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Abstract 

Aqueous contaminant removal in the presence of metallic iron is often regarded as a reductive 

transformation mediated by the Fe0 surface. However, successful removal of theoretically 

non-reducible contaminants has been largely reported. This paper presents a rebuttal of the 

concept of contaminant reductive transformation. It is argued through a careful examination 

of the evolution of the volume and adsorptive properties of iron and its corrosion products 

that contaminants are primarily adsorbed and co-precipitated with iron corrosion products. 

One may wonder how the Fe0 technology will develop with the new concept. 

Keywords: Adsorption, Co-precipitation, Contaminant, Removal, Zerovalent iron. 

Introduction 

In 1990 Canadian hydrogeologists have rediscovered iron corrosion as metallic iron (Fe0) 

became a remediation agent for contaminated aquifers, soils and waters. It was fortuitously 

found that Fe0 eliminated trichloroethylene from aqueous solutions (1-3). Since then intensive 

efforts have been devoted to remediation with Fe0 materials. As result Fe0 is now regarded as 

a very competent reactive agent for remediation of systems that are contaminated with 

reducible substances (including chlorinated hydrocarbons, nitrate, nitro aromatics, chromium, 

uranium) (4-8). 

The rediscovery of iron corrosion was followed by a seminal work on the mechanism of 

aqueous contaminant removal in the presence of Fe0 (e.g. in Fe0/H2O systems) (9). These 

authors proposed three possible mechanisms for contaminant removal: (i) contaminant 

adsorption onto the surface of in situ formed corrosion products, (ii) contaminant reduction by 
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Fe0 (direct reduction), (iii) contaminant reduction by FeII or H2/H (indirect reduction). The 

work of Matheson and Tratnyek (9) was re-evaluated by Weber (10) and the results indicate 

that (i) direct reduction (electrons from Fe
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0) is the major reaction pathway, and (ii) reductive 

transformation by Fe0 is a surface-mediated process. Accordingly, the involved contaminant 

must contact the Fe0 surface for electron transfer to take place. Alternatively, the oxide film 

on Fe0 must be electronic conductive or the system must contain appropriate electron 

mediators (so-called “electron shuttles”). Since the work of Weber (10) the know-why of 

contaminant removal in Fe0/H2O systems was considered to be achieved and the iron/sand 

mixture lost his nickname of “magic sand” (2). However, the acceptance of the concept of 

reductive transformation was primarily a consensus (4) as this concept failed to consistently 

explained many experimental facts (11-14). For example, while using differential pulse 

polarography to investigate the reduction of nitrobenzene in Fe0/H2O systems, Lavine et al. 

(11) concluded that their studies were very informative but they couldn't evidence reduction 

of organic compounds as mediated by the Fe0 surface. Similarly, a very recent work of Jiao et 

al. (14) has shown that the reduction of carbon tetrachloride in the presence of Fe0 is primarily 

mediated by H2 from iron corrosion (indirect reduction). Moreover, the quantitative removal 

for non-reducible species as methylene blue (15), triazoles (16) and zinc (17) in Fe0/H2O 

systems has been reported. Because of the inconsistency of the consensus on the mechanism 

of contaminant removal in Fe0/H2O systems, it was pertinent to reconsider the Fe0/H2O 

system as a whole. For this purpose it is necessary to go back to the literature on metal 

corrosion. 

Fundamental aspects of aqueous metal corrosion 

Most metals (M) in their natural state are not pure metals (M0), but are in the form of metallic 

salts (mostly oxides - MxOy, sulphides - MxSy, and carbonates - Mx(CO3)y). When these metal 

ores are refined or smelted, a losing battle with thermodynamics begins with the metal 

tending toward formation of metallic oxides, sulphides or carbonates depending on the 
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working environment (18-20). The rate and the extent at which a metal dissolves in an 

aqueous environment (immersed metal corrosion) depends on many inter-dependant factors 

(18, 21, 22) including: (i) the chemistry of water (pH, salinity, concentration and 

concentration of chelating agents), (ii) the nature of the oxide layer formed by initial metal 

corrosion (composition, electronic conductivity, porosity and thickness), (iii) the 

manufacturing history of the metal (e.g. whether the metal been cast, forged, wrought or 

welded), and (iv) the metal thermodynamic susceptibility to oxidation (position on the 

reduction-potential scale). It has been established that the most important factor responsible 

for immersed metal corrosion under conditions pertinent to natural waters (4.5 ≤ pH ≤ 9.5) is 

the electronic conductivity and the porosity of the oxide layer (23). This statement will be 

supported by a classical example. 

Aluminium (E0 = -1.71 V) is more susceptible to oxidation than iron (E0 = -0.44 V) but Al is 

known to be relatively inert to atmospheric and aqueous corrosion, whereas Fe is very 

corrosive. There are two main reasons for this. 

First, the oxidation of Al0 exclusively yields a non-conductive layer of Al2O3 whereas the 

oxidation of Fe0 may yield a conductive layer of FeII/FeIII species (e.g. Fe3O4, green rust) (24). 

Accordingly an oxide film on Fe0 may act as a semiconductor and mediate electron transfer 

from Fe0 (25-27). In this situation Fe0 corrosion continues despite the presence of the oxide 

film. It is evident, that this behaviour can not be observed under oxic conditions where FeII is 

instable and (at least) the outer layer of the oxide film will exclusively consist of non-

conductive FeIII oxides (FeOOH or Fe2O3). 

Second, the unit-cell in Al and Al2O3 are very similar to one another; thus the aluminium 

oxide can adhere tightly to the metallic aluminium beneath it (23). The oxidized surface 

provides a protective layer that prevents oxygen from getting to the underlying Al surface. In 

contrast, the packing dimensions of Fe0 and Fe oxides are not particularly close; thus there is 

no tendency for an iron oxide layer to adhere to metallic iron. Therefore, regarding its 
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protective properties for iron corrosion, the “curse of rust” (23) is not that it forms, but that it 

constantly flakes off and exposes fresh iron surface for attack (23, 24). This “curse” of rust 

became a “blessing” in using Fe
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0 for environmental remediation. 

Metallic iron for environmental remediation 

Fe-based alloys (Fe0 materials, mostly cast iron and steel) are certainly suitable for 

environmental remediation because of their low tendency to passivity due to the porosity and 

the instability of generated oxide layers. Instead of this trivial reason, Fe0 has been considered 

as a strong reducing agent for the reductive transformation of several species in natural waters 

(3-10). This consideration is not acceptable even from a pure thermodynamic perspective as 

the electrode potential of iron is almost the same (about -0.44 V) in low alloyed and stainless 

steels (Fe-based alloys). Accordingly, various Fe0 materials should have exhibited similar 

behaviour for the removal of the same species. This has not been the case as for example 

Miehr et al. (28) reported variation of rate constants for contaminant removal varying over up 

to four orders of magnitude due to differences in Fe0 “type”. 

Because Fe0 materials for environmental remediation are primarily susceptible to oxidation, 

complete passivation can only result from the transformation of initially non-protective films 

to impervious layers under specific environmental conditions. Therefore, a sake for an 

overview of factors likely to influence film formation and transformation (stability and 

breakdown) under environmental conditions should be undertaken. This could be a very 

difficult task because chemical breakdown occurs when the film is dissolved (e.g. by a 

chelating agent) or penetrated chemically (e.g. by a contaminant or Cl ions). 

Fundamental aspects of contaminant removal in Fe0/H2O systems 

While considering Fe0 as a reducing agent for contaminant reductive transformation it has 

been impossible to explain several experimental and field observations as recalled above (also 

see refs. 29 and 30). The main reason for this is that iron corrosion products (oxide film) have 

been regarded as simple coatings, mediating at most electron transfer from Fe0 to the 
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contaminant. However, the oxide film formation and transformation (recrystallization, 

dissolution, precipitation) is a dynamic process occurring in the presence of contaminants. 

Moreover, the oxide film formation can be regarded as the process of iron precipitation (31-

33). Here, iron precipitation occurs in the presence of small amounts of foreign species 

(including contaminants). These foreign species are necessarily sequestrated within the oxide 

film as discussed in the next section (34). In this manner contaminants are primarily removed 

from the aqueous phase by a non-specific mechanism as they are just sequestrated in the 

matrix of precipitating iron oxides (33). This process is widely used in water treatment by 

electrocoagulation using Fe electrodes (Fe
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0 EC) (35, 36) and explains why bacteria, viruses 

and thermodynamically non-reducible substances (e.g. Zn) have been quantitatively removed 

in Fe0/H2O systems. There are two main differences between passive Fe0/H2O systems and 

iron electrocoagulation: (i) Fe0 oxidation is electrically accelerated in Fe0 EC as the aim is to 

quantitatively produce iron hydroxides for contaminant removal by flocculation, and (ii) 

while contaminants are flocculated from the bulk solution in Fe0 EC, they are precipitated in 

the vicinity of Fe0 in passive Fe0/H2O systems. Accordingly a passive Fe0/H2O system could 

be regarded as a filter (working on the principle of size exclusion) in which species are 

additionally trapped by in situ generated iron hydroxides (and oxides).  

It should be explicitly stated that adsorption, co-precipitation and redox transformations are 

not each other exclusive as adsorbed or co-precipitated contaminants may be further (i) 

reduced by Fe0, adsorbed or soluble FeII species or (ii) oxidized by HO•/H2O2 species 

(Fenton-like reactions). It is however certain, that the extend of reduction is difficult to 

evaluate. This assertion is supported by the fact that to date, no carbon balances between 

reactants and supposedly reaction products have ever been successfully done for many 

chlorinated hydrocarbons (3). However, one should no care about the fate of co-precipitated 

contaminants as they will remain sequestrated so far iron oxides are not dissolved. 

Alternatively and complementary, the possibility of iron oxide dissolution and its 
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consequence for co-precipitated contaminants should be discussed at each relevant site. The 

next section will discuss on the suitability of the Fe
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0/H2O system for contaminant removal. 

Peculiarity of the Fe0/H2O system 

The singularity of the Fe0/H2O system is the in situ generation of soluble FeII species and their 

further transformations to crystalline iron oxides and hydroxides (Fe(OH)2, Fe(OH)3, Fe3O4, 

Fe2O3, FeOOH, Fe5HO8·4H2O). The various forms of iron oxides, oxyhydroxides, and 

hydroxides are called “iron oxides” through the end of this paper. Thus, in an aqueous 

solution, Fe0 ideally converts to crystalline iron oxides via a sequence of oxidation/ 

hydrolysis/precipitation/dehydration reactions (Tab. 1). The conversion of Fe0 to crystalline 

iron oxides goes towards several intermediate stages of amorphous and poorly crystalline 

precipitates, including green rust formation and transformation. Intermediate stages also 

include solid-state transformation of oxides (recrystallisation). For example, in aqueous 

solution crystalline Fe(OH)2 may convert to other iron oxides via 

oxidation/hydrolysis/dehydration.  

In essence, iron oxide formation involves two basic mechanisms: (i) direct precipitation from 

Fe2+/Fe3+-containing solutions, and (ii) transformation of an Fe oxide precursor. Both 

mechanisms may occur in natural Fe0/H2O systems, even though direct precipitation is 

dominant. Due to the diversity of iron corrosion products (CP), a common problem faced by 

studies on Fe0/H2O systems is the proper characterization of available iron oxides (37-39). A 

common procedure is the use of synthetic iron oxides to simulate natural CP. However, in 

natural Fe0/H2O systems, CP are composed primarily of different iron oxides. Individual iron 

oxides possess different chemical properties such as crystal structure, morphology, and 

adsorptive properties (Tab. 2). Accordingly, no synthetic iron oxides (or oxide mixtures) can 

rigorously simulate natural CP with regard to transformation occurring within. 

Transformations within Fe0/H2O systems 
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Synthetic iron oxides as simulates for natural iron oxides are prepared in the pure phase while 

natural oxides are precipitated and further transformed in the presence of foreign species 

(including contaminants). Thus a synthetic oxide can remove contaminant solely by 

adsorption while natural oxides incorporate contaminant in their structure while precipitating 

(adsorption and co-precipitation). At any moment after implementation of a Fe
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0 reactive wall, 

a natural Fe0/H2O system is made up of Fe0 and various iron oxides, possibly including 

transforming phases like FeO which are not stable under natural (sub)surface conditions. 

Given that the iron oxides are of various reactivity toward contaminant removal, the 

contribution of individual removal mechanisms to decontamination is difficult to access. 

However, it is the goal of this paper to demonstrate that, beside adsorption, contaminant 

sequestration (co-precipitation) is the sole certain removal mechanism. The occurrence and 

the extent of all other processes can be discussed on a contaminant-specific basis. Therefore 

adsorption and co-precipitation are the fundamental mechanisms of contaminant removal in 

Fe0/H2O system. To illustrate the transformations yielding to contaminant sequestration, the 

evolution of three iron atoms from the Fe0 material will be discussed. 

The three atoms (3 Fe0) will be first oxidized to 3 FeII species and may further be oxidized 

(e.g. by O2) to 3 FeIII species. Then they will be transformed to colloidal species partly having 

specific surface areas (SSA) higher than 500 m2/g (43, 44) before they aggregate and 

crystallize to one Fe3O4, 1.5 Fe2O3 or 3 Fe(OH)2, Fe(OH)3 or FeOOH. The relative variation 

of the volume of resulted crystalline oxides is represented in Fig. 1 using values from Tab. 2. 

Fig. 1 clearly shows volume expansion relative to 3 Fe0 for all iron oxides except magnetite 

for which a volume reduction of 30 % was noticed. However, it should be kept in mine that 

even magnetite is a final state of a transformation going through even more voluminous 

colloidal, amorphous and highly adsorptive species (SSA values in Tab. 2). Although volume 

expansion is discussed here on the basis of the volume of crystallized iron oxides, this process 

is a rule in the process iron corrosion, irrespective from the nature and the crystallinity of the 
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final products. Thus iron oxidative dissolution and iron oxide precipitation should by regarded 

a cycle of volume expansion/contraction in the course of which available contaminants are 

adsorbed and sequestrated. Sequestrated contaminants could be further transformed (oxidized 

or reduced). 

Conclusions 

This paper has contributed to open a new avenue for the scientific understanding of processes 

of contaminant removal in Fe0/H2O systems. Researchers and practitioners have long 

recognized the limits of the reductive transformation concept (11-14). However, the view that 

contaminants are primarily adsorbed and co-precipitated with iron corrosion products (29, 30, 

33) has partly faced with very sceptic views (45, 46) or is just degraded to an “alternative 

hypothesis to be considered” (47). Fortunately, sceptic views are based on the large 

acceptability of the concept of reductive transformation which was a consensus (4) and not of 

hard experimental facts. While former attempts to disprove the reductive transformation 

concept were based on extensive literature review (29, 30) and a munitions examination of the 

abundance of reactive species in Fe0/H2O systems (33), the present study is based on a simple 

analysis of processes occurring in a Fe0/H2O system. The major output is that Fe0 oxidative 

dissolution and iron oxide precipitation should by regarded as a cycle of volume 

expansion/contraction in the course of which chemical contaminants and pathogens are 

adsorbed and sequestrated. Because this argument does not care about the nature of a 

contaminant, it should be definitively clear that specific interactions are an exception and not 

the rule in a Fe0/H2O system (statement 1). Statement 1 is the cornerstone on which 

comprehensive knowledge on the behaviour of Fe0/H2O systems under natural conditions 

should be acquired. In this effort, it is almost impossible to transfer good results from the 

open aqueous iron corrosion. For example, corrosion inhibition of mild steel by methylene 

blue (MB) has been reported (48). However, corrosion inhibition is effective with 5.0 mM 

(1595 mg/L) MB in HCl at temperatures varying from 30 to 60 °C. The used temperatures are 
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not relevant for groundwater remediation and the needed concentration (1595 mg/L) is even 

non relevant for wastewater situations. Additionally the reaction took place in a strong acidic 

solution (2 M HCl). 
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Table 1: Relevant reactions for the process of aqueous Fe0 dissolution, iron corrosion 

products formation and contaminant (Ox) removal in Fe

330 

331 

332 

333 

0/H2O system. Red is a 

reduced form of Ox. FeOOH is a proxy of corrosion products and Fex(OH)y
(3x-y) is 

an iron hydroxide.  

Process Reaction Eq. 

Fe0 dissolution Fe0 ⇔ Fe2+ + 2 e- 1 

Fe0 passivation Fe0 + H2O ⇒ Fe(O)ads + 2 H+ + 2e- 2 

Fe0 depassivation Fe(O)ads + 2H+ ⇒ Fe2+ + H2O 3 

 Fe(O)ads + H2O ⇒ Fe(OH)2 4 

 Fe(O)ads + OH- ⇒ HFeO2
- 5 

H2 evolution 2 H+ + 2e- ⇒ H2↑ 6 

O2 reduction O2 + 2 H2O + 4 e- ⇒  4 OH- 7 

Fe2+ oxidation Fe2+ ⇒  Fe3+ + e- 8 

 Fe2+ + 2 OH- ⇒  Fe(OH)2  9 

 Fe3+ + 3 OH- ⇒  Fe(OH)3 10 

Scale formation Fe(OH)2 ⇒   FeO + H2O 11 

 2 Fe(OH)3 ⇒   Fe2O3 + 3 H2O 12 

 4 Fe(OH)3 ⇒   Fe(OH)2 + Fe3O4 + 5 H2O + ½ O2 13 

 Fe(OH)3 ⇒   FeOOH + H2O 14 

Ox reduction Fe0 + Ox(aq) ⇒ Fe2+ + Red (s or aq) 15 

 FeII
(aq) + Ox(aq) ⇒ FeIII + Red (s or aq) 16 

 FeII
(s) + Ox(aq or aq) ⇒ FeIII + Red (s or aq) 17 

 H2 + Ox(aq or aq) ⇒ H+ + Red (s or aq) 18 

Ox adsorption FeOOH + Ox(aq) ⇔ FeOOH-Ox 19 

Ox co-precipitation Ox(aq) + n Fex(OH)y
(3x-y) ⇔ Ox[Fex(OH)y

(3x-y)]n 20 

334 

335 
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Table 2: Some relevant characteristics of metallic iron and its main corrosion products. SSA 

is the specific surface area. V

335 

336 

337 

338 

rust/VFe is theoretical ratio between the volume of 

expansive corrosion products and the volume of iron in the Fe0 material. Data from 

refs. 40-42. 

Species Formula Symmetry Density SSA Vrust/VFe

    (m2/g)  

Iron Fe bcc 7.86 <1 - 

Magnetite Fe3O4 Cubic 5.18 6.0 2.08 

Hematite α-Fe2O3 Rhombohedral 5.26 64 2.12 

Maghemite γ-Fe2O3 Cubic 4.69 30 n.a. 

Goethite α-FeOOH Orthorhombic 4.28 82 2.91 

Akageneite β-FeOOH Tetragonal 3.55 41 3.48 

Lepidocrocite γ-FeOOH Orthorhombic 4.09 221 3.03 

 Fe(OH)2 Trigonal 3.4 n.a. 3.75 

Bernalite Fe(OH)3 Orthorhombic 3.35 328 4.2 

339 

340 

341 

n.a. = not available. 
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Figure 1: Relative volumes of iron and selected crystalline corrosion reaction products. The 

values is the bar represent the expansion coefficient. The calculations were made 

for three iron atoms and show that a volume compression will occur upon 

formation of Fe3O4. Strictly any crystallization goes through dissolution, 

nucleation and aggregation. Intermediate species are of high specific area and even 

more voluminous than crystalline Fe(OH)3. 
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