Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Cytenamide acetic acid solvate

Andrea Johnston,^a Alastair J. Florence,^a* Francesca J. A. Fabianni,^b Kenneth Shankland^c and Colin T. Bedford^d

^aSolid-State Research Group, Strathclyde Institute of Pharmacy and Biomedical Sciences, John Arbuthnott Building, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, ^bUniversity of Göttingen, GZG, Department of Crystallography, Goldschmidtstrasse 1, D-37077 Göttingen, Germany, ^cISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, England, and ^dUniversity College London, Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, England

Correspondence e-mail: alastair.florence@strath.ac.uk

Received 9 May 2008; accepted 22 May 2008

Key indicators: single-crystal X-ray study; T = 160 K; mean σ (C–C) = 0.006 Å; R factor = 0.090; wR factor = 0.148; data-to-parameter ratio = 13.9.

In the crystal structure of the title compound (systematic name: 5*H*-dibenzo[*a*,*d*]cycloheptatriene-5-carboxamide ethanoic acid solvate), $C_{16}H_{13}NO \cdot C_2H_4O_2$, the cytenamide and solvent molecules form a hydrogen-bonded $R_2^2(8)$ dimer motif, which is further connected to form a centrosymmetric double ring motif arrangement. The cycloheptene ring adopts a boat conformation and the dihedral angle between the least-squares planes through the two aromatic rings is 54.7 (2)°.

Related literature

For details on experimental methods used to obtain this form, see: Davis *et al.* (1964); Florence *et al.* (2003); Florence, Johnston, Fernandes *et al.* (2006). For related literature on related molecules, see: Cyr *et al.* (1987); Fleischman *et al.* (2003); Florence, Johnston, Price *et al.* (2006); Florence, Leech *et al.* (2006); Bandoli *et al.* (1992); Harrison *et al.* (2006); Leech *et al.* (2007); Florence *et al.* (2008) and Johnston *et al.* (2006). For other related literature, see: Etter (1990).

11 110 (2) Å

Experimental

M

a =

Crystal data $C_{16}H_{13}NO \cdot C_2H_4O_2$ $M_r = 295.34$

$_{6}\pi_{13}NO C_{2}\pi_{4}O_{2}$	D = 14.410(3) A
. = 295.34	c = 18.182 (4) Å
onoclinic, $P2_1/c$	$\beta = 95.13 \ (2)^{\circ}$
= 5.8726 (17) Å	V = 1533.3 (6) Å ³

```
Z = 4
Mo K\alpha radiation
\mu = 0.09 \text{ mm}^{-1}
```

Data collection

Oxford Diffraction Gemini	16235 measured reflections
diffractometer	2759 independent reflections
Absorption correction: multi-scan	2025 reflections with $I > 2\sigma(I)$
(ABSPACK; Oxford	$R_{\rm int} = 0.065$
Diffraction, 2007)	
$T_{\min} = 0.84, \ T_{\max} = 0.99$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.089$ 199 parameters $wR(F^2) = 0.148$ H-atom parameters constrainedS = 1.08 $\Delta \rho_{max} = 0.43 \text{ e } \text{\AA}^{-3}$ 2759 reflections $\Delta \rho_{min} = -0.37 \text{ e } \text{\AA}^{-3}$

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{l} N1 - H1N \cdots O2^{i} \\ N1 - H2N \cdots O2^{ii} \\ O3 - H3 \cdots O1^{iii} \end{array}$	0.88 0.88 0.84	2.27 2.18 1.73	2.888 (4) 3.018 (4) 2.565 (4)	128 158 169
Symmetry codes: $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}.$	(i) $x, -y +$	$-\frac{1}{2}, z - \frac{1}{2};$ (ii)	$-x+1, y-\frac{1}{2},$	$-z + \frac{3}{2};$ (iii)

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2007); cell refinement: *CrysAlis CCD*; data reduction: *CrysAlis RED* (Oxford Diffraction, 2007); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *PLATON* (Spek, 2003) and *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *PLATON*.

The authors thank the Basic Technology Programme of the UK Research Councils for funding this work under the project Control and Prediction of the Organic Solid State (http://www.cposs.org.uk).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2234).

References

Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

- Bandoli, G., Nicolini, M., Ongaro, A., Volpe, G. & Rubello, A. (1992). J. Chem. Crystallogr. 22, 177–183.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Cyr, T. D., Matsui, F., Sears, R. W., Curran, N. M. & Lovering, E. G. (1987). J. Assoc. Off. Anal. Chem. **70**, 836–840.
- Davis, M. A., Winthrop, S. O., Thomas, R. A., Herr, F., Charest, M.-P. & Gaudry, R. (1964). J. Med. Chem. 7, 88–94.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Fleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Walsh, R. D. B., Rodriguez-Hornedo, N. & Zaworotko, M. J. (2003). *Cryst. Growth Des.* 3, 909–919.
- Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930–1938.

 $0.44 \times 0.09 \times 0.06 \; \rm mm$

T = 160 K

- Florence, A. J., Johnston, A., Fernandes, P., Shankland, N. & Shankland, K. (2006). J. Appl. Cryst. 39, 922–924.
- Florence, A. J., Johnston, A., Price, S. L., Nowell, H., Kennedy, A. R. & Shankland, N. (2006). J. Pharm. Sci. 95, 1918–1930.
- Florence, A. J., Leech, C. K., Shankland, N., Shankland, K. & Johnston, A. (2006). CrystEngComm, 8, 746–747.
- Florence, A. J., Shankland, K., Gelbrich, T., Hursthouse, M. B., Shankland, N., Johnston, A., Fernandes, P. & Leech, C. K. (2008). *CrystEngComm*, **10**, 26– 28.
- Harrison, W. T. A., Yathirajan, H. S. & Anilkumar, H. G. (2006). Acta Cryst. C62, 0240-0242.
- Johnston, A., Florence, A. J., Fernandes, P., Shankland, N. & Kennedy, A. R. (2006). Acta Cryst. E62, 05361–05362.
- Leech, C. K., Florence, A. J., Shankland, K., Shankland, N. & Johnston, A. (2007). Acta Cryst. E63, 0675–0677.
- Oxford Diffraction (2007). CrysAlis CCD, CrysAlis RED and ABSPACK.
 Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
 Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.

01176 Johnston et al. • $C_{16}H_{13}NO \cdot C_2H_4O_2$

supplementary materials

Acta Cryst. (2008). E64, o1175-o1176 [doi:10.1107/S160053680801550X]

Cytenamide acetic acid solvate

A. Johnston, A. J. Florence, F. J. A. Fabianni, K. Shankland and C. T. Bedford

Comment

Cytenamide (CYT) is an analogue of carbamazepine (CBZ), a dibenzazepine drug used to control seizures (Cyr *et al.*, 1987). CYT-acetic acid solvate was produced during an automated parallel crystallization study (Florence *et al.*, 2006*a*) of CYT as part of a wider investigation that couples automated parallel crystallization with crystal structure prediction methodology to investigate the basic science underlying the solid-state diversity of CBZ (Florence, Johnston, Price *et al.*, 2006*b*; Florence, Leech *et al.*, 2006) and its closely related analogues: CYT, 10,11-dihydrocarbamazepine (DHC) (Bandoli *et al.*, 1992; Harrison *et al.*, 2006; Leech *et al.*, 2007) and cyheptamide (Florence *et al.*, 2008). The sample was identified as a new form using multi-sample foil transmission X-ray powder diffraction analysis (Florence *et al.*, 2003). Subsequent manual recrystallization from a saturated acetic acid solution by slow evaporation at 278 K yielded a sample suitable for single-crystal X-ray diffraction (Fig. 1).

The reported crystal structure is essentially iso-structural with that of CBZ-acetic acid (1/1) (Fleischman *et al.*, 2003) and DHC-acetic acid (1/1) (Johnston *et al.*, 2006). Accordingly, it displays the same space group with very similar unit-cell parameters and packing arrangements [CBZ:acetic a = 5.121 (4) Å, b = 15.714 (13) Å, c = 18.499 (15) Å, $\beta = 95.65$ (1)°; DHC:acetic a = 5.3104 (4) Å, b = 15.424 (17) Å, c = 18.7329 (2) Å, $\beta = 95.65$ (1)°]. Specifically, the CYT and acetic acid molecules are connected *via* O—H···O and N—H···O hydrogen bonds (contacts 1 and 2) to form an R_2^2 (8) (Etter, 1990) dimer motif. A third hydrogen bond, N1—H1···O2, joins adjacent dimers forming a centrosymmetric double motif arrangement (Fig. 2).

Experimental

A sample of cytenamide was synthesized according to a modification of the published method (Davis *et al.*, 1964). A single-crystal sample of cytenamide-acetic acid was grown form a saturated acetic acid solution by isothermal solvent evaporation at 278 K.

Refinement

All non-H atoms were refined anisotropically. H-atoms were found on a difference Fourier map and were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (bond lengths to accepted values, *i.e.* C—H in the range 0.93–98, N—H = 0.86 and O—H = 0.82 Å with esd's of 0.02 Å) and U_{iso} (H) (in the range 1.2–1.5 times U_{eq} of the parent atom), after which the positions were treated with the riding model. Atoms C12, C13, C14 and, to some extent C15, suffer from large and prolate thermal ellipsoids. Given the rigidity of the molecule and well behaved thermal parameters of the remainder atoms, we exclude the possibility of disorder or incorrect treatment of absorption effects. Investigation of diffraction frames indicated significant splitting of some low-order reflections and this is likely to be the principal cause of the anomalous thermal parameters and of high *R*-factor obtained.

Figures

Fig. 1. The molecular structure of CYT acetic acid (1/1), showing 50% probablility displacement ellipsoids.

Fig. 2. The hydrogen bonded $R_2^2(8)$ motifs of CYT-acetic acid joined in a centrosymmetric arrangement *via* an $R_4^2(8)$ motif. Hydrogen bonds are shown as dashed lines.

5H-dibenzo[a,d]cycloheptatriene-5-carboxamide ethanoic acid solvate

Crystal data	
$C_{16}H_{13}NO \cdot C_2H_4O_2$	$F_{000} = 624$
$M_r = 295.34$	$D_{\rm x} = 1.279 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 3006 reflections
<i>a</i> = 5.8726 (17) Å	$\theta = 3-26^{\circ}$
<i>b</i> = 14.418 (3) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 18.182 (4) Å	T = 160 K
$\beta = 95.13 \ (2)^{\circ}$	Needle, colourless
$V = 1533.3 (6) \text{ Å}^3$	$0.44 \times 0.09 \times 0.06 \text{ mm}$
Z = 4	

Data collection

Oxford Diffraction Gemini diffractometer	2759 independent reflections
Monochromator: graphite	2025 reflections with $I > 2\sigma(I)$
Detector resolution: 15.9745 pixels mm ⁻¹	$R_{\rm int} = 0.065$
T = 160 K	$\theta_{\text{max}} = 25.2^{\circ}$
ω scans	$\theta_{\min} = 2.7^{\circ}$
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)	$h = -7 \rightarrow 7$
$T_{\min} = 0.84, T_{\max} = 0.99$	$k = -17 \rightarrow 17$
16235 measured reflections	$l = -21 \rightarrow 21$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained

$R[F^2 > 2\sigma(F^2)] = 0.089$	Method = Modified Sheldrick $w = 1/[\sigma^2(F^2) + 3.15P]$,
	where $P = (\max(F_0^2, 0) + 2F_c^2)/3$
$wR(F^2) = 0.148$	$(\Delta/\sigma)_{\text{max}} = 0.0002$
<i>S</i> = 1.08	$\Delta \rho_{max} = 0.43 \text{ e} \text{ Å}^{-3}$
2759 reflections	$\Delta \rho_{\rm min} = -0.37 \ e \ {\rm \AA}^{-3}$
199 parameters	Extinction correction: None
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.8743 (7)	0.1556 (2)	0.5586 (2)	0.0377
C2	1.0683 (7)	0.2065 (3)	0.52488 (19)	0.0394
H2	1.2072	0.1709	0.5395	0.0464*
C3	1.0494 (7)	0.2106 (2)	0.4415 (2)	0.0359
Н3	0.3643	0.6194	0.8262	0.0919*
C4	1.2134 (7)	0.1675 (3)	0.4031 (2)	0.0434
H4	1.3362	0.1355	0.4291	0.0517*
C5	1.2009 (8)	0.1694 (3)	0.3270 (2)	0.0489
Н5	1.3155	0.1417	0.3023	0.0588*
C6	1.0206 (8)	0.2134 (3)	0.2876 (2)	0.0492
H6	1.0115	0.2146	0.2361	0.0589*
C7	0.8543 (8)	0.2557 (3)	0.3251 (2)	0.0479
H7	0.7287	0.2834	0.2980	0.0554*
C8	0.8695 (7)	0.2579 (2)	0.4025 (2)	0.0391
С9	0.7017 (8)	0.3120 (3)	0.4383 (2)	0.0500
Н9	0.5540	0.3138	0.4140	0.0595*
C10	0.7341 (8)	0.3609 (3)	0.5012 (2)	0.0548
H10	0.6062	0.3933	0.5149	0.0651*
C11	0.9405 (9)	0.3695 (3)	0.5504 (2)	0.0537
C12	0.9797 (11)	0.4529 (3)	0.5910 (3)	0.0745
H12	0.8701	0.4989	0.5867	0.0940*
C13	1.1748 (15)	0.4673 (4)	0.6361 (3)	0.1040
H13	1.1957	0.5230	0.6618	0.1120*
C14	1.3377 (12)	0.3999 (5)	0.6437 (3)	0.0924
H14	1.4716	0.4096	0.6745	0.1038*
C15	1.3053 (9)	0.3160 (3)	0.6066 (2)	0.0620
H15	1.4196	0.2700	0.6121	0.0709*
C16	1.1082 (8)	0.3006 (3)	0.5609 (2)	0.0448
C17	0.6177 (7)	0.5488 (3)	0.8287 (2)	0.0425
C18	0.8000 (7)	0.5266 (3)	0.7809 (2)	0.0554
H18a	0.9163	0.5730	0.7854	0.0834*
H18b	0.8713	0.4698	0.7965	0.0835*
H18c	0.7432	0.5218	0.7303	0.0833*
01	0.8339 (5)	0.17284 (18)	0.62261 (13)	0.0490
O2	0.6154 (5)	0.52248 (18)	0.89214 (14)	0.0484

supplementary materials

O3	0.4556 (5)	0.6020 (2)	0.79594 (15)	0.0614
N1	0.7638 (6)	0.0891 (2)	0.51942 (16)	0.0425
H1N	0.7870	0.0813	0.4727	0.0503*
H2N	0.6669	0.0546	0.5419	0.0502*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.051 (3)	0.0295 (19)	0.030 (2)	-0.0027 (18)	-0.0055 (18)	0.0048 (16)
C2	0.046 (2)	0.038 (2)	0.032 (2)	-0.0007 (18)	-0.0058 (18)	0.0005 (17)
C3	0.049 (2)	0.0252 (18)	0.033 (2)	-0.0068 (17)	0.0016 (18)	0.0008 (16)
C4	0.056 (3)	0.038 (2)	0.036 (2)	-0.0023 (19)	-0.001 (2)	-0.0003 (18)
C5	0.061 (3)	0.045 (2)	0.041 (2)	-0.002 (2)	0.009 (2)	-0.008 (2)
C6	0.075 (3)	0.044 (2)	0.028 (2)	-0.004 (2)	0.002 (2)	0.0015 (18)
C7	0.064 (3)	0.040 (2)	0.038 (2)	-0.002 (2)	-0.008 (2)	0.0106 (19)
C8	0.052 (3)	0.030 (2)	0.035 (2)	-0.0051 (18)	0.0013 (19)	0.0049 (16)
C9	0.062 (3)	0.038 (2)	0.050 (3)	0.004 (2)	0.006 (2)	0.013 (2)
C10	0.079 (3)	0.030 (2)	0.059 (3)	0.008 (2)	0.029 (3)	0.012 (2)
C11	0.090 (4)	0.038 (2)	0.036 (2)	-0.014 (2)	0.019 (2)	0.0013 (19)
C12	0.141 (5)	0.041 (3)	0.049 (3)	-0.023 (3)	0.046 (3)	-0.005 (2)
C13	0.207 (9)	0.063 (4)	0.049 (3)	-0.076 (5)	0.053 (5)	-0.028 (3)
C14	0.138 (6)	0.100 (5)	0.042 (3)	-0.083 (5)	0.027 (3)	-0.023 (3)
C15	0.082 (4)	0.072 (3)	0.032 (2)	-0.036 (3)	0.007 (2)	-0.009 (2)
C16	0.066 (3)	0.040 (2)	0.029 (2)	-0.017 (2)	0.006 (2)	0.0005 (17)
C17	0.054 (3)	0.034 (2)	0.038 (2)	0.0012 (19)	-0.007 (2)	-0.0052 (18)
C18	0.062 (3)	0.055 (3)	0.048 (3)	0.004 (2)	0.000 (2)	-0.010 (2)
01	0.073 (2)	0.0466 (16)	0.0272 (15)	-0.0191 (15)	0.0036 (14)	-0.0021 (12)
02	0.064 (2)	0.0436 (16)	0.0359 (16)	0.0114 (14)	-0.0044 (14)	0.0061 (13)
03	0.082 (2)	0.067 (2)	0.0351 (16)	0.0330 (18)	0.0035 (15)	0.0077 (14)
N1	0.064 (2)	0.0351 (18)	0.0269 (17)	-0.0113 (16)	-0.0012 (16)	0.0012 (14)

Geometric parameters (Å, °)

O1—C1	1.234 (4)	C11—C12	1.419 (6)
O2—C17	1.216 (5)	C12—C13	1.364 (10)
O3—C17	1.322 (5)	C13—C14	1.362 (10)
O3—H3	0.8400	C14—C15	1.390 (8)
N1—C1	1.329 (5)	C15—C16	1.381 (6)
N1—H1N	0.8800	С2—Н2	0.9800
N1—H2N	0.8800	C4—H4	0.9500
C1—C2	1.529 (6)	С5—Н5	0.9300
C2—C16	1.516 (6)	С6—Н6	0.9300
C2—C3	1.511 (5)	С7—Н7	0.9400
C3—C8	1.397 (5)	С9—Н9	0.9400
C3—C4	1.386 (6)	C10—H10	0.9400
C4—C5	1.379 (5)	C12—H12	0.9200
C5—C6	1.379 (6)	С13—Н13	0.9300
C6—C7	1.382 (6)	C14—H14	0.9300
С7—С8	1.403 (5)	C15—H15	0.9400

C8—C9	1.455 (6)	C17—C18	1.473 (6)
C9—C10	1.343 (5)	C18—H18A	0.9500
C10-C11	1.446 (6)	C18—H18B	0.9500
C11—C16	1.400 (7)	C18—H18C	0.9500
С17—О3—Н3	111.00	C1—C2—H2	106.00
H1N—N1—H2N	122.00	С16—С2—Н2	105.00
C1—N1—H1N	120.00	С3—С2—Н2	106.00
C1—N1—H2N	118.00	C3—C4—H4	120.00
N1—C1—C2	118.5 (3)	C5—C4—H4	119.00
01—C1—N1	121.7 (3)	С6—С5—Н5	120.00
O1—C1—C2	119.7 (3)	С4—С5—Н5	120.00
C1—C2—C3	115.5 (3)	С5—С6—Н6	120.00
C3—C2—C16	113.2 (3)	С7—С6—Н6	120.00
C1—C2—C16	110.4 (3)	С6—С7—Н7	119.00
C4—C3—C8	119.4 (3)	С8—С7—Н7	120.00
C2—C3—C4	119.7 (3)	С10—С9—Н9	116.00
C2—C3—C8	120.9 (3)	С8—С9—Н9	116.00
C3—C4—C5	121.3 (4)	C11—C10—H10	116.00
C4—C5—C6	120.0 (4)	C9—C10—H10	116.00
$C_{5} - C_{6} - C_{7}$	1194(3)	C11—C12—H12	119.00
C6-C7-C8	121 4 (4)	C13 - C12 - H12	119.00
C_{3} C_{8} C_{7}	118 4 (4)	C12 - C13 - H13	120.00
C7 - C8 - C9	118.4 (4)	C12 - C13 - H13	120.00
$C_{3}^{3} - C_{8}^{3} - C_{9}^{3}$	123 1 (3)	C15-C14-H14	120.00
C_{8}^{-} C_{9}^{-} C_{10}^{-}	127.8(4)	C13 - C14 - H14	120.00
C_{10}^{-}	127.0(4) 1283(4)	C_{14} C_{15} H_{15}	120.00
C_{10} C_{11} C_{12}	128.9(4)	C16-C15-H15	120.00
C_{12} C_{11} C_{12} C_{11} C_{16}	116.8 (4)	02 - 017 - 018	120.00 124.2(4)
$C_{12} = C_{11} = C_{10}$	110.0(4)	02 - 017 - 018	124.2(4)
$C_{10} = C_{11} = C_{10}$	124.3(4) 122.0(5)	03 - 017 - 03	113.1(3) 122.7(4)
C12 - C12 - C13	122.0(5)	62 - 617 - 63	122.7 (4)
C_{12} C_{13} C_{14} C_{15}	119.6 (5)	C17 = C18 = H18A	110.00
C13 - C14 - C15	120.3 (6)	C17-C18-H18B	112.00
C14-C15-C10	120.2 (3)		107.00
	119.8 (4)		107.00
	120.6 (4)	H18A-C18-H18C	109.00
02-016-015	119.5 (4)	H18B	109.00
O1—C1—C2—C3	-157.1 (3)	C5—C6—C7—C8	2.5 (7)
O1—C1—C2—C16	-27.1 (5)	C6—C7—C8—C3	-4.4 (6)
N1—C1—C2—C3	27.5 (5)	C6—C7—C8—C9	173.5 (4)
N1—C1—C2—C16	157.4 (3)	C3—C8—C9—C10	33.2 (6)
C1—C2—C3—C4	-116.5 (4)	C7—C8—C9—C10	-144.6 (4)
C1—C2—C3—C8	64.0 (4)	C8—C9—C10—C11	-2.4 (7)
C16—C2—C3—C4	114.9 (4)	C9—C10—C11—C12	149.6 (5)
C16—C2—C3—C8	-64.6 (5)	C9—C10—C11—C16	-30.0 (7)
C1-C2-C16-C11	-67.0 (5)	C10-C11-C12-C13	-177.3 (5)
C1-C2-C16-C15	110.0 (4)	C16—C11—C12—C13	2.4 (8)
C3—C2—C16—C11	64.2 (5)	C10-C11-C16-C2	-5.9 (6)
C3—C2—C16—C15	-118.8 (4)	C10-C11-C16-C15	177.2 (4)

supplementary materials

C2—C3—C4—C5	179.6 (4)	C12—C11—C16—C2		174.4 (4)		
C8—C3—C4—C5	-0.8 (6)	C12—C11—C16—C15		-2.5 (6)		
C2—C3—C8—C7	-177.0 (4)	C11—C12—C13—C14		-0.8 (9)		
C2—C3—C8—C9	5.2 (5)	C12—C13—C14—C15		-0.9 (9)		
C4—C3—C8—C7	3.5 (5)	C13—C14—C15—C16		0.8 (8)		
C4—C3—C8—C9	-174.3 (4)	C14—C15—C16—C2		-175.9 (4)		
C3—C4—C5—C6	-1.1 (7)	C14-C15-C16-C11		1.0 (7)		
C4—C5—C6—C7	0.3 (7)					
Hydrogen-bond geometry (Å, °)						
D—H···A	D—H	H···A	$D \cdots A$	D—H···A		
N1— $H1N$ ···O2 ⁱ	0.88	2.27	2.888 (4)	128		
N1—H2N···O2 ⁱⁱ	0.88	2.18	3.018 (4)	158		
O3—H3···O1 ⁱⁱⁱ	0.84	1.73	2.565 (4)	169		
Symmetry codes: (i) x , $-y+1/2$, $z-1/2$; (ii) $-x+1$, $y-1/2$, $-z+3/2$; (iii) $-x+1$, $y+1/2$, $-z+3/2$.						

