1	Enhancing the sustainability of household ${ m Fe}^0$ /sand filters by using bimetallics and
2	MnO ₂ .
3	Noubactep Chicgoua * ^(1,2) , Caré Sabine. ⁽³⁾ , Btatkeu K. Brice Donald. ⁽⁴⁾ ,
4	Nanseu-Njiki Charles Péguy ⁽⁵⁾
5	⁽¹⁾ Angewandte Geologie, Universität Göttingen, Goldschmidtstraße 3, D - 37077 Göttingen, Germany;
6	⁽²⁾ Kultur und Nachhaltige Entwicklung CDD e.V., Postfach 1502, D - 37005 Göttingen, Germany;
7	⁽³⁾ Université Paris-Est, Laboratoire Navier, (ENPC/IFSTTAR/CNRS), 2 allée Kepler, 77420 Champs sur Marne,
8	France.
9	⁽⁴⁾ ENSAI/University of Ngaoundere, BP 455 Ngaoundere, Cameroon;
10	⁽⁵⁾ Laboratoire de Chimie Analytique, Faculté des sciences, Université de Yaoundé I, B.P. 812 Yaoundé,
11	Cameroon.
12	* corresponding author: e-mail: cnoubac@gwdg.de; Tel. +49 551 39 3191, Fax: +49 551 399379
13	
14	(accepted Mon, 20 Jun 2011 13:06:39)

15 Abstract

Filtration systems containing metallic iron as reactive medium (Fe⁰ beds) have been 16 intensively used for water treatment during the last two decades. The sustainability of Fe⁰ 17 beds is severely confined by two major factors: (i) reactivity loss as result of the formation of 18 an oxide scale on Fe⁰, and (ii) permeability loss due to pore filling by generated iron corrosion 19 products. Both factors are inherent to iron corrosion at pH > 4.5 and are common during the 20 lifespan of a Fe^0 bed. It is of great practical significance to improve the performance of Fe^0 21 22 beds by properly addressing these key factors. Recent studies have shown that both reactivity loss and permeability loss could be addressed by mixing Fe⁰ and inert materials. For a non 23 porous additive like quartz, the threshold value for the Fe^0 volumetric proportion is 51 %. 24 Using the Fe⁰/quartz system as reference, this study theoretically discusses the possibility of 25 (i) replacing Fe^0 by bimetallic systems (e.g. Fe^0/Cu^0), or (ii) partially replacing quartz by a 26 reactive metal oxide (MnO₂ or TiO₂) to improve the efficiency of Fe⁰ beds. Results confirmed 27 the suitability of both tools for sustaining Fe^0 bed performance. It is shown that using a 28 Fe⁰:MnO₂ system with the volumetric proportion 51:49 will yield a filter with 40 % residual 29

porosity at Fe⁰ depletion (MnO₂ porosity 62 %). This study improves Fe⁰ bed design and can
be considered as a basis for further refinement and detailed research for efficient Fe⁰ filters. **Keywords**: Iron filters; Long-term reactivity; Oxide scale; Water treatment, Zerovalent iron.

33

34 1 Introduction

A filtration system containing metallic iron as reactive medium (hereafter termed as Fe^{0} bed) 35 36 is an attractive method which can continuously remove contaminants from surface water, 37 groundwater, and industrial effluent. The technology was introduced around 1990 by Canadian hydrogeologists [1-3]. The Fe⁰ bed technology has the potential to produce safe 38 39 drinking water in water plants [4-6], and to treat wastewater [4,7-9] and groundwater 40 [3,10,11]. Drawbacks for this innovative technology include (i) the accumulation of reaction 41 by-products, (ii) the decrease in surface activity over time (reactivity loss), and (iii) the decrease of the bed permeability over the time (permeability loss) [11,12]. If Fe⁰ beds are 42 43 used for above ground safe drinking water production, none of these three drawbacks is really a problem. In fact, individual beds will be replaced as soon as a problem is observed. 44

Fe⁰ beds have been demonstrated and used as an efficient and affordable technology for safe 45 46 drinking water production at small scale (household and small community) [13-21]. The first generation filters made up of a 100 % layer of Fe⁰ were very efficient but not sustainable 47 because of too rapid clogging [13,16]. The second generation filters used Fe^{0} and inert filling 48 49 materials (mostly sand) and could achieve certain sustainability [19,22,23]. Recently, a theoretical discussion on the proportion of Fe^0 in Fe^0 beds has been performed [24-26]. 50 Results demonstrated that the Fe⁰ volumetric ratio for sustainable filters is ≤ 52 % when the 51 additive is non porous (e.g. quartz). This threshold value does not give any information on the 52 nature of Fe⁰ (e.g. bimetallic, composite). The nature of filling materials has been discussed 53 54 on the porosity perspective [25]. It is of great practical value to improve the performance of Fe^{0} beds. The following three perspectives could be addressed: (i) developing reliable Fe^{0} 55

56 materials (including composites), (ii) selecting the most suitable additive (porous, inert or/and 57 reactive), and (iii) optimizing Fe^0 bed design (e.g. thickness of a bed).

The suitability of plated metal (bimetallic systems) for reactivity enhancement has already 58 been demonstrated [27-29]. By plating a Fe^{0} material with a more noble metal, the number of 59 60 micro-defects in the crystal lattice due to different dimensions and charges of micro-alloyed elements, related to Fe⁰ increase. Micro-alloved components generate defects in a metal 61 structure (interstitials and vacancies in crystal lattice) and an imbalance in the charge 62 63 distribution, as a result of many micro-galvanic cells. These defects decrease energy barriers for transport of Fe^{2+} ion from metal to oxide layer [27]. A positive accompanying effect is an 64 65 increase in ionic and electronic conductivity and thus, an increase of corrosion rate ([27] and ref. cited therein). This makes the plated Fe^{0} chemically much more reactive than the original 66 Fe⁰ material. Contaminant removal by bimetallic systems is based on several physico-67 68 chemical processes and the in situ formation of very reactive iron hydoxides. The major processes in a Fe^0 bed are adsorption, co-precipitation and size exclusion. 69

The ability of MnO₂ to sustain contaminant removal by Fe⁰ was indirectly demonstrated in a 70 recent study by He and Hering [30]. The authors demonstrated that As^{III} was quantitatively 71 oxidized to As^V by MnO₂ but resulted As^V remained in solution. Quantitative As removal was 72 indeed observed in systems containing Fe^{II} and was mostly attributed to As co-precipitation 73 with Fe^{III} hydroxides. In a similar way, MnO₂ can sustain Fe⁰ oxidative dissolution yielding 74 Fe^{II} which capability to induce reductive dissolution of MnO_2 will sustain the process of 75 76 contaminant removal. Note that the work of He and Hering [30] recalled that "contaminant reduction" and "contaminant removal" should never be randomly interchanged. In other 77 78 words, a chemical transformation (oxidation or reduction) may favour contaminant removal 79 but is not a stand alone removal mechanism. Aqueous contaminant removal by coprecipitation with in-situ generated metal hydroxides is well documented process for all 80 81 classes of contaminants ([29, 31] and ref. therein).

The present study intends to theoretically discuss the optimization of Fe^0 bed by two different tools: (i) replacing Fe^0 by a bimetallic system, and (ii) using MnO₂ as reactive additives, e.g. partially or totally substituting quartz by MnO₂ in a reference Fe^0 /quartz bed. Both tools have the potential to improve the contaminant removal efficiency and prolong the lifespan of Fe^0 beds. For the sake of clarity, the process of contaminant removal in Fe^0 beds will be first presented.

88 2 Contaminant removal in Fe⁰ filters

89 2.1 Filtration in packed-column

A Fe^0 bed is primarily a packed-column of granular Fe^0 and quartz (sand) particles. The efficiency of packed-columns for contaminant removal is usually evaluated by monitoring the time dependent evolution of (i) the contaminant concentration in the effluent, and (ii) the water velocity through the column. Physical and chemical conditions evaluated in such experiments include grain particle size and shape, solution pH, solution ionic strength and composition [32,33]. Ideally, contaminants are deposited throughout the entire filter media. Accordingly, Fe^0 filtration is a deep-bed or depth filtration process [34].

97 **2.2** Filtration in a Fe⁰ bed

Contaminant removal within a Fe^{0} /quartz filter is not comparable to contaminant removal by 98 an adsorption column [5,35]. The most important feature of Fe⁰/quartz filters regards the 99 100 specificity of the removal process. In an adsorption column, contaminants with different physico-chemical properties can be separated due to their differential affinity to the adsorbing 101 102 material (e.g. activated carbon, iron oxide). Similarly, particles with different sizes can be separated in a depth sand filter. But in a Fe⁰/quartz filter, there is primarily no such specificity 103 104 as contaminants are removed during the dynamic process of iron corrosion products formation 105 (Fe hydroxides/oxides) and by resulted Fe hydroxides/oxides [35, 36].

106 2.3 Mechanism of contaminant removal in Fe⁰/sand filters

Regardless from any contaminant inflow, the initial pore space in a $Fe^{0}/quartz$ filter is 107 108 progressively filled by in situ generated Fe hydroxides/oxides. Decreased pore space is 109 coupled to improved size exclusion capacity. Accordingly, regardless from physico-chemical interactions between contaminants, Fe⁰ and Fe hydroxides/oxides, contaminant removal by 110 111 pure size exclusion will inevitably occur with increasing service life. This fundamental aspect 112 has received little attention to date as the scientific community was focused on specific interactions between selected contaminants and Fe⁰. In this effort a particular attention was 113 114 paid to chemical reduction [10,11].

115 It has already been demonstrated that contaminants are fundamentally entrapped within the film of corrosion products in the vicinity of the Fe^0 surface [37-40]. It is essential to note that 116 117 the formation of corrosion products is a cycle of expansion/contraction occurring in the pore space [5,26,35]. During this process, native iron (Fe⁰: SSA < 1 m²/g) is first transformed to 118 voluminous iron hydroxides possibly having specific surface area (SSA) $> 500 \text{ m}^2/\text{g}$ before 119 progressively contracted to amorphous and crystalline oxides with SSA $\leq 10 \text{ m}^2/\text{g}$. The 120 121 voluminous colloid which is intermediary formed [41] during an expansion/contraction cycle 122 can be compared to a spider web which traps inflowing contaminants and keeps them 123 adsorbed while the colloid is further transformed. In other words, before the pore space becomes close enough for the Fe⁰ filter to act as an ultra-filtration system, the 124 125 expansion/contraction cycle traps contaminants from the infiltrating water. It is certain, that 126 the kinetics of iron oxidation will decrease as soon as not enough space is available for 127 expansive corrosion. This is a plausible explanation for the controversial observation, that TCE removal rates were higher in a system with 85 % Fe^0 than they were in a 100 % Fe^0 128 (w/w) system [42]. Substituting a fraction of Fe⁰ by sand (quartz) was proven a prerequisite 129 for efficient long-term permeable Fe^{0} filters [24,25]. The present study aims at theoretically 130 discussing the substitution of a portion of quartz in the dual media ($Fe^{0}/quartz$) by a reactive 131

132 oxide to sustain long-term Fe^0 reactivity. A further discussed way to sustain Fe^0 reactivity is 133 to plate Fe^0 by a second more electropositive metal.

134 **3** Sustaining Fe⁰ reactivity

The presentation above has suggested that successful contaminant removal in a Fe⁰/quartz bed is coupled with the whole process of iron corrosion. Accordingly, a reliable way to warrant continuous contaminant removal is to sustain iron corrosion. This section examines two possibilities of sustaining Fe⁰ corrosion.

139 **3.1 Use of bimetallics**

The deposition of small amounts of second metals such as Ni and Pd onto the Fe⁰ surface has 140 141 been proven beneficial for the process of aqueous contaminant removal ([12] and ref. therein). Bimetallic systems are an efficient media for accelerating the decontamination [27-29]. The 142 143 prevailing operating mode of bimetallic systems [12] was recently challenged. It was shown 144 that any enhanced contaminant reduction, if applicable, occurs by an indirect process [43]. Table 1 summarises the standard electrode potentials of seven elemental metals (Me⁰) which 145 may be used to sustain Fe⁰ oxidation in filters: Co⁰, Ni⁰, Cu⁰, Ag⁰, Pd⁰, Pt⁰, Au⁰. From these 146 metals, Cu^0 is the most used. 147

An ideal Me^0 acts as a catalyst. For example, Cu^0 is oxidized by water to Cu^{2+} and the 148 resulted Cu^{2+} oxidizes Fe^{0} . Considering Me^{0} as pure catalyst, calculated amounts of Fe^{0}/Me^{0} 149 will be added to a sand filter and the porosity will vary as in a Fe^{0} /quartz bed. In other words, 150 replacing Fe⁰ particles by bimetallic (Fe⁰/Me⁰) particles of similar size and occupying the 151 152 same volume will not significantly impact porosity loss. Bimetallic/quartz filters will behave like Fe⁰/quartz filters in term of the evolution of the porosity but exhibit an enhanced long-153 154 term reactivity. The theoretical evolution of porosity loss due to clogging is discussed in 155 section 4.

156 **3.2** Use of metal oxides

The use of natural oxides to sustain Fe⁰ reactivity was derived from the well-documented 157 reductive dissolution of MnO₂ by Fe^{II} [46,47]. This process was successfully used to 158 159 demonstrate the importance of corrosion products in the process of contaminant removal by Fe^{0} [48-52]. Moreover, the reductive dissolution of MnO₂ by Fe^{II} is a well-established 160 161 hydrometallurgical process [53-55]. Recently, Bafghi et al. [55] published a work on the reductive dissolution of manganese ore in the presence of Fe⁰. Based on theoretical and 162 experimental facts, they concluded that Fe⁰ was superior to Fe^{II} for MnO₂ reductive 163 dissolution. However, they insisted on the fact that Fe^{II} is more available. Mechanistic details 164 will not be considered here as it is sufficient to consider that metal oxides could sustain Fe^0 165 166 corrosion (Tab. 2, Tab. 3). Remember that contaminants are fundamentally removed by iron 167 corrosion products (adsorption and co-precipitation) and these are increasingly available when iron oxidation is sustained by Fe^{II} consumption [51,52,56]. 168

Only the four naturally abundant oxides will be considered: Al₂O₃, MnO₂, SiO₂ and TiO₂ 169 (Tab. 2). The standard electrode potentials from Tab. 2 show that only MnO₂ and TiO₂ could 170 sustain Fe⁰ reactivity. Accordingly, Al₂O₃ and SiO₂ can only be used as inert filling materials. 171 The ability of MnO_2 to sustain Fe^0 corrosion was already demonstrated [48-50,56]. In 172 173 particular, the success of SONO Arsenic Filters in Bangladesh is based on continuous production of reactive iron oxides by the used manganese oxide/Fe⁰ composite (coupled to 174 175 size exclusion in the filter). Table 3 depicts some relevant electrode reactions (half-reactions) for the discussion of the Fe^0 reactivity. From Tab. 3 it can be seen that MnO₂ is theoretically 176 by far superior to TiO_2 in sustaining Fe⁰ corrosion. However, the suitability of available metal 177 178 oxides to sustain Fe reactivity should be tested on the case-by-case basis. Moreover, the 179 objective should not be to use the most reactive metal oxide but rather the one with satisfactorily reactivity for individual purposes. For example, for a given Fe⁰, a very reactive 180 MnO_2 can accelerate the Fe⁰ corrosion in such a way that filter fouling/clogging is achieved 181 similar as with bio-corrosion [10,11]. In such situations a lesser reactive MnO₂ should be 182

used. Testing well-characterized Fe⁰ and reactive manganese oxides in various proportions is regarded as a tool to produce site-specific composites. In fact, the composite currently used in SAF filters is the same material which is used everywhere (actually mostly in Bangladesh and Nepal) [14,18]. However, contaminated waters are of various background compositions and each water could be treated with appropriate composites.

To discuss the evolution of the pore space within the filter as metal oxides react, it will be considered that MnO_2 and TiO_2 reduction at neutral pH values mostly yield insoluble hydroxides: MnOOH and TiOOH (Eq. 17 and Eq. 18).

191
$$\operatorname{Fe}^{0} + 3 \operatorname{MnO}_{2} + 2 \operatorname{H}_{2}O \Leftrightarrow \operatorname{FeOOH} + 3 \operatorname{MnOOH}$$
 (17)

192
$$\operatorname{Fe}^{0} + 3\operatorname{TiO}_{2} + 2\operatorname{H}_{2}O \Leftrightarrow \operatorname{FeOOH} + 3\operatorname{TiOOH}$$
 (18)

Eq. 17 and 18 suggest that the oxidation of one Fe atom consumes three molecules of the adsorbent MnO₂ (or TiO₂) and produces one FeOOH and three MnOOH (or three TiOOH) as new adsorbents. The volume variation is estimated based on values of the specific weight defined as the ratio of the molecular volume of the reaction products to the molecular volume of the educts (Tab. A3). The discussion will only concern MnO₂ because no tabulated value could be found for TiOOH. The evolution of the porosity loss due to clogging is discussed in section 4.

200 4 Evolution of the residual porosity using bimetallic particles or metal oxides

This section will start with some general design equations. It has been recently showed that dimensionless design equations could be written such that for each practical case the appropriate values are derived [24-26]. In other words, the same equations are applied to household Fe^0 filters, Fe^0 treatment trench, and Fe^0 reactive walls. In each case, the used materials (Fe^0 and additives) should be thoroughly characterized. Relevant material characteristics include porosity, particle size, shape, specific weight, and surface area. The impacts of material characteristics on the bed efficiency are not discussed here.

208 **4.1** General design equations of Fe⁰ beds

Cylindrical beds are considered. H is the height and D is the internal diameter. The cylinder contains a reactive zone with the height H_{rz} and the volume V_{rz} . Beds are supposed to be filled by granular materials. The compactness (or packing density) C (-) is defined as the ratio of the volume of the particles to the total packing volume (V_{rz}). Considering the granular material as composed of mono-dispersed spheres subjected to soft vibrations, the compactness C is generally considered to be equal to 0.64 for a random close packing. It is assumed that the particles are non porous.

The initial porosity Φ_0 (-) of the reactive zone and the thickness H_{rz} of the reactive zone are respectively then given by:

218
$$\Phi_0 = 1 - C$$
 (19)

219
$$H_{rz} = \frac{4}{\pi D^2} \cdot V_{rz}$$
 (20)

The filling of the bed porosity by iron corrosion products can be estimated from a simplifiedmodeling (Fig. 1) based on the following assumptions:

(i) uniform corrosion: the radius reduction of the spherical particles is the same for all the Fe⁰
 particles.

224 (ii) the packing density C remains constant for all particles (Fe⁰ and quartz). The volume of 225 the granular material is not modified by the corrosion process: no pressure induced by rust 226 formation around Fe particles and no compaction of the Fe⁰ mixture during the corrosion 227 process (V_{rz} remains constant).

228 (iii) reaction products are fluid enough to progressively fill available pore space.

Assuming that the coefficient of volumetric expansion or the specific volume (η) of the reaction products is:

231
$$\eta = V_{\text{oxide}}/V_{\text{Fe}}$$
(21)

where V_{oxide} is the volume of the reaction product and V_{Fe} the volume of the parent Fe^{0} . It is assumed that $Fe_{3}O_{4}$ is the sole iron corrosion product for the Fe/quartz system. The specific volume for $Fe_{3}O_{4}$ is 2.1.

The surplus volume of the reaction products contributing to porosity loss is V'_{oxide} . Per definition V'_{oxide} is the difference between the volume V_{oxide} of reaction products and the volume V_{Fe} of parent Fe⁰. V'_{oxide} is given by Eq. 22:

238
$$V'_{oxide} = (\eta - 1) * V_{Fe}$$
 (22)

Assuming that iron expansive corrosion is the sole clogging factor, the bed is clogged when the volume V'_{oxide} is equal to the initial inter-granular voids (Φ_0 .V_{rz}), the volume V_{Fe,clogging} of the consumed Fe⁰ leading to clogging of the bed is then estimated by:

242
$$V_{\text{Fe}, \text{clogging}} = \frac{\Phi_0 \cdot V_{\text{rz}}}{\eta - 1}.$$
 (23)

Eq. 23 is of fundamental importance for Fe^0 bed design as it determines the ideal Fe^0 volume (and thus Fe^0 mass) to be used. If V_0 is the initial volume of dense Fe^0 , three cases can be distinguished:

246 "(i) $V_{\text{Fe,clogging}} > V_0$, no clogging due to expansive iron corrosion will occur. In this case, the 247 real volume of Fe which may be consumed ($V_{\text{consumed-Fe}}$) is equal to the initial volume V_0 of Fe 248 ($V_{\text{consumed-Fe}} = V_0 < V_{\text{Fe,clogging}}$) and there is a residual porosity at Fe⁰ depletion ($\Phi_r \neq 0$);

249 (ii) $V_{\text{Fe,clogging}} = V_0$, clogging will not occur before Fe^0 depletion ($V_{\text{consumed-Fe}} = V_{\text{Fe,clogging}} = V_0$) 250 but the final porosity is zero ($\Phi_r = 0$):

251 (iii) $V_{Fe,clogging} < V_0$, clogging will occur before Fe^0 depletion ($\Phi_r = 0$). In this case, the real 252 volume of consumed Fe leading to clogging is inferior to the initial volume V_0 of Fe 253 ($V_{consumed-Fe} = V_{Fe,clogging} < V_0$) and the excess Fe^0 amount should be regarded as pure material 254 wastage [24]."

256 The residual porosity Φ_r defined by $\Phi_r = V_{residual voids}/V_{rz}$ and the residual mass of the iron 257 (Fe⁰) are evaluated by Eq. 24 and Eq.25:

258
$$\Phi_{\rm r} = \Phi_0 - (\eta - 1) \cdot \frac{V_{\rm consumed-Fe}}{V_{\rm rz}}$$
(24)

$$\frac{M}{M_0} = \frac{V_0 - V_{\text{consumed}-Fe}}{V_0}$$
(25)

where V_0 is the initial volume of Fe, $V_{consumed-Fe}$ is the volume of the Fe which is consumed and M is the actual mass of Fe given by $M = \rho_{Fe}*(V_0 - V_{consumed-Fe})$ with $\rho_{Fe} = 7,800 \text{ kg/m}^3$. When the clogging appears before depletion of Fe⁰, the volume $V_{consumed-Fe}$ is given by the Eq.

263 24 and the residual porosity is $\Phi_r = 0$ and there is a residual mass of iron M/M₀ $\neq 0$ (Eq. 25).

When there is no clogging, the volume $V_{\text{consumed-Fe}} \le V_0$ and $\Phi_r \ne 0$ (Eq. 24) and the Fe⁰ mass at Fe⁰ depletion is zero (M/M₀ = 0; Eq. 25).

Eq. 19 through 25 should be routinely used to design laboratory experiments, pilot and fieldworks.

268 **4.2** Case of bimetallic/quartz system

To sustain the Fe⁰ reactivity, Fe particles are replaced by bimetallic particles of comparable 269 particle sizes. For Fe⁰/Cu⁰ bimetallic particles with 7 % in mass of Cu, the volumetric 270 proportion of Fe⁰ is 93.85 % (considering for specific weights ρ_{Fe} = 7800 kg/m³ and ρ_{Cu} = 8960 271 kg/m^3) and the reaction product is Fe₃O₄. The residual porosity and the residual mass are 272 given by the same equations by replacing the initial volume V_0 of Fe⁰ by 93.85 %* V₀. The 273 results for the Fe⁰/quartz and the bimetallic/quartz systems are given in Fig. 1. The trends are 274 similar for both cases. While decreasing the Fe^0 proportion at constant reactive zone 275 thickness, Fe^0 depletion was achieved for Fe^0 /quartz systems > 51 vol-% Fe^0 . In the case of 276 bimetallic/quartz system (Fe⁰/Cu⁰), the clogging is avoided for < 54 vol-% bimetallic. 277

To further sustain the efficiency of Fe^0 beds, bimetallic systems containing larger amounts of plating metals (Me⁰) could be used. Moreover composites should be manufactured and tested. Those composites should contain uniformly distributed Me^0 in the bulk of Fe^0 materials and not just deposited at their surface. Apart from such bulk composites, special Fe^0 materials with higher contents in S for instance, could be manufactured and tested. In fact, during the steel making process, efforts target as completely remove S are made. Sulphur is known for its negative effect on corrosion resistance of steel. However, in the context of water treatment with Fe^0 , readily corrosive Fe^0 may be suitable.

286 **4.3.1** Case of Fe⁰/MnO₂/quartz system

A reference reactive zone is considered as made up of 51 vol-% Fe^0 and 49 vol-% quartz as it allows avoiding the clogging before Fe^0 depletion as shown in Fig. 1. Iron filings from Gotthart Maier Metallpulver GmbH (Rheinfelden, Germany) containing 92 % Fe^0 (w/w) is used for the calculations. Quartz particles of similar particle size are replaced by MnO₂ particles in order to increase Fe^0 reactivity. In presence of MnO₂, it is assumed that chemical reactions yield to FeOOH and MnOOH products (Eq. 17). When MnO₂ particles have been consumed, the Fe corrosion process leads to the reaction products Fe_3O_4 .

Calculations made with characteristics of a natural MnO_2 ($\phi_{Mno2} = 62$ %) given by Li et al. 294 295 [57] are used in this study (Tab. A.1 and A.2). The mineral contained (weight) 77.8 % MnO₂, 2.7 % Fe, 0.87 % Si, 2.78 % Al and 0.01 % S. For simplifications, it is considered that the 296 mineral is made up of 77.8 % MnO₂ and 22.2 % of a "gangue" having the characteristic of 297 298 quartz (inert and non porous). This assumption was the rationale to use the specific weight of 299 quartz in estimating the volumetric expansion coefficient for MnO₂ (Appendix). Calculations showed that for the reference system (vol. Fe:quartz = 51:49), less than 3 % Fe^{0} is necessary 300 to consume the amount of MnO₂ that could be contained in up to 49 vol-% MnO₂, when 301 302 quartz is completely replaced by MnO₂. Moreover, it is shown that thanks to the porosity of MnO_2 , there is a net increase of the initial bed porosity in comparison to the Fe⁰/quartz bed. 303 304 Furthermore, because the chemical transformation (Fe + MnO₂) to (MnOOH +FeOOH) was

not expansive but slightly compressive ($\eta = 0.94$), there is a net increase of the residual bed porosity (Appendix).

Eq. 24 and 25 are slightly modified because the initial porosity Φ_0 is increased by the internal porosity of the MnO₂ particles and the voids ($\Phi_0.V_{rz}$) are filled by (i) the MnOOH hydroxides with $\eta_1 = V_{MnOOH}/V_{MnO2} = 0.94$ (Appendix), (ii) the FeOOH hydroxides with $\eta_2 = V_{FeOOH}/V_{Fe}$ = 3.03 and (iii) Fe₃O₄ with $\eta_3 = V_{Fe3O4}/V_{Fe} = 2.1$. Values of η_2 and η_3 are from ref. [58].

- 311 The initial porosity Φ_0 , the residual porosity Φ_r and the residual mass of the iron (Fe⁰) are 312 evaluated by Eq. 26, Eq. 27 and Eq.28:
- 313 $\Phi_0 = (1 C) + f_{Mno2} * \phi_{Mno2}$ (26)

314
$$\Phi_{\rm r} = \Phi_0 - \frac{(\eta_1 - 1).V_1 + (\eta_2 - 1).V_2 + (\eta_3 - 1).V_3}{V_{\rm rz}}$$
(27)

315
$$\frac{M}{M_0} = \frac{V_0 - V_2 - V_3}{V_0}$$
(28)

Where ϕ_{MnO2} is the internal porosity of the MnO₂ particles ($\phi_{MnO2} = 62 \%$) and f_{pp} (-) is the porous particle volume fraction determined by $f_{pp} = V_{MnO2}/V_{MnO2}$ with V_{MnO2} the volume of the porous particles MnO₂. V₁ is the volume of the dense MnO₂, V₂ is the Fe⁰ volume which reacts with MnO₂. The volume of Fe⁰ (V₂) is obtained considering that one Fe atom consumes three molecules of MnO₂ (Eq. 17). V₃ is the volume of Fe⁰ leading to Fe₃O₄ after MnO₂ depletion.

At Fe depletion (M/M₀ = 0), the residual porosity Φ_r is given by Eq. 27 (V₃ = V₀ - V₂ with V₀ the initial volume of Fe⁰ in the reactive zone). If clogging appears before depletion of Fe⁰, the residual porosity is $\Phi_r = 0$ and the residual mass is given by Eq. 28.

325 The evolution of the initial and residual porosity is given in Fig. 2a for the reference system 326 when the volumetric proportion of MnO_2 varies from 0 to 49 %. Thanks to the internal 327 porosity of MnO_2 the initial porosity (Φ_0) increased from 36.0 to 55.4 %. On the other hand,

 Fe^{0} depletion was observed in all systems but the residual porosity varies from 8.3 to 40.6 %. 328 329 The increase of the residual porosity with increasing MnO₂ proportion is due to two factors: 330 (i) the internal porosity of MnO_2 and (ii) the light volumetric compaction of MnO_2 reduction to MnOOH. Remember that in the reference system the residual porosity is zero at Fe^{0} 331 depletion. Therefore, similarly as for the Fe⁰/pumice system [25,59], the internal porosity of 332 333 MnO₂ could be regarded as storage room for in situ generated corrosion products (see also 334 Appendix). In summary, MnO₂ reduction to MnOOH has two beneficial effects: (i) sustaining 335 Fe^{0} reactivity and (ii) serving as storage room for corrosion products. Additionally, the chemical potential of the reaction between Fe^{II} and MnO_2 will drive the diffusion of Fe^{II} from 336 Fe⁰ oxidative dissolution to the internal surface of MnO₂. Thus, filling the internal porosity of 337 MnO₂ with iron corrosion products is more likely to occur than for an inert material like 338 pumice. Another important aspect is that Mn^{II} from the reductive dissolution of MnO₂ will 339 340 migrate in the system and be oxidized by several species to MnOOH or MnO₂ [60-62] which will further oxidize Fe^{II} from Fe⁰. Accordingly, despite stoichiometric disadvantage, MnO₂ 341 may work as catalyst to sustain Fe^0 reactivity during its whole lifespan [63,64]. 342

The fact that no pore clogging was observed for 51 vol-% Fe⁰ suggests that more Fe⁰ could be 343 used for the same bed (V_{rz} constant). In this case, the volume of MnO₂ is necessarily reduced. 344 Fig. 2b shows the results of systems with volumetric ratios Fe⁰:MnO₂ varying between 60:0 345 346 and 60:40. That is, when quartz is progressively replaced by MnO₂. While the initial porosity 347 increased from 36 to 51.9 %, the residual porosity increased from 0.0 to 24.8 %. This results show clearly that even in rising the Fe^0 volumetric ratio in the column from 51 to 60 %, a 348 residual porosity exists and the Fe^0 performance is increased by the cycle of MnO₂ as 349 350 described above.

351 **5** Concluding remarks

352 A Fe^{0} /quartz filter is regarded as an assisted slow sand filtration system which efficiency is 353 improved by addition of a calculated amount of metallic iron [65]. The aqueous corrosion by

infiltrating raw water should ideally transform the initial Fe⁰ filter to an efficient filtration 354 355 system. Improved filtration efficiency is based on the volumetric expansive nature of iron 356 corrosion [59,66] which ideally only partly fills initial pore space in the sand-like filter [67]. This communication is part of an ongoing effort for low-cost water treatment using well-357 design Fe^0 beds [5,6,17,24-26,68,69]. While dual filters of Fe^0 and guartz will be long-term 358 359 permeable, the substitution of Fe^0 by bimetallic materials or the substitution of inert sand by reactive metal oxides will sustain long-term reactivity. For example, sustaining Fe⁰ reactivity 360 by substituting a fraction of Fe^0 by metallic copper chips or (partly or entirely) replacing sand 361 by granulated MnO₂ will help to design efficient and sustainable filtration systems. The 362 encouraging results of SONO filters in Bangladesh [14,15,18,70-72] suggest that practitioners 363 of subsurface permeable barriers should check the possibility of replacing Fe⁰ by composites 364 or amended Fe⁰ by reactive additives. The concept presented and discussed in this 365 366 communication (and related articles) would be useful in designing efficient and affordable 367 water filtration systems at several scales. The concept also renders itself as a basis for further refinement and detailed research at laboratory and field scale. One may wonder how the Fe⁰ 368 369 bed technology will be developed in different parts of the world.

370 Acknowledgments

371 Dr. Boniface P. T. Fokwa (Institute of Inorganic Chemistry, RWTH Aachen University) is
372 acknowledged for fruitful discussions on the mineralogy of manganese oxides. The
373 manuscript was improved by the insightful comments of anonymous reviewers from CLEAN
374 Soil, Air, Water.

375 **References**

- 376 [1] G.W. Reynolds, J.T. Hoff, R.W. Gillham, Sampling bias caused by materials used to 377 monitor halocarbons in groundwater, *Environ. Sci. Technol.* **1990**, 24, 135.
- 378 [2] S.F. O'Hannesin, R.W. Gillham, Long-term performance of an in situ "iron wall" for
- 379 remediation of VOCs, *Ground Water* **1998**, 36, 164.

- 380 [3] R.W. Gillham, Development of the granular iron permeable reactive barrier technology
- 381 (good science or good fortune), In "Advances in environmental geotechnics : proceedings of
- 382 the International Symposium on Geoenvironmental Engineering in Hangzhou, China,
- 383 *September 8-10, 2009*"; Y. Chen, X. Tang, L. Zhan (Eds); Springer Berlin/London, **2010**, 5–
- 384 15.
- 385 [4] D.D.J. Antia, Sustainable zero-valent metal (ZVM) water treatment associated with 386 diffusion, infiltration, abstraction and recirculation, *Sustainability* **2010**, 2, 2988.
- [5] C. Noubactep, Metallic iron for safe drinking water worldwide. *Chem. Eng. J.* 2010, 165,
 740.
- [6] C. Noubactep, A. Schöner, Metallic iron: dawn of a new era of drinking water treatment
 research? *Fresen. Environ. Bull.* 2010, 19, 1661.
- 391 [7] S. Junyapoon Use of zero-valent iron for wastewater treatment, KMITL Sci. Tech. J.
 392 2005, 5, 587.
- 393 [8] G. Bartzas, K. Komnitsas, I. Paspaliaris, Laboratory evaluation of Fe⁰ barriers to treat
 acidic leachates, Miner. Eng. 2006, 19, 505.
- [9] K. Komnitsas, G. Bartzas, K. Fytas, I. Paspaliaris, Long-term efficiency and kinetic
 evaluation of ZVI barriers used for clean up of copper containing solutions, *Miner. Eng.* 2007,
 20, 1200.
- 398 [10] M.M. Scherer, S. Richter, R.L. Valentine, P.J.J. Alvarez, Chemistry and microbiology of
- 399 permeable reactive barriers for in situ groundwater clean up, Crit. Rev. *Environ. Sci. Technol.*400 **2000**, 30, 363.
- 401 [11] A.D. Henderson, A.H. Demond, Long-term performance of zero-valent iron permeable
 402 reactive barriers: a critical review, *Environ. Eng. Sci.* 2007, 24, 401.
- 403 [12] C.-c. Lee, R.-a Doong, Concentration effect of copper loading on the reductive
- 404 dechlorination of tetrachloroethylene by zerovalent silicon, *Water Sci. Technol.* **2010**, 62, 28.

- 405 [13] A.H. Khan, S.B. Rasul, A.K.M. Munir, M. Habibuddowla, M. Alauddin, S.S. Newaz, A.
- 406 Hussam, Appraisal of a simple arsenic removal method for groundwater of Bangladesh, J.

407 Environ. Sci. Health, 2000, A35, 1021.

- 408 [14] A. Hussam, A.K.M. Munir, A simple and effective arsenic filter based on composite iron
- 409 matrix: Development and deployment studies for groundwater of Bangladesh, J. Environ. Sci.
- 410 *Health* **2007**, A 42, 1869.
- 411 [15] T.K.K. Ngai, R.R. Shrestha, B. Dangol, M. Maharjan, S.E. Murcott, Design for
- 412 sustainable development Household drinking water filter for arsenic and pathogen treatment
- 413 in Nepal, J. Environ. Sci. Health 2007, A 42, 1879.
- 414 [16] A. Hussam, Contending with a development disaster: SONO filters remove arsenic from
- 415 well water in Bangladesh, *Innovations* **2009**, 4, 89.
- 416 [17] C. Noubactep, A. Schöner, P. Woafo, Metallic iron filters for universal access to safe
 417 drinking water, *Clean: Soil, Air, Water* 2009, 37, 930.
- 418 [18] D. Pokhrel, B.S. Bhandari, T. Viraraghavan, Arsenic contamination of groundwater in
- 419 the Terai region of Nepal: An overview of health concerns and treatment options, *Environ*.
 420 *Int.* 2009, 35, 157.
- 421 [19] A.M. Gottinger, *Chemical-free arsenic removal from potable water with a ZVI-amended*
- 422 *biofilter*. Master thesis, University of Regina (Saskatchewan, Canada) **2010**, 90 pp.
- 423 [20] A.M. Gottinger, D.J. Wild, D. McMartin, B. Moldovan, D. Wang, Development of an
- 424 iron-amended biofilter for removal of arsenic from rural Canadian prairie potable water. In:
- Water Pollution X. A.M. Marinov and C.A. Brebbia, Eds.; WIT Press: Ashurst, Southampton
 2010, 333.
- 427 [21] M.I. Litter, M.E. Morgada, J. Bundschuh, Possible treatments for arsenic removal in
- 428 Latin American waters for human consumption, *Environ. Pollut.* **2010**, 158, 1105.
- 429 [22] O.X. Leupin, S.J. Hug, Oxidation and removal of arsenic (III) from aerated groundwater
- 430 by filtration through sand and zero-valent iron, *Water Res.* 2005, 39, 1729.

- 431 [23] O.X. Leupin, S.J. Hug, A.B.M. Badruzzaman, Arsenic removal from Bangladesh tube
 432 well water with filter columns containing zerovalent iron filings and sand, *Environ. Sci.*433 *Technol.* 2005, 39, 8032.
- 434 [24] C. Noubactep, S. Caré, F. Togue-Kamga, A. Schöner, P. Woafo, Extending service life
- 435 of household water filters by mixing metallic iron with sand, *Clean: Soil, Air, Water* **2010**, 38,

436 951.

- 437 [25] C. Noubactep, S. Caré, Enhancing sustainability of household water filters by mixing
 438 metallic iron with porous materials, *Chem. Eng. J.* 2010, 162, 635.
- 439 [26] C. Noubactep, S. Caré, Dimensioning metallic iron beds for efficient contaminant
 440 removal, *Chem. Eng. J.* 2010, 163, 454.
- 441 [27] A. Bojic, M. Purenovic, D. Bojic, Removal of chromium(VI) from water by micro442 alloyed aluminium based composite in flow conditions. *Water SA* 2004, 30, 353.
- 443 [28] A. Bojic, M. Purenovic, D. Bojic, T. Andjelkovic, Dehalogenation of trihalomethanes by
 444 a micro-alloyed aluminium composite under flow conditions. *Water SA* 2007, 33, 297.
- 445 [29] A. Bojic, D. Bojic, T. Andjelkovic, Removal of Cu^{2+} and Zn^{2+} from model wastewaters
- by spontaneous reduction–coagulation process in flow conditions, *J. Hazard. Mater.* 2009,
 168, 813.
- 448 [30] Y.T. He, J.G. Hering, Enhancement of Arsenic(III) Sequestration by Manganese Oxides
- 449 in the Presence of Iron(II). *Water Air Soil Pollut.* **2009**, 203, 359.
- 450 [31] K. Eusterhues, T. Rennert, H. Knicker, I. Kgel-Knabner, K.U. Totsche, U. Schwertmann,
- 451 Fractionation of organic matter due to reaction with ferrihydrite: Coprecipitation versus
- 452 adsorption. *Environ. Sci. Technol.* **2010**, doi: 10.1021/es1023898.
- 453 [32] N. Tufenkji, Modeling microbial transport in porous media: Traditional approaches and
- 454 recent developments. Adv. Water Res. 2007, 30, 1455.

- [33] G.J. Williams, B. Sheikh, R.B. Holden, T.J. Kouretas, K.L. Nelson, The impact of
 increased loading rate on granular media, rapid depth filtration of wastewater, *Water Res.*2007, 41, 4535.
- [34] D.D. Putnam, M.A. Burns, Predicting the filtration of noncoagulating particles in depth
 filters, *Chem. Eng. Sci.* **1997**, 52, 93.
- 460 [35] C. Noubactep, The suitability of metallic iron for environmental remediation. *Environ.*461 *Progr. Sust. En.* 2010, 29, 286.
- 462 [36] C. Noubactep, An analysis of the evolution of reactive species in Fe^0/H_2O systems. J.
- 463 Hazard. Mater. 2009, 168, 1626.
- 464 [37] C. Noubactep, Processes of contaminant removal in "Fe⁰–H₂O" systems revisited: The
- 465 importance of co-precipitation, *Open Environ. J.* 1 2007, 9.
- 466 [38] C. Noubactep, A critical review on the mechanism of contaminant removal in Fe^0-H_2O
- 467 systems, *Environ. Technol.* **2008**, 29, 909.
- [39] C. Noubactep, The fundamental mechanism of aqueous contaminant removal by metallic
 iron. *Water SA* 2010, 36, 663.
- 470 [40] C. Noubactep, A. Schöner, M. Sauter. Significance of oxide-film in discussing the
- 471 mechanism of contaminant removal by elemental iron materials, In "Photo-Electrochemistry
- 472 & Photo-Biology for the Sustainablity"; S. Kaneco, B. Viswanathan, H. Katsumata (Eds.),
- 473 Bentham Science Publishers, **2010**, 1, 35
- 474 [41] J. Livage, J. Lemerle, Transition metal oxide gels and colloids, *Ann. Rev. Mater. Sci.*475 **1982**, 12,103.
- [42] E. Bi, J.F. Devlin, B. Huang, Effects of mixing granular iron with sand on the kinetics of
 trichloroethylene reduction, *Ground Water Monit. Remed.* 2009, 29, 56.
- 478 [43] C. Noubactep, On the operating mode of bimetallic systems for environmental
- 479 remediation, J. Hazard. Mater. 2009, 164, 394.

- 480 [44] Y. Gerasimov, V. Dreving, E. Eremin, A. Kiselev, V. Lebedev, G. Panchenkov, A.
- 481 Shlygin, *Physical Chemistry*, vol. 2, MIR Moscow **1985**, 624 pp.
- [45] K.B. Krauskopf, D.K. Bird, *Introduction to geochemistry*, Third Edition, McGraw-Hill,
 Inc, New York **1995**, 647 pp.
- 484 [46] D.F.A. Koch, Kinetics of the reaction between manganese dioxide and ferrous ion, *Austr.*
- 485 J. Chem. 1957, 10, 150.
- 486 [47] D. Postma, C.A.J. Appelo, Reduction of Mn-oxides by ferrous iron in a flow system:
- 487 column experiment and reactive transport modelling, *Geochim. Cosmochim. Acta* 2000, 64,
 488 1237.
- 489 [48] C. Noubactep, G. Meinrath, P. Dietrich, B. Merkel, Mitigating uranium in groundwater:
- 490 Prospects and limitations, *Environ. Sci. Technol.* **2003**, 37, 4304.
- [49] C. Noubactep, G. Meinrath, J.B. Merkel, Investigating the mechanism of uranium
 removal by zerovalent iron materials, *Environ. Chem.* 2005, 2, 235.
- 493 [50] C. Noubactep, A. Schöner, G. Meinrath, Mechanism of uranium (VI) fixation by
 494 elemental iron, *J. Hazard. Mater.* 2006, 132, 202.
- 495 [51] A. Ghauch, H. Abou Assi, A. Tuqan, Investigating the mechanism of clofibric acid
 496 removal in Fe⁰/H₂O systems, *J. Hazard. Mater.* 2010, 176, 48.
- 497 [52] A. Ghauch, H. Abou Assi, S. Bdeir, Aqueous removal of diclofenac by plated elemental
 498 iron: bimetallic systems, J. Hazard. Mater. 2010, 182, 64.
- [53] K. Inoue, M. Okui, M. Tanaka, K. Shinoda, S. Suzuki, Y. Waseda, Influence of
 manganese on iron oxyhydroxides and oxides formed in aqueous solution, *Corros. Sci.* 2008,
 50, 811.
- 502 [54] M.J. Lottering, L. Lorenzen, N.S. Phala, J.T. Smit, G.A.C. Schalkwyk, Mineralogy and
- 503 uranium leaching response of low grade South African ores, *Miner. Eng.* 2008, 21, 16.
- 504 [55] M.Sh. Bafghi, A. Zakeri, Z. Ghasemi, M. Adeli, Reductive dissolution of manganese ore
- in sulfuric acid in the presence of iron metal, *Hydrometallurgy* **2008**, 90, 207.

- 506 [56] D. Burghardt, A. Kassahun, Development of a reactive zone technology for simultaneous
- 507 in situ immobilisation of radium and uranium, *Environ. Geol.* **2005**, 49, 314.
- 508 [57] K. Li, R.R. Rothfus, A.H. Adey, Effect of macroscopic properties of manganese oxides 509 on absorption of sulfur dioxide. *Environ. Sci. Technol.* **1968**, 2, 619.
- 510 [58] S. Caré, Q.T. Nguyen, V. L'Hostis, Y. Berthaud, Mechanical properties of the rust layer
- 511 induced by impressed current method in reinforced mortar, Cement Concrete Res. 2008, 38,
- 512 1079.
- 513 [59] N. Moraci, P.S. Calabrò, Heavy metals removal and hydraulic performance in zero-
- valent iron/pumice permeable reactive barriers. J. Environ. Manag. 2010, 91, 2336.
- 515 [60] T. Kohler, T. Armbruster, E. Libowitzky, Hydrogen Bonding and Jahn–Teller Distortion
- 516 in Groutite, α -MnOOH, and Manganite, γ -MnOOH, and Their Relations to the Manganese
- 517 Dioxides Ramsdellite and Pyrolusite. J. Solid State Chem. 1997, 133, 486.
- 518 [61] J.E. Post, Manganese oxide minerals: Crystal structures and economic and environmental
- 519 significance. Proc. Natl. Acad. Sci. USA 1999, 96, 3447.
- 520 [62] S.A. Kirillov, V.S. Aleksandrova, T.V. Lisnycha, D.I. Dzanashvili, S.A. Khainakov, J.R.
- 521 García, N.M. Visloguzova, O.I. Pendelyuk, Oxidation of synthetic hausmannite (Mn_3O_4) to
- 522 manganite (MnOOH). J. Mol. Struct. 2009, 928, 89.
- 523 [63] T. Ohzuku, M. Kitagawa, T. Hirai, Electrochemistry of manganese dioxide in lithium
- 524 nonaqueous cell: III. X-Ray diffractional study on the reduction of spinel-related manganese
- 525 dioxide. J. Electrochem. Soc. 1990, 137, 769.
- 526 [64] Y. Chabre, J. Pannetier, Structural and electrochemical properties of the proton $/\gamma$ -MnO₂
- 527 system. Progr. Solid State Chem. 1995, 23, 1.
- 528 [65] C. Noubactep, Metallic iron for safe drinking water production. *Freiberg Online* 529 *Geology*, 2011, 27, 38 pp, ISSN 1434-7512. (www.geo.tu-freiberg.de/fog)
- 530

- 531 [66] K. Bhargava, A.K. Ghosh, Y. Mori, S. Ramanujam, Model for cover cracking due to
- rebar corrosion in RC structures, *Eng. Struct.* **2006**, 28, 1093.
- [67] K.-M. Yao, M.T. Habibian, C.R. O'melia, Water and waste water filtration: concepts and
 applications. *Environ. Sci. Technol.* 1971, 1105–1112.
- 535 [68] C. Noubactep, P. Woafo, Elemental iron (Fe^{0}) for better drinking water in rural areas of
- developing countries, In Merkel B.J., Hasche-Berger A. (Eds.) Uranium in the *Environment*. Springer, Berlin, Heidelberg 2008, 121.
- 538 [69] C. Noubactep, S. Caré, Designing laboratory metallic iron columns for better result
 539 comparability. *J. Hazard. Mater.* 2011, 189, 809–813.
- 540 [70] H. Chiew, M.L. Sampson, S. Huch, S. Ken, B.C. Bostick, Effect of groundwater iron and
- phosphate on the efficacy of arsenic removal by iron-amended biosand filters, *Enviro. Sci. Technol.* 2009, 43, 6295.
- 543 [71] Md. Shafiquzzaman, Md.S. Azam, I. Mishima, J. Nakajima, Technical and social 544 evaluation of arsenic mitigation in rural Bangladesh. *J. Health Pop. Nutr.*, **2009**, 27, 674.
- 545 [72] S. Tuladhar, L.S. Smith, SONO filter: An excellent technology for save water in Nepal.
 546 SOPHEN 2009, 7, 18.
- 547 [73] R.M. Cornell, U. Schwertmann, The iron oxides: structure, properties, reactions,
- 548 *occurrences, and uses.* 2nd ed., Wiley-VCH Weinheim **2003**, 613 pp.
- 549 [74] W.L. Roberts, T.J. Campbell, G.R. Rapp, *Encyclopedia of Minerals* (Second Edition).
- 550 Chapman & Hall, New York **1990**, 980 pp.
- 551
- 552

Table 1: Relevant half-reactions for more electropositive metals likely to be added to sustain iron corrosion in household filters with the relevant standard electrode potentials. Standard electrode potentials are arranged in increasing order of E° . The higher the E° value, the stronger the oxidative capacity for Fe⁰. Standard electrode potentials are compiled from refs. [44,45].

	Reaction		E° (V)	Eq.
$Fe^{2+} + 2e^{-}$	\Leftrightarrow	Fe ⁰	-0.44	(1)
$Co^{2+} + 2 e^{-}$	\Leftrightarrow	Co ⁰	-0.28	(2)
$Ni^{2+} + 2 e^{-}$	\Leftrightarrow	Ni ⁰	-0.24	(3)
$Cu^{2+} + 2 e^{-}$	\Leftrightarrow	Cu ⁰	0.33	(4)
$Ag^+ + e^-$	\Leftrightarrow	Ag^0	0.80	(5)
$Pd^{2+} + 2e^{-}$	\Leftrightarrow	Pd^0	0.95	(6)
$Pt^{2+} + 2 e^{-}$	\Leftrightarrow	Pt^0	1.18	(7)
$Au^{3+} + 3 e^{-}$	\Leftrightarrow	Au ⁰	1.50	(8)

558

Table 2: Inventory of possible redox couples in the present study with the relevant standard560electrode potentials. Standard electrode potentials are compiled from ref. [56,57]. (*)561marked are values from wikipedia. Relevant redox couples are those which could562oxidize Fe⁰ (E⁰ > -0.44 V). Accordingly, only MnO₂ and TiO₂ are relevant.

	Coupies	E	Relevance
		(V)	
Al ⁰ , Al ^{III}	Al ^{III} /Al ⁰	-1.67	No
$\mathrm{Mn}^{\mathrm{0}},\mathrm{Mn}^{\mathrm{II}},\mathrm{Mn}^{\mathrm{III}},\mathrm{Mn}^{\mathrm{IV}}$	Mn ^{II} /Mn ⁰	-1.18	No
	Mn ^{III} /Mn ^{II}	1.54	Yes
	$Mn^{\rm IV}\!/Mn^{\rm II}$	1.23	Yes
	Mn ^{IV} /Mn ^{III}	0.95 ^(*)	Yes
Si ⁰ , Si ^{IV}	Si ^{IV} /Si ⁰	-0.99	No
Ti ⁰ , Ti ^{III} , Ti ^{IV}	Ti ^{III} /Ti ⁰	- 1.63 ^(*)	No
	Ti ^{IV} /Ti ^{III}	0.19 ^(*)	Yes
Fe ⁰ , Fe ^{II} , Fe ^{III}	Fe ^{II} /Fe ⁰	-0.44	Yes
	Fe ^{III} /Fe ^{II}	0.77	Yes
	Al ⁰ , Al ^{III} Mn ⁰ , Mn ^{II} , Mn ^{III} , Mn ^{IV} Si ⁰ , Si ^{IV} Ti ⁰ , Ti ^{III} , Ti ^{IV} Fe ⁰ , Fe ^{II} , Fe ^{III}	Al^0, Al^{III} Al^{III}/Al^0 $Mn^0, Mn^{II}, Mn^{III}, Mn^{IV}$ Mn^{II}/Mn^0 $Mn^0, Mn^{II}, Mn^{III}, Mn^{IV}$ Mn^{III}/Mn^{II} Mn^{IV}/Mn^{III} Mn^{IV}/Mn^{III} Si^0, Si^{IV} Si^{IV}/Si^0 Ti^0, Ti^{III}, Ti^{IV} Ti^{III}/Ti^0 Fe^0, Fe^{II}, Fe^{III} Fe^{II}/Fe^0 Fe^{II}/Fe^{II} Fe^{III}/Fe^{III}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 3: Relevant half-reactions for sustaining iron corrosion with the relevant standard566electrode potentials. Standard electrode potentials are arranged in increasing order567of E^0 . The higher the E^0 value, the stronger the oxidative capacity for Fe^0 .

	Reaction	n	$E^{0}(V)$	Eq.
$Fe^{2+} + 2e^{-}$	\Leftrightarrow	Fe ⁰	-0.44	(9)
$2 H^{+} + 2 e^{-}$	\Leftrightarrow	H ₂ (g)	0.00	(10)
$TiO_{2(s)} + 4 H^+ + e^-$	\Leftrightarrow	$\mathrm{Ti}^{3+} + 2 \mathrm{~H_2O}$	0.19	(11)
$Fe^{3+} + e^{-}$	\Leftrightarrow	Fe ²⁺	0.77	(12)
$O_2 + 2 H_2O + 4 e^{-1}$	\Leftrightarrow	4 OH ⁻	0.81	(13)
$MnO_{2(s)} + 4 H^{+} + e^{-}$	\Leftrightarrow	$Mn^{3+} + 2 \ H_2O$	0.95	(14)
$MnO_{2(s)} + 4 H^{+} + 2 e^{-}$	\Leftrightarrow	$Mn^{2+} + 2 \ H_2O$	1.23	(15)
$MnOOH_{(s)} + 3H^+ + e^-$	\Leftrightarrow	$Mn^{2+} + 2 H_2O$	1.54	(16)

Figure 1

Figure 2:

586 Figure Captions

587

588 **Figure 1**: Evolution of the residual porosity Φ_r/Φ_0 (%) (a) and the residual mass of Fe⁰ M_r/M₀

589 (%) (b) versus the volumetric % ratio of material in the Fe^0 bed. It is clear that in both cases,

for $Fe^0 > 51$ vol-%, bed clogging will occur before Fe^0 depletion. For a 100 % Fe^0 bed, only

591 51 w-% of Fe^0 is consumed at bed clogging.

592

- 593 **Figure 2**: Evolution of the residual porosity versus the % replaced quartz particles by MnO₂
- 594 for 51 % Fe^{0} (a) and 60 % Fe^{0} (b). It is evident that replacing quartz by porous MnO₂ could
- 595 enable the use of a larger amount of Fe^0 in a bed.

596

597 Appendix

598 A.1 Estimation of the η-value for MnOOH

Table A.1 summarizes relevant characteristics of selected manganese oxides and Tab. A.2
gives the volume and the ratio of the volume of MnOOH to other oxides [73,74]. Apart from
MnOOH, all oxides listed in Tab. A.1 may be considered as potential starting materials.

602 The volumetric contraction or expansion coefficient η expressed as the ratio of the volume of

603 MnOOH to the volume of each oxide is determined according to:

604
$$\eta = V_{MnOOH} / V_{oxyde} = (M_{MnOOH} / \rho_{MnOOH}) / (M_{oxide} / \rho_{oxide})$$
(S1)

605 With M_i and ρ_i the mass and specific weight of the i species (MnOOH or oxide)

As the mass of MnOOH and the oxides can be expressed by $M_i = \mathbf{M}_i * n_i$ where \mathbf{M}_i is the molecular weight and n_i is the number of mole of each species in the chemical reaction, the coefficient η is:

609
$$\eta = V_{MnOOH}/V_{oxyde} = (\mathbf{M}_{MnOOH} * n_{MnOOH} / \rho_{MnOOH}) / (\mathbf{M}_{oxide} * n_{oxide} / \rho_{oxide})$$
(S2)

610 It can be noticed that the specific weight is either measured or calculated according to:

611 $\rho_i = (\mathbf{M}_i * Z) / (V_{i,cell} * A)$ (S3)

612 Where Z is the formula unit per cell, V_{cell} is the volume of the unit cell and A the Avogadro 613 number (A = 6.023 10²³).

The calculated densities of MnOOH and of the oxides are given in Tab A.2. A description of a natural a manganite (γ -MnOOH) from the Kalahari manganese field (South Africa) is given by Kohler et al. [60]. The crystal structure of that manganite was space group P21 /c, a = 5.304(1), b = 5.277(1), c = 5.304(1), β = 114.38(2)°, and Z = 4). A clear deviation from the values (a, b, c and β) tabulated by Roberts et al. [74] (Tab. A.2) gives nevertheless similar result for the density.

620 Table A.3 suggests that depending from the starting manganese oxide, there will be either a 621 volumetric contraction or expansion (η -values). These results show that the initial material should be well-characterized because the clogging of the filter will depend on the nature of the used oxide. For this reason, the characteristics of a natural MnO_2 mineral given by Li et al. [57] have been used in this work (Tab. A.4). The next section estimates the η -value for this natural mineral. Accordingly, each natural or synthetic mineral have to be properly characterized before used as an additive in Fe⁰ beds.

627

Table A.1: Crystallographic characteristics (formula, crystal system, space group) and
expression of the volume of the unit cell for manganese oxide minerals.

Mineral	Group	Formula	System	V _{unit cell}
Manganite	$B2_1/d$	MnOOH	Monoclinic	abc $sin(\beta)$
Pyrolusite	P4 ₂ /mmm	MnO_2	Tetragonal	a ² c
Todorokite	P2/m	(Mn,Ca,Mg)Mn ^{IV} ₃ O ₇ .H ₂ O	Monoclinic	abc $sin(\beta)$
Birnessite	-	MnO ₂	Orthorhombic	abc
Hausmannite	e I4 ₁ /amd	$\mathrm{Mn}^{\mathrm{II}}\mathrm{Mn}^{\mathrm{III}}\mathrm{O}_4$	Tetragonal	a ² c
Manganosite	Fm3m	MnO	Cubic	a ³
Psilomelane	C2/m	BaMn ^{II} Mn ^{IV} ₈ O ₁₆ (OH) ₄	Monoclinic	abc $sin(\beta)$

Table A.2: Characteristics of selected manganese oxides. Apart from manganite* (Z = 4), all
values are from from Roberts et al. [74]. Data for manganite* are from Kohler et
al. [60].

Mineral	Z	a	b	С	angle		density
	(-)	(Å)	(Å)	(Å)	β (°)	calc.	meas.
Manganite	8	8.94	5.28	5.74	90	4.30	4.33
Manganite*	4	5.304	5.277	5.304	114.38	4.31	-
Pyrolusite	2	4.42	4.42	2.87	_	5.148	5.06
Todorokite	3	9.75	2.84	9.59	90	3.49	3.66-3.82
Birnessite	3	8.54	15.39	14.29	-	3.0	3.87
Hausmannite	4	5.7621	5.7621	9.4696	-	4.84	4.84
Manganosite	4	4.436	4.436	4.436	-	5.364	5.365
Psilomelane	2	13.929	2.8459	9.678	92,39	6.45	

Table A.3: Name, Formula, calculated density, molecular weight and η -values for the638manganese oxide minerals in Tab. A.2. η is ratio of the volume of MnOOH to the639volume of each oxide (here $n_{MnOOH} = n_{oxide.}$). If $\eta > 1$, there is an expansion; this is640theoretically the case when pyrolusite is used. For birnessite, a compaction is641predicted ($\eta < 1$). The η values will be slightly different with the measured density642but the trends will be similar.

 Mineral	Formula	Calculated density	Molecular weight	η: specific volume
		kg/m ³	kg/mol	(-)
manganite	MnOOH	4310	0.08784	1
Birnessite	MnO ₂	3000	0.08694	0.70
 Pyrolusite	MnO ₂	5148	0.08694	1.21

Table A.4: Selected properties of the natural manganese oxide used by Li et al. [57]. The
characteristics of pellets are used in this work.

Form	Mn	Sp. gravity	Bulk density porosity		SSA	
	(%)	(-)	(g/cm^3)	(%)	(m^2/g)	
Pellet	53.5	3.58	1.35	0.62	14.9	
Powder	53.5	3.58	2.05	0.43	12.2	

649 A.2: Estimation of the volumetric expansion coefficient for natural MnO₂ mineral

650 A natural porous MnO_2 mineral with the bulk density ρ_{min} , a porosity ϕ_{min} , and a MnO_2

 $\label{eq:content_min} 651 \quad \text{ content } x_{MnO2} \text{ is used. A mass } (M_{min}) \text{ of this sample occupies a volume } V_{min} \text{ given by:}$

$$652 V_{min} = V_{MnO2} + V_{gangue} + V_{void} (S4)$$

653 Where V_{gangue} is the volume of the supposedly inert material (called gangue) that is 654 disseminated in MnO₂ and represents a fraction of $(1 - x_{MnO2})$ of the mass of solid material. 655 Accordingly, the mass of the mineral is given by:

$$M_{\rm min} = M_{\rm MnO2} + M_{\rm gangue} \tag{S5}$$

657 Per definition, $V_{\text{void}} = \phi_{\min} * V_{\min}$ and S4 is read:

658
$$V_{MnO2} + V_{gangue} = V_{min} (1 - \phi_{min}) = (M_{min}/\rho_{min})^* (1 - \phi_{min})$$
 (S6)

The task is to give an expression of V_{MnO2} as function of all known parameters. The relation between the mass of MnO₂ in the mineral (M_{MnO2}), the mass of the gangue (M_{gangue}) and the mass of the mineral (M_{min}) is given by:

662
$$M_{MnO2} = x_{MnO2} * M_{min}, (x_{MnO2} < 1)$$
 (S7a)

663
$$M_{gangue} = (1 - x_{MnO2}) * M_{min}$$
 (S7b)

664 Per definition, $M_{min} = \rho_{min} * V_{min}$. This expression gives V_{min} which can be used in Eq. S6 to 665 have $(V_{MnO2} + V_{gangue})$. Knowing the real volume occupied by MnO₂ and the gangue in the 666 mineral, the open issue is to calculate the volume of MnOOH resulting from MnO₂.

667 The volume occupied by MnOOH is given by:

668
$$V_{MnOOH} = M_{MnOOH} / \rho_{MnOOH} = M_{MnOOH} * n_{MnOOH} / \rho_{MnOOH}$$
(S8a)

669
$$V_{MnOOH} = \mathbf{M}_{MnOOH} * n_{MnOOH} / (\mathbf{M}_{MnOOH} * Z) * (V_{cell} * A) = (A/Z) * n_{MnOOH} * V_{cell}$$
(S8b)

670 Where A is the Avogadro constant (6.023*10²³), $n_{MnOOH} = M_{MnOOH}/87.84$; $M_{MnOOH} = 87.84$

g/mol the molar weight of MnOOH, and V_{cell} the volume of the unit cell of MnOOH. It can be

noticed that $n_{MnOOH} = n_{MnO2} = M_{MnO2}/86.94$; $M_{MnO2} = 86.94$ g/mol the molar weight of MnO₂.

The coefficient of volumetric compaction or expansion (η) is then given by the ratio $\eta = V_{MnOOH}/V_{MnO2}$. But one needs an approximation to evaluate V_{MnO2} in Eq. S3. One plausible approximation is to consider the gangue as quartz and deduce the volume V_{gangue} from the relation $M_{gangue} = \rho_{quartz} * V_{gangue}$. M_{gangue} is given by Eq. S4a.

677
$$V_{gangue} = M_{gangue} / \rho_{quartz} = (1 - x_{MnO2}) * M_{min} / \rho_{quartz}$$
(S9)

678 So that the volume V_{MnO2} is given by:

679
$$V_{MnO2} = (M_{min}/\rho_{min})^* (1 - \phi_{min}) - (1 - x_{MnO2})^* M_{min}/\rho_{quartz}$$
(S10)

680 Illustration

The volumetric expansion coefficient used for Fig. 2 is calculated using 100 g of mineral having the characteristics of the pellets from Li et al. [57] (Tab. SI.3). The following values are given: $\rho_{min} = 1.35 \text{ g/cm}^3$; $\phi_{min} = 0.62$; $x_{MnO2} = 0.778$; $M_{min} = 100 \text{ g}$; $M_{gangue} = 22.8 \text{ g}$; $M_{MnO2} = 77.8 \text{ g}$; $\rho_{quartz} = 2.65 \text{ g/cm}^3$. Unit cell parameters for MnOOH: structure = monoclinic, a = 8.94, b = 5.28, c = 5.74 and $\beta = 90^\circ$. $V_{cell} = a^*b^*c^*sin\beta$, Z=4.

686 77.8 g MnO₂ corresponds to 0.895 mole of MnO₂. The quantitative reduction will yield 687 $n_{MnOOH} = 0.895$ mole.

688 After S3,
$$V_{MnO2} + V_{gangue} = M_{min}/\rho_{min}*(1 - \phi_{min}) = (100/1.35)*(1-0.62) = 28.15 \text{ cm}^3$$

689 After S9, $V_{gangue} = (1 - 0.778) * 100/2.65 = 8.38 \text{ cm}^3$

690 Accordingly,
$$V_{MnO2} = 28.15 - 8.38 = 19.77 \text{ cm}^3 (V_{MnO2} = 19.77 \text{ cm}^3)$$

691 After S8b,
$$V_{MnOOH} = (A/4)*(M_{MnO2}/86,94)*V_{cell}$$

692 =
$$(6.023*10^{23}/4)*0.895*1.35*10^{-22} = 18.59 \text{ cm}^3 (\text{V}_{\text{MnOOH}} = 18.59 \text{ cm}^3)$$

693 The contraction coefficient η is then: **18.59** /19.77 = 0.94; η = **0.94**.

This result means that when the 77.8 g of MnO₂ in the original mineral in consumed, the produced MnOOH occupies a volume of $0.94 * 19.77 = 18.59 \text{ cm}^3$. It can be noticed that the density of the mineral MnO₂ is: $\rho_{MnO2} = 77.8/19.77 = 3.93$ and is closed to the density of MnOOH ($\rho_{MnO2} = 4.31$).