) (g) (g) (days) (cm) (%) 

A sand 0.0 0.0 1060 28 40.0 45.05 

B pumice 0.0 0.0 27 28 2.6 72.6 

C Fe0 100.0 200 0.0 17** 2.6 49.6 

D Fe0 + sand 50.0 200 76.4 15** 5.2 46.05 

E Fe0 + pumice 50.0 200 27.0 28** 5.0 59.5 

* in this values the internal porosity of the pumice is also included. 522 

523 

524 

525 

526 

527 

**-marked systems were stopped because of excessive permeability loss. 
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527 Table 4: Magnitude of contaminant removal in investigated systems. 

System min (mg) E (%) Es (mg/g) 

 Ni Cu Zn Ni Cu Zn Ni Cu Zn 

A 685 685 927 57.3 99.8 65.7  n.a.  

B 685 685 927 57.2 51.5 52.1  n.a.  

C 367 367 497 94.7 99.9 99.8 1.74 1.83 2.48 

D 367 367 497 99.3 99.8 99.9 1.82 1.83 2.48 

E 612 612 828 93.3 99.9 99.6 2.86 3.06 4.12 
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530 Table 5: Modelled characteristics of Fe0-containing columns. The extent of Fe0 depletion (%) is 

given by: 
V

VV100consumedFe
0

t0 −
= .%  where (V0 –Vt) is the consumed Fe0 volume with V0 the 

initial volume of Fe

531 

532 

533 

0 and Vt its residual Fe0 at time t. 

 

System tlimit (*) Fe0 depletion Fe0
residual Φ/Φ0 (**) Es.eff (mg/g) (***)

 (days) (%) (g) (%) Ni Cu Zn 

Fe0 7.5 17.1 168.8 4.6 5.0 5.0 6.8 

Fe0:sand 10.0 33.2 133.6 2.0 4.0 4.1 5.5 

Fe0:pumice 16.0 41.4 117.2 1.4 4.3 4.4 6.0 
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(*) “tlimit” is the time which corresponds to a constant hydraulic conductivity. 

(**) Φ/Φ0 is the residual porosity. Φ0 is the initial porosity of the column. 

(***) Es,eff is the specific removal. 
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Figure captions 

 

Figure 1: Schematic diagram of the experimental design. Used materials were (i) Fe0 (0 or 200 g), 

(ii) pumice (0 or 27 g), and (iii) quartz gravel (0 or 1060 g). 

 

Figure 2: Time-dependant evolution of the pH value (a) and the iron concentration (b) of column 

effluent. The lines are not fitting functions, they simply connect points to facilitate visualization. 

 

Figure 3: Magnitude of Cu (a), Ni (b), and Zn (c) breakthrough from the columns containing Fe0. 

The lines are not fitting functions, they simply connect points to facilitate visualization. 

 

Figure 4: Time-dependant evolution of the hydraulic conductivity in the three systems containing 

Fe0 and the reference system pumice: (a) experimental K/K0 values; (b, c and d) relative 

permeability K/K0, experimental and modelled values. η = 6.4, model 1: t depletion,∞  = 50 days, and 

model 2: 

553 

t depletion,∞  = 62.5 days. For the three Fe0-systems, the value at time tlimit has been adjusted so 

that the residual content of Fe

554 

555 

556 

557 

0 is slightly superior to the Fe0 volume which is not consumed at 

clogging. 
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