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Abstract 

The intrinsic reactivity of four metallic iron materials (Fe0) was investigated in batch and 

column experiments. The Fe0 reactivity was characterized by the extent of aqueous fixation of 

in-situ leached arsenic (As). Air-homogenized batch experiments were conducted for 1 month 

with 10.0 g/ℓ of an As-bearing rock (ore material) and 0.0 or 5.0 g/ℓ of Fe0. Column 

experiments were performed for 2 and 3 months. Each dynamic experiment was made up of 2 

glass columns in series. The first column contained 2.5 or 5.0 g of the ore material and the 

second column 0.0 or 5.0 g of a Fe0 material. Results showed no significant reactivity 

difference in batch studies for all 4 materials, ZVI2 was by far the most reactive material in 

column experiments. This observation was attributed to the relative kinetics of production of 

aqueous As and Fe species under the experimental conditions and their impact on the 

formation of a protective film on Fe0. Accordingly, no protective film could be built at the 

surface of the least reactive materials. The results corroborated the urgent need for unified 

experimental procedures to characterize Fe0 materials.  

Keywords: Column study, Intrinsic reactivity, Ore mineral, Water treatment, Zerovalent iron. 
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Elemental metals are efficient reactive agents for the remediation of several classes of 

environmental contaminants including arsenic, azo dyes, bacteria, halogenated organic 

compounds, heavy metals, nitrates, nitroaromatics, radionuclides, and viruses (O´Hannesin 

and Gillham, 1998; Bojic et al., 2004; Bartzas et al. 2006; Bojic et al., 2007; Henderson and 

Demond, 2007; Komnitsas et al.2007; Bojic et al., 2009; Antia, 2010; Bartzas and Komnitsas, 

2010; Bundschuh et al., 2010; Luna-Velasco et al., 2010; Noubactep, 2010a; Phillips et al., 

2010; Sarathy et al., 2010, Comba et al., 2011; Giles et al., 2011; ITRC, 2011; Lin et al., 

2011; Noubactep, 2011a; Salter-Blanc et al., 2011). Metallic iron (Fe0) is currently the most 

used material for field applications (Gillham, 2010; Comba et al., 2011; Gheju, 2011; 

Henderson and Demond, 2011; ITRC, 2011; Salter-Blanc et al., 2011). 

Despite the wide variety of environmental contaminants and their possible specific 

interactions with Fe0, tested materials were characterized mainly by their surface area, size 

and interface chemistry (e.g. surface state). However, it has been traceably demonstrated that 

none of these structural and physical characteristics is really determinant for the chemical 

reactivity of Fe0 (Reardon, 1995; Landis et al., 2001: Noubactep et al., 2005; Reardon, 2005; 

Noubactep et al., 2009). For instance, Landis et al. (2001) reported that Fe0 materials of 

comparable particle size (comparable surface area) exhibited reactivity differences greater 

than a three-fold for cDCE and VC degradation rates in column studies. This example 

substantiates that a broad understanding of the chemical reactivity is urgently needed. 

Several sources of Fe0 materials have been reported in literature to be efficient for aqueous 

contaminant removal (Landis et al., 2001; Miehr et al., 2004; Leupin and Hug, 2005; 

Noubactep et al., 2005; Gheju and Iovi, 2006; Satapanajaru et al., 2006; Yang et al., 2006; 

Ngai et al., 2007; Gheju et al., 2008; Gheju and Balcu, 2010; Gheju and Balcu, 2011, Wanner 

et al. 2011). These include commercial Fe0 for contaminant removal (e.g. Connelly iron, 

Peerless iron, iron from G. Maier GmbH), commercial iron for other purposes (e.g. 
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construction steel, iron nails, steel wool), scrap iron, production by-products, Fe0 prepared in-

situ by reduction of iron salts. Although, many tested materials have been reported highly 

reactive and recommendable for field application, efficacy of a Fe
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0 in terms of high removal 

capacity for a specific contaminant in short term experiments is not a guarantee for high 

removal capacity in field applications. Moreover, researchers working with nano-scale Fe0 

usually compare their results to that of conventional micro-scale Fe0 (Noubactep et al., 2012 

and ref. cited therein). The question is what is the reference material to which innovative 

materials should be compared?  

The present study is a continuation of a series of works aiming at introducing reliable tools for 

the evaluation of the intrinsic reactivity of various Fe0 materials. A method based on the 

characterization of Fe dissolution in a 2 mM EDTA solution was first proposed (Noubactep et 

al., 2004; 2005; 2009). The method was proven less efficient for powdered materials and for 

materials with high proportion of fines (Noubactep, 2010b). On the other hand, Fe0 

dissolution is not necessarily coupled to contaminant removal. These limitations have led to 

the development of a second experimental tool in which Fe0 is characterized by the extent of 

the discoloration of methylene blue (MB) in the presence of manganese dioxide (MnO2) (MB-

test) (Noubactep, 2009). The MB-test was shown more efficient and more affordable than the 

EDTA-test but was limited by the lack of reference MnO2 materials. Both tests could enable 

an advanced material screening. However, from the tested 18 materials seven were still 

exhibiting very similar reactivity. Therefore, new approaches are needed. 

A further possibility to characterize the reactivity of Fe0 materials is to stress them in systems 

where building of a protective film at their surface is likely to occur. Such a system was 

identified recently while characterizing the solubilization of toxic species from natural rocks 

(Noubactep et al., 2008a; 2008b). It was shown that elevated amounts of As could be leached 

from an ore material for a long time (up to 99 days). Accordingly introducing the same 

amount of various Fe0 materials in system capable of producing As concentration as large as 
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1000 mg/ℓ could be a powerful tool to investigate the impact of As on the formation of the 

oxide film (mixed oxides) on the process of contaminant removal by Fe
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0. As a rule, the more 

reactive a material, the more rapid the passivation process (protective film formation). In 

other words, the system with the most reactive material will exhibit the least contaminant 

removal efficiency. 

The objective of this study is to present a new contribution to the effort for the development 

of reliable protocols for the comparison of the intrinsic reactivity of different Fe0 materials. 

For this purpose, four selected materials from former works are tested. One of the materials 

was essentially less reactive than the others. The 3 other materials were very closed in their 

reactivity by both tests described above (Noubactep, 2010b). The results confirmed the 

suitability of the used method and opened new routes for coupling the investigation of 

contaminant release and contaminant removal under relevant conditions. 

Materials and methods 

Solid materials 

As-bearing rock 

The used As ore material originates from the Otto-Stollen in Breitenbrunn/Erzgebirge 

(Saxony, Germany). The material was selected on the basis of its high arsenic content (80 %). 

A qualitative SEM analysis shows the presence of As, Ca, F, Fe, O, S and Si (Noubactep et 

al., 2008). The ore material is primarily a hydrothermal vein material and arsenic occurred as 

native arsenic (As0) and Loellingite (FeS2 - As–I) (Jones and Nesbitt, 2002) in paragenesis 

with hydrothermal vein carbonates (for example Fe-bearing calcite or dolomite). The mineral 

was ground and sieved. The particle size fraction 0.063 ≤ d (mm) ≤ 0.10 was used without 

any pre-treatment. 

Fe0 materials 

One scrap iron (ZVI1), and three commercially available Fe0 materials have been tested. The 

main characteristics of these materials are summarized elsewhere (Noubactep, 2010b). ZVI2 
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is a spherical material (d = 1.2 mm) from Würth (Germany) termed as ‘Hartgußgranulat’. 

ZVI3 are iron chips from G. Maier GmbH Rheinfelden (Germany) termed as 

‘Graugußgranulat’. ZVI4 is a direct reduced iron from ISPAT GmbH (Germany), termed 

‘Schwammeisen’.  Before used ZVI4 was crushed and sieved; the size fraction 1.0-2.0 mm 

was used. The specific surface area of the materials varies between 0.043 and 0.63 m
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2 g-1. 

These data were compiled from the literature (Tab. 1). The materials were compared solely on 

the basis of the extent of As removal by the same initial mass of Fe0 (e.g. 5.0 g in columns) 

under similar experimental conditions. The materials differ regarding their characteristics 

such as iron content, nature and proportion of alloying elements, and shape. 

The four used materials were selected from nine materials which were recently characterized 

by leaching with 2 mM EDTA in column study (Noubactep, 2010b). In turn, the tested nine 

materials were selected from eighteen materials after a screening in batch experiments using 

the EDTA-test (Noubactep et al., 2005; Noubactep et al., 2009). Both tests could not really 

differentiate the reactivity of ZVI1, ZVI3 and ZVI4. The reactivity of these three materials 

toward As removal from a natural rock was investigated in this study. For comparison the 

least reactive commercial Fe0 (ZVI2) was incorporated in this study. 

Sand  

The used sand was a commercial material for aviculture (“Papagaiensand” from RUT – 

Lehrte/Germany). Papagaiensand was used as received without any further pre-treatment nor 

characterization. This sand was the operational reference non-adsorbing material. 

Leaching solution 

The leaching solution was tap water of the city of Göttingen (Lower Saxonia, Germany). Tap 

water was discussed as a better proxy for natural groundwater than synthetic solutions 

(Noubactep, 2003; Noubactep et al., 2008). The rationale behind this assumption is that, in 

many cases, natural water is just treated for iron and manganese removal. The average 
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composition (in mg/ℓ) of the used tap water was: Cl–: 7.7; NO3
–: 10.0; SO4

2-: 37.5; HCO3
-: 

88.5; Na
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+: 7.0; K+: 1.2; Mg2+: 7.5; Ca2+: 36.1; and an initial pH 8.3. 

As leaching and immobilization 

Air homogenized batch experiments 

These experiments were conducted in special reaction vessels allowing the system to be 

homogenized by a humid current of air supplied by a small aquarist pump. The goal was to 

homogenize the experimental systems at atmospheric pressure (PCO2 = 0.035 %) without 

breaking down the materials. 10.0 g/ℓ of the ore material and 0.0 or 5.0 g/ℓ of Fe0 were 

allowed to react in sealed vessels containing 100 mℓ of tap water at laboratory temperature 

(22 ± 3 °C) for up to 30 days. At given dates, 1.5 mℓ of the solution was retrieved and diluted 

for As analysis and the same volume of tap water was added to the system. 

Column experiments 

The tap water was pumped upwards from PE bottles using a peristaltic pump (Ismatec, ICP 

24). Tygon tubes were used to connect inlet reservoir, pump, column and outlet. Ten glass 

columns (40 cm long, 2.6 cm inner diameter) were used in two series of experiments. The 

columns were mostly packed with sand. The effective length, the bulk density and the 

porosity of the packed columns were not characterized as they were not necessary for the 

discussion of the results. The extent of As dissolution by water and the extent of its removal 

by selected Fe0 materials were the sole targets. The experiments were performed at room 

temperature (22 ± 3 °C). A stable flow rate was maintained throughout the experiment.  

Five parallel experiments were performed in each series. The same mass of the rock (2.5 or 

5.0 g) was placed in a first column and 5.0 g of each tested Fe0 was placed in the second 

column (Fig. 1). In the reference system, the second column contained only sand (no Fe0). 

The experiments were stopped after 65 or 97 days when each column was leached by 19 or 

25.0 ℓ of tap water (Tab. 2). The water flow rate was constant at 12.0 mℓ/h. 

Analytical methods 
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Analysis for As was performed by inductively coupled plasma mass spectrometry (ICP-MS) 

at the Department of Geochemistry (Centre of Geosciences, University of Göttingen). All 

chemicals used for the experiments and analysis were of analytical grade. The pH value was 

measured by combining glass electrodes (WTW Co., Germany). The electrodes were 

calibrated with five standards following a multi-point calibration protocol and in agreement 

with the new IUPAC recommendation (Meinrath and Spitzer, 2000; Buck et al., 2002). 

Expression of experimental results 

The mass (m) of leached As (mg) at any time (t) is calculated from the concentration of the 

effluent using Eq. (1): 

m = P.V        (1) 

Where P is the As concentration (in mg/ℓ) and V the volume (ℓ). At the end of the experiment 

the total amount of leached As can be calculated by addition and the extend of As leaching by 

tap water deduced. Knowing the As percentage in the natural rock (80 %), the maximal 

leachable mass (m0) of As can be calculated. The percentage (P) As leaching at each time is 

given by Eq. (2): 

P = 100 * m/m0      (2) 

At each time the amount of As leached in the reference system (Pref) can be set to 100 and the 

relative leaching percent (Prel) for all other systems deduced by Eq. (3): 

P* = Prel = 100 * P/Pref     (3) 

Finally, the relative percent of As removal (Pfix) by each material is given by Eq. (4): 

Pfix = 100 - Prel      (4) 

Results and discussion 

The particularity of As-rock/Fe0 systems investigated here is that aqueous As and solid Fe 

hydroxides and oxides for their removal are generated in-situ. It has been traceably 

demonstrated, that AsIII and AsV are removed in Fe0/H2O systems by adsorption and co-

precipitation (Lackovic et al., 2000; Farrell et al., 2001; Noubactep, 2010a; Noubactep, 
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2011b; Noubactep, 2011c; Noubactep, 2012). As released from the used ore material was 

recently characterized (Noubactep et al., 2008a) and the process of As dissolution will not be 

discussed here. The basis for the characterization of Fe
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0 materials is that the smallest As 

concentration (relative to the reference system) is encountered in the system with the most 

reactive material under testing conditions. 

Batch experiments 

Fig. 2 illustrates As dissolution in the absence (reference) or the presence of tested Fe0 

materials (ZVI1 through ZVI4) as a function of time. Both leaching kinetics and the extent of 

As release substantially decreased with the addition of Fe0. From Fig. 2 not visual reactivity 

difference could be performed. It appears that the reactivity of all four materials is very closed 

to each other. A look on Pfix-values (Tab. 3) shows that the relative fixation efficiency varies 

from 30.4 to 37.3 %. A tentative order of increasing reactivity based on these values is: ZVI3 

< ZVI1 < ZVI2 < ZVI4. Remember that the order of reactivity after the EDTA-test 

(Noubactep et al., 2005; 2009) and the MB-test (Noubactep, 2009) were univocally: ZVI2 < 

ZVI1 ≅ ZVI3 ≅ ZVI4. Accordingly, air-homogenized batch experiments are not appropriate 

for the differentiation of the reactivity of ZVI1, ZVI3 and ZVI4. It is well-known that batch 

systems can not give an image of processes occurring in nature (Wang et al. 2009). The first 

reason in regard to the experimental conditions of this work is the possibility of super-

saturation of the As solution given the too long contact time (30 days) and the relative strong 

homogenisation with air-bubbles. To account for this further characterizations were 

performed under dynamic conditions. 

Column experiments for 65 days 

Fig. 3a shows the effect of tested ZVIs on As leaching from the natural ore as a function of 

time (≤ 65 days). 5.0 g of the ore material was placed in the first column and 5.0 g of ZVI in 

the second column (Fig. 1). From Fig. 3a a visual differentiation of ZVI2 is evident. It is also 

evident that the reference system exhibited the highest As concentration. The cumulative sum 
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of released As (Fig. 3b) confirmed this trend. The m- and Pfix-values from Tab. 3 confirmed 

these observations. The deduced increasing order of increasing reactivity is: ZVI3 ≅ ZVI4 < 

ZVI1 < ZVI2. This classification showing that ZVI2 was the most reactive materials is 

acceptable but the experimental conditions should be further modified to obtain a clear trend. 

The following modifications were operated: (i) the mass of ore material was halved, (ii) the 

first two litres of leaching solution in Fe
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0/As-rock systems were discarded, and (iii) the 

experimental duration was lengthened to 97 days. All other parameters (flow rate, 

temperature) were kept constant. The rationale behind discarding the first two litres was the 

elevated As concentration in this initial phase (Fig. 3a). 

The next important feature from Fig 3a is that 5.0 g of the used ore material is capable of 

producing about 17 mg/ℓ (reference system) As for more that two months. High As 

concentration was intentionally tested here. By varying the mass of the ore material and the 

particle size, As concentrations relevant for each specific size could be achieved. 

Column experiments for 97 days 

Fig. 4a shows the effect of tested ZVIs on As leaching from the natural ore as a function of 

time (≤ 97 days). A visual reactivity difference can be better performed than in Fig. 3a. The 

visual increasing order of reactivity is: ZVI4 < ZVI3 < ZVI1 < ZVI2. The m- and Pfix-values 

from Tab. 3 confirmed this trend with the additive information, that ZVI3 and ZVI4 are very 

closed in their reactivity as the percent As removal (Pfix-values) was 11.9 and 11.7 

respectively. Fig. 4b clearly confirmed the results from Tab. 3. 

From Fig. 4a is clear that 2.5 g of the As-rock is able to produce about 16 mg/ℓ As for more 

than three months. These results shows clearly that long-term experiments regarding As 

removal can be coupled with As leaching from natural ores. By reducing the ore mass, 

changing the particle size and using different ores, it is possible to perform long-term leaching 

experiments in the laboratory. Such experiments could help to bridge the huge gap between 

the laboratory and the field (Wang et al., 2009). On the other hand, parameters from such 
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systems could help to develop more reliable models to predict contaminant leaching in the 

environment. 

Discussion 

The use of Fe0 materials for environmental remediation is severely handicapped by the lack of 

methods for characterization of the chemical reactivity. The current procedure of testing the 

reactivity of Fe0 for individual contaminants (Landis et al., 2001; Miehr et al., 2004; Leupin 

and Hug, 2005; Gheju and Iovi, 2006, Wanner et al. 2011) is not very useful as no 

comparison between two independent works is possible, even for the same contaminant. 

Ideally, there should be a universally acceptable/accepted method to evaluate various Fe0 for 

their chemical reactivity. Accordingly, it is contemplated to propose protocols, which could 

be used to compare the efficiency of different Fe0. 

From available works, only the characterization of Fe0 by the extent of H2 production 

(Reardon, 1995; 2005) could be regarded as universally applicable method to characterise Fe0 

intrinsic reactivity. However, this protocol is not necessarily affordable and used relative high 

Fe0 masses (15.0 to 400 g). Accordingly, most simple and affordable tests should be 

developed. The EDTA-test (Noubactep et al., 2005; 2009) and the MB-test (Noubactep, 2009) 

are simple and affordable but they could not address the passivation of tested material. 

In using elevated As concentrations, the present work has corroborated warnings to perform 

contaminant removal experiments with over-saturated solutions (e.g. Kalin et al., 2005). 

However, more than the instability of used solutions introducing biases in the extent of 

contaminant removal by the tested process, this study has delineated the impact of elevated 

concentrations on the passivation process. In fact, in nature, contaminants are rarely available 

at high concentration (Henderson and Demond, 2011; Kümmerer, 2011) and contaminated 

water enters the zone containing Fe0 when an oxide scale is already formed at its surface. In 

other words, while using elevated contaminant concentrations, an artificial system is created 
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that could not be reproduced in nature. On the other hand, elevated contaminant 

concentrations necessarily impact the process of film formation on Fe
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0 (Noubactep, 2010c).  

Concluding remarks 

In an attempt to access their intrinsic chemical reactivity, the performance of 3 commercial 

Fe0 (ZVI2, ZVI3 and ZVI4) and one scrap iron (ZVI1) for the removal of As has been 

evaluated in long-term column studies. As was leached from a natural rock using the tap 

water of the city of Göttingen as leaching solution. The results confirmed findings from 

previous works that ZVI2 is the least reactive material (Noubactep et al., 2005; 2009; 

Noubactep, 2010a, Noubactep 2011d). It could be further shown that ZVI1 is less reactive 

than ZVI3 and ZVI4. 

The test methodology consisting in leaching As with tap water can be further improved or 

adapted to investigate several aspects of contaminant release and contaminant removal. For 

example, by reducing the mass of the ore material, As concentration relevant to field 

situations could be obtained and used to characterize the performance of Fe0 materials for As 

removal. On the other hand, using several leaching solutions could enable the characterization 

of the impact of relevant ions on the process of As leaching (and/or removal). Such 

experiments could be designed on the basis of site-specific situations. It is hoped that this new 

experimental tool will accelerate efforts to characterize the intrinsic reactivity of Fe0 

materials. 
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Table 1. Elemental composition and specific surface area (SSA) of iron materials used in this 

study. n.d. = not determined. Modified from Noubactep (2010b). 

438 

439 

440  

ZVI Element (%) SSA 

 C Si Mn Cr Mo Ni Fe (m2/g) 

ZVI4 1.96 0.12 0.09 0.003 n.d. <0.001 86.3 0.63 

ZVI2 3.39 0.41 1.10 0.34 n.d. 0.088 91.5 0.043 

ZVI1 3.52 2.12 0.93 0.66 n.d. n.d. 99.8 0.29 

ZVI3 3.13 2.17 0.36 0.077 n.d. 0.056 96.7 0.50 

441 

442 
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Table 2: Summary of the experimental conditions for As release from the As-mineral and As 

removal by Fe

442 

443 

444 

445 

446 

0 in batch and column studies for the four tested Fe0 materials. ‘VT’ 

is the total volume of tap water that has flowed into the individual columns. 

General conditions: pH0 = 8.3 and T = 23 ± 2 °C. 

 

  Batch column 1 column 2 

duration (d) 30.0 65.0 97.0 

As-mineral (g) 1.0 5.0 2.5 

ZVI (g) 0.5 5.0 5.0 

VT (ℓ) 0.1 19.0 25.0 

flow rate (mℓ/h) air bubbled 11.9 11.9 

447 

448 

 

 20



Table 3: Extent of As release (in mg) from the natural mineral as influenced by the presence 

of Fe

448 

449 

450 

451 

452 

453 

0 in batch and column studies. The system without Fe0 is used as reference to 

characterize the extent of As removal by individual ZVIs (Pfix in %). As a rule, the 

more reactive a material the bigger the m and Pfix values. General conditions: pH0 

= 8.3 and T = 23 ± 2 °C. 

 

 Batch Column 1 Column 2 

 m Pfix m Pfix m Pfix

 (mg) (%) (mg) (%) (mg) (%) 

reference 173 0.0 338 0.0 3745 0.0 

ZVI1 118 32.2 307 9.1 2985 20.3 

ZVI2 117 32.6 243 28.0 2782 25.7 

ZVI3 121 30.4 322 4.6 3301 11.9 

ZVI4 109 37.3 322 4.6 3306 11.7 
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Figure 1 455 

456  
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Figure 2 458 
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Figure 3 
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Figure 4 
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Figure Captions 478 
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Figure 1: 

Schematic diagram of the experimental design for the two-columns studies. Used materials 

were As mineral (2.5 or 5.0 g) and Fe0 (5.0 g). 

 

Figure 2: Arsenic release [mg/ℓ] from the base material as a function of time in air-

homogenized batch experiments. The lines are not fitting functions, they simply connect 

points to facilitate visualization. 

Figure 3: 

Extent of arsenic release from the two-column-systems for 65 days by tested Fe0 materials: (a) 

variation of the extent of As release with time, and (b) cumulative As release (mg). The lines 

are not fitting functions, they simply connect points to facilitate visualization. 

Figure 4: 

Extent of arsenic release from the two-column-systems for 97 days by tested Fe0 materials: (a) 

variation of the extent of As release with time, and (b) cumulative As release (mg). The lines 

are not fitting functions, they simply connect points to facilitate visualization. 
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