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Abstract 7 

This letter challenges the concept that Fe0/Me0 bimetallic systems enhance contaminant 8 

reduction on Me0 surfaces. It is shown on a pure thermodynamic perspective that any 9 

enhancement of contaminant reduction by Fe0 in the presence of a second more 10 

electropositive elemental metal (Me0) is the result of an indirect process resulting from iron 11 

corrosion. This demonstration validates the concept that aqueous contaminant removal in the 12 

presence of Fe0 mostly occurs within an in-situ generated oxide film on Fe0. 13 
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A metallic surface can be involved in chemical reactions in various ways: a metallic material 17 

can serve as a redox agent or catalyst, facilitating a reaction, or it can release metal species 18 

into the system [1,2]. Elemental iron (Fe0) and Fe0/Me0 bimetallic systems used in water 19 

remediation (Fe0-H2O systems) are typical systems were all these three reaction paths might 20 

be involved: (i) Fe0 might serve as reducing agent (direct reduction), (ii) Fe0 surface might 21 

serve a catalyst for instance for the reduction through molecular (H2) or atomic hydrogen (H) 22 

and (iii) Fe0 might release FeII and H/H2 into the system. A Fe0/Me0 system is a system where 23 

the metallic surface should serve as a catalyst for contaminant reduction through hydrogen 24 

(H/H2). 25 



A survey of the voluminous literature on environmental remediation with Fe0 shows that all 26 

factors increasing Fe0 oxidation enhance contaminant removal. These factors include (i) the 27 

presence of molecular oxygen [3], (ii) the addition of a second more electropositive metal 28 

(e.g. Ag0, Co0, Cu0, Ni0, Pd0, Pt0, Ru0) yielding bimetallic systems [4,5], and (iii) increasing 29 

the surface area of iron by reducing its particle size [4]. Increasing Fe0 oxidation is directly 30 

correlated with increased generation of iron corrosion products (e.g. iron oxyhydroxides) 31 

which are well-known for their adsorptive capacity for both organic and inorganic compounds 32 

[6]. Iron corrosion products are formed as an oxide film at the Fe0 surface. To reach the 33 

underlying Fe0 surface a contaminant molecule should migrate across the film.  34 

In discussing aqueous contaminant removal in the presence of Fe0, reduction at the Fe0 35 

surface and adsorption onto iron corrosion products have traditionally been evaluated as 36 

separate, independent processes that occur simultaneously or sequentially. Thereby the 37 

dynamic nature of the formation of the oxide film on Fe0 [8] has been almost overseen. 38 

However, during their formation and transformation iron corrosion products likely sequestrate 39 

foreign species, including contaminants [9]. Therefore, the author of ref. [9] has revisited the 40 

concept of reductive transformations [3,10] and introduced a new concept considering 41 

adsorption and co-precipitation of contaminants with iron corrosion products as primordial 42 

removal mechanism. The present letter shows that the conception that bimetallic systems 43 

enhance reductive transformation by Fe0 is incompatible with the premise that Fe0 is the 44 

reducing agent in Fe0-H2O systems (statement 1). It has been reported that the presence of 45 

Pd0 speeds up the reduction reaction as follows: on the Pd0 surface, molecular hydrogen (H2) 46 

from iron corrosion is adsorbed and dissociated into more reducing atomic H; atomic H 47 

attacks chlorinated contaminants (R-X) and transforms them to R-H and Cl- [11]. Therefore, 48 

the better well-dispersed the Pd0 in the Fe0/Pd0 system, the higher the catalytic effect. But, as 49 

recalled above, an universal oxide film shields the bimetallic surface [9,12]. Catalytic 50 

hydrodehalogenation is a well-known decontamination process [13]; it differs from the 51 



reductive dehalogenation reactions by Fe0 and Fe0/Pd0 systems in that the catalytic surface 52 

(Pd0) and the electron donor (H2) are supplied as two separate reagents. 53 

To demonstrate the absurdity of statement 1, lets consider the bimetallic system Fe0/Pd0 and 54 

a chlorinated hydrocarbon (RCl) to be reduced by the bimetallic. The involved electrode 55 

potentials (E0) are: 0.915 V for the couple PdII/Pd0, 0.41 to 0.59 V for the couple RCl/R° [14], 56 

and –0.44 V for the couple FeII/Fe0. The higher the E0 value, the stronger the reducing 57 

capacity of Fe0 for the oxidant of a couple. Comparing the three E0 values, it is evident that 58 

PdII and RCl are concurrent oxidants for Fe0, PdII been the strongest. Therefore, if any RCl 59 

removal enhancement is observed in the presence of PdII it is indirectly related to Fe0 60 

oxidation. Thus enhanced contaminant reduction by bimetallics [4,5,15] is an argument for 61 

indirect reduction (by FeII or H/H2 within the oxide film on Fe0) [12]. Because of the 62 

omnipresence of the oxide film, even if the reducing agent is H/H2, the reduction is not likely 63 

to occur at the Pd0 surface. On the other hand FeII adsorbed onto the oxide film (FeII
(s) or 64 

structural FeII) has been shown to be a very strong reducing agent [16]. 65 

For illustration, consider an ideal redox indicator for the titration of Fe0 by PdII (Eq. 1) having 66 

a standard potential of 0.238 V. The redox half-reaction of the indicator is described by 67 

equation 2 [17], where Indox is the coloured oxidized form of the indicator, Indred is the 68 

corresponding colourless reduced form, n is the number of electrons transferred (typically 1 or 69 

2), and m is the number of protons transferred (typically 0, 1 or 2) and is dependent on the 70 

pH. 71 

Fe0 + Pd2+ ⇔ Fe2+ + Pd0     (1) 72 

Indox + ne- + m H+ ⇔ Indred    (2) 73 

Indred + Pd2+ ⇔ Indox + Pd0     (3) 74 

The end of the titration (Fe0 depletion) is detected by the appearance of a colour in the 75 

solution. This colouration of the solution corresponds to the oxidation of the reduced form of 76 

the indicator to the oxidized form (Eq. 3) by Pd2+ ions. To obtain accurate results, the lowest 77 



possible amount of indicator should be used. In the titration context, no one can claim that 78 

PdII enhances the reduction of Indox by Fe0. PdII oxidizes both Indox and Fe0. In this 79 

competition Fe0 is the stronger electron donor. Therefore, if any Indox reduction enhancement 80 

is observed in the presence of PdII, it can only indirectly be related to Fe0 oxidation. It is true 81 

that the surface of Pd0 and not dissolved PdII is the catalyst for contaminant reduction by 82 

H/H2. The Pd0 surface is however, shielded as a rule, and dissolved PdII will (at least partly) 83 

co-precipitate with iron hydroxides and will no more be available for catalytic activity. 84 

In conclusion, Pd0 and other bimetallic elements (Co0, Cu0, Ni0, Pt, Ru0…) can not 85 

significantly enhance contaminant reduction by elemental iron (electron from Fe0 or from 86 

H/H2). Consequently, the reported increased contaminant removal by bimetallic systems is a 87 

result of secondary redox processes within the oxide film on Fe0 (electron from FeII or from 88 

H/H2). This conclusion is a further negation of the well-established concept of direct reductive 89 

transformations as major decontamination process [9, 12]. 90 

For the further development of the iron reactive wall technology target experiments should be 91 

performed to investigate the influence of hydrodynamic shear stress on the transport, transfer 92 

and reaction rates within the oxide film, as well as film detachment under experimental 93 

conditions pertinent to natural situations. This means that experiments must be performed 94 

under conditions which favour oxide film formation and transformation. Redox processes 95 

within a film on iron is well documented in the context of microbiologically influenced 96 

corrosion [18]. 97 
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