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Abstract: In previous classification studies, three non-parametric classifiers, Random Forest (RF),
k-Nearest Neighbor (kNN), and Support Vector Machine (SVM), were reported as the foremost
classifiers at producing high accuracies. However, only a few studies have compared the
performances of these classifiers with different training sample sizes for the same remote sensing
images, particularly the Sentinel-2 Multispectral Imager (MSI). In this study, we examined and
compared the performances of the RF, kNN, and SVM classifiers for land use/cover classification
using Sentinel-2 image data. An area of 30 × 30 km2 within the Red River Delta of Vietnam with
six land use/cover types was classified using 14 different training sample sizes, including balanced
and imbalanced, from 50 to over 1250 pixels/class. All classification results showed a high overall
accuracy (OA) ranging from 90% to 95%. Among the three classifiers and 14 sub-datasets, SVM
produced the highest OA with the least sensitivity to the training sample sizes, followed consecutively
by RF and kNN. In relation to the sample size, all three classifiers showed a similar and high OA
(over 93.85%) when the training sample size was large enough, i.e., greater than 750 pixels/class or
representing an area of approximately 0.25% of the total study area. The high accuracy was achieved
with both imbalanced and balanced datasets.

Keywords: Sentinel-2; Random Forest (RF); Support Vector Machine (SVM); k-Nearest Neighbor
(kNN); classification algorithms; training sample size

1. Introduction

There is undoubtedly a high demand for land use/cover maps for the monitoring and
management of natural resources, development strategies, and global change studies [1–4]. Land
use/cover maps are one of the most important documents that provide information for various
applications, such as land use policy development, ecosystem services, urban planning, conservation,
agricultural monitoring, and land use/cover dynamic assessment [5–9].

Remote sensing satellite images are considered as one of the most important data sources for
land use/cover mapping [10] due to their extensive geographical coverage at an efficient cost while
providing irreplaceable information on the earth’s surface [11]. Land use/cover maps are usually
produced based on remote sensing image classification approaches [12–14]. However, the accuracy
and processing time of land use/cover maps using remote sensing images is still a challenge to the
remote sensing community [15].

Sentinel-2 is the latest generation Earth observation mission of the ESA (European Space Agency)
designed for land and coastal applications, and it includes the identical Sentinel-2 A and Sentinel-2 B
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satellites which launched in June 2015 and March 2017, respectively [16]. Sentinel-2 remains active
and enhances the mission of Landsat and SPOT (Systeme Probatoire d’Observation de la Terre) [17].
It is a system with a wide-swath, high spatial resolution (10–60 m), temporal resolution (ten days/five
days for Sentinel-2 A, B/Sentinel-2 A + B), and multi-spectral (13 spectral bands) capabilities. It has
also gained great attention in research due to its free access and global coverage. A wide range of
applications have been studied with Sentinel-2 A (and Sentinel-2 simulation data), such as soil moisture
mapping [18], mapping urban surface water bodies [19], forest stress monitoring [20], and quantifying
above ground biomass [21]. Clevers et al. [22] used Sentinel-2 data for retrieving LAI and leaf and
canopy chlorophyll content of potato crops. Particularly, in land use and land cover mapping, the
practicality of Sentinel-2 has been tested and showed the high potential of application [23,24]. However,
because it is a new type of satellite imagery, there are only a handful of studies using Sentinel-2 for
land use/cover mapping, and thus more research is necessary to conduct and evaluate the usefulness
of this imagery.

According to Lu and Weng [25], it is not only the imagery appropriateness but also the right choice
of classification method that affects the results of land use/cover mapping. In literature, a variety of
classification methods have been developed and tested for land use/cover mapping using remote
sensing data [26–28]. These methods range from unsupervised algorithms (i.e., ISODATA or K-means)
to parametric supervised algorithms (i.e., maximum likelihood) and machine learning algorithms such
as artificial neural networks (ANN), k-Nearest Neighbors (kNN), decision trees (DT), support vector
machines (SVM), and random forest (RF).

In the last decade, the nonparametric methods (machine learning based algorithms) have
gained great attention of remote sensing based applications. To understand the rise of machine
learning methods in land use/cover mapping, we searched the number of articles in the ISI
Web of Knowledge (Indexes in SCI-EXPANDED and SSCI) with different keywords (“land
cover”* AND “classification”* AND “Maximum Likelihood (/Artificial Neural Networks/k-Nearest
Neighbors/Decision Trees/Support Vector Machines/Random Forest)” during the timespan from
2007 to 2017.

Figure 1 shows that in this timespan, the use of SVM and RF classification algorithms increased
significantly. The number of articles using MLC and ANN have fluctuated throughout the years, but
has generally remained steady. In recent years (2014, 2015, and 2017), there were a handful of studies
using kNN, however, we have not found any publications using kNN in 2016 with our searched
keywords. It should be mentioned that in Figure 1, the high number of papers with the keyword MLC
does not mean that there is much research using MLC for classification. In fact, most studies from
our searched list used the MLC method as one of the criteria to compare to other machine learning
algorithms [11,29,30].

The results shown in Figure 1 reflect the studies in recent literature. Prasad et al. [31] stated
that DT is too sensitive to small changes in the training dataset. They also reported that DT is
occasionally unstable and tends to overfit in the model. The ideal value of k for the kNN classifier is
difficult to set [32]. The ANN method contains a high level of complexity in computational processing,
causing it to become less popular in remote sensing based classification applications. SVM and RF are
insensitive to noise or overtraining, which shows their ability in dealing with unbalanced data [33].
Therefore, among the nonparametric methods, SVM and RF are becoming increasingly popular in
image classification studies [34].

Several studies have been implemented in order to find the best classification algorithm for land
use/cover studies by comparing the performance of these classifiers either among themselves or
with other classification algorithms. However, their conclusions are quite different. For example,
in the studies by Adam et al. [34] and Ghosh and Joshi. [35], SVM and RF showed similar results of
classification. Khatami et al. [11] found that SVM, kNN, and RF generally outperform other traditional
supervised classifiers. Pouteau et al. [36] compared 6 machine learning algorithms (SVM, Naïve Bayes,
C4.5, RF, Boosted Regression Tree, and kNN) with 6 satellite data sets from different sensors (Landsat-7
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ETM+, SPOT, AirSAR, TerraSAR-X, Quickbird, and WorldView-2) for Topical Ecosystems Classification
and stated that kNN better performs for the Landsat-7 ETM+ classification. Most recently, Heydari
and Mountrakis [37] studied the effects of the classifier selection, reference sample size, reference class
distribution, and scene heterogeneity in per-pixel classification accuracy using 26 Landsat sites with five
classification algorithms (Naïve Bayesian, kNN, SVM, Tree ensemble, and Artificial Neural Network).
They concluded that SVM and kNN were the best classification methods for Landsat classification.
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In addition, to the best of our knowledge, only a limited amount of research was published
that compared and evaluated the performance of RF, SVM, and kNN with different training
sample strategies using Sentinel-2 imagery, especially in Vietnam. Therefore, it is practical for
a study to compare and evaluate the performance of RF, SVM and kNN for land use/cover
mapping over North Vietnam using the new satellite data, Sentinel-2 A. The objectives of this study
are: (i) to evaluate the performance of the three most increasing classifiers, RF, kNN, and SVM,
when applied to a Sentinel-2 image and (ii) to assess the effects of the training samples size,
strategies, and type (balanced/imbalanced) on the accuracy of the classification results of the three
aforementioned classifiers.

2. Materials and Methods

The overall methodology of the study is described in Figure 2. To fulfill the study objectives,
a study area was selected based on the land cover characteristics and the availability of remote sensing
imagery data. The remote sensing image was preprocessed, atmospherically corrected, and clipped to
the study area (Figure 3).
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2.1. Study Area

In this study, in order to compare the performance of different classification algorithms on different
data training sample strategies, an area of 30 × 30 km2 of a peri-urban and rural with heterogeneous
land cover area in the north of the Red River Delta (RRD), Vietnam was chosen (Figure 3). This is
a typical land use/cover of the RRD area, slightly sloping from the southwest to the northeast. The
study area mainly includes six typical classes: resident (fragment and distribution over the study area),
impervious surface (including factory, block building and transportation, roads), agriculture, bare
land, forest, and water.
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2.2. Data Used

Sentinel-2 A, level 1 C (ID = L1C_T48QXJ_A010168_20170603T034152) acquired on 3 June 2017,
was downloaded from the United States Geological Survey (USGS) website [38]. Spectral bands of
the Sentinel-2 A satellite imagery are shown in Table 1. The imagery was atmospherically corrected
using the Sen2cor tool, which is available in the Sentinel Application Platform (SNAP) toolbox [22,39].
After atmospheric correction, 10 bands (2–8, 8A, 11 and 12) were composited with 20 m resolution
and clipped to the study area (30 × 30 km2). The composited-10 band-20m imagery was used for
classification in this study.

Table 1. Spectral bands of the Sentinel-2 A satellite imagery.

Spectral Band Center Wavelength (nm) Band Width (nm) Spatial Resolution (m)

Band 1 443 20 60
Band 2 490 65 10
Band 3 560 35 10
Band 4 665 30 10
Band 5 705 15 20
Band 6 740 15 20
Band 7 783 20 20
Band 8 842 115 10
Band 8a 865 20 20
Band 9 945 20 60
Band 10 1380 30 60
Band 11 1610 90 20
Band 12 2190 180 20
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2.3. Training and Testing Sample Datasets

The training data (training and testing samples) was collected based on the manual interpretation
of the original Sentinel-2 data and high-resolution imagery available from Google Earth.

To collect training sample data, the create polygon tool in the ArcGIS 10.5 toolbox was used to
create 135 polygons for each land cover class. Due to the different polygon sizes, the number of pixels
for each land cover class also differed (Table 2).

Table 2. Training and testing sample sizes used in this study.

Land Cover Training (polygon/pixels) Testing (pixels)

Residential 135/1410 625
Impervious surface 135/1645 427

Agriculture 135/2619 614
Bare land 135/1274 605

Forest 135/1267 629
Water 135/1704 628

For an accurate assessment of the classification results, 650 points for every land cover class was
collected. However, to ensure that the training and testing datasets were independent, we buffered
15 m for all point samples (testing dataset) and removed points which had buffered-points intersecting
with (or belonging to) polygon samples. As results, we obtained the number of testing points (pixels)
as shown in Table 2.

To evaluate the effect of the training sample sizes, as well as the performance of classification
algorithms on the classification accuracies, we randomly divided training sample data into 14 different
datasets (Table 3), in which seven-imbalanced datasets (iset_1, iset_2, iset_3, iset_4, iset_5, iset_6,
and iset_7) had the corresponding sizes of 5%, 10%, 20%, 40%, 60%, 80%, and 100% of the total
training data. The create Data Partition function in the caret package [40] was used to guarantee
that all datasets had the same proportion-training sample of each land cover class. The remaining
seven-balanced datasets were created as follows: bset_1 (50 pixels/class), bset_2 (125 pixels/class),
bset_3 (250 pixels/class), bset_4 (500 pixels/class), bset_5 (750 pixels/class), bset_6 (1000 pixels/class),
and bset_7 (1250 pixels/class). The number of pixels in each class for every sub-dataset was chosen to
keep the most consistent size between the imbalanced and balanced training sample size; for example,
the lowest number of pixels among the 6 land cover classes was 1267 pixels, leading bset_7 to have
1250 pixels for the balanced data for each class.

Table 3. Samples data for training classification.

Imbalanced_data iset_1 iset_2 iset_3 iset_4 iset_5 iset_6 iset_7

No. pixels 5% 10% 20% 40% 60% 80% 100%

Balanced data bset_1 bset_2 bset_3 bset_4 bset_5 bset_6 bset_7

No. pixels 50 100 250 500 750 1000 1250

2.4. Classification Algorithms and Tuning Parameters

Tuned parameters play an important role in producing high accuracy results when using SVM, RF,
and kNN. Each classifier has different tuning steps and tuned parameters. For each classifier, we tested
a series of values for the tuning process with the optimal parameters determined based on the highest
overall classification accuracy. In this study, the classified results under the optimal parameters of each
classifier were used to compare the performance of classifiers [41].
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2.4.1. Support Vector Machine (SVM)

In land cover classification studies, according to Knorn et al. [42] and Shi and Yang. [43], the radial
basis function (RBF) kernel of the SVM classifier is commonly used and shows a good performance.
Therefore, we used the RBF kernel to implement the SVM algorithm. There are two parameters that
need to be set when applying the SVM classifier with RBF kernel: the optimum parameters of cost
(C) and the kernel width parameter (γ) [41,44]. The C parameter decides the size of misclassification
allowed for non-separable training data, which makes the adjustment of the rigidity of training data
possible [45]. The kernel width parameter (γ) affects the smoothing of the shape of the class-dividing
hyperplane [46]. Larger values of C may lead to an over-fitting model [35], whereas increasing the
γ value will affect the shape of the class-dividing hyperplane, which may affect the classification
accuracy results [35,47]. Following the study of Li et al. [28] and pretested to our dataset, in this study,
to find the optimal parameters for SVM, ten values of C (2−2, 2−1, 20, 21, 22, 23, 24, 25, 26, 27), and ten
values of γ (2−5, 2−4, 2−3, 2−2, 2−1, 20, 21, 22, 23, 24) were tested. This procedure was applied to all
14 sub-datasets.

2.4.2. Random Forest (RF)

In order to implement the RF [33], two parameters need to be set up: the number of trees (ntree)
and the number of features in each split (mtry). Several studies have stated that the satisfactory results
could be achieved with the default parameters [12,48–50]. However, according to Liaw & Wiener [48],
the large number of trees will provide a stable result of variable importance. In addition, Breiman [33]
stated that using more than the required number of trees may be unnecessary, but this does not harm
the model. In addition, Feng et al. [51] stated that with ntree = 200, RF could achieve accurate results.
Regarding the mtry parameter, there are many studies that use the default value mtry =

√
p, where

p is the number of predictor variables [12]. However, in this study, to find the optimal RF model for
classification, a range of values for both parameters were tested and evaluated: ntree = 100, 200, 500,
and 1000; mtry = 1:10 with a step size of 1.

2.4.3. k-Nearest Neighbor (kNN)

The kNN approach is a non-parametric [52] that has been used in the early 1970’s in statistical
applications [53]. The basic theory behind kNN is that in the calibration dataset, it finds a group of k
samples that are nearest to unknown samples (e.g., based on distance functions). From these k samples,
the label (class) of unknown samples are determined by calculating the average of the response
variables (i.e., the class attributes of the k nearest neighbor) [54,55]. As a result, for this classifier, the k
plays an important role in the performance of the kNN, i.e., it is the key tuning parameter of kNN [41].
The parameter k was determined using a bootstrap procedure. In this study, we examined k values
from 1 to 20 to identify the optimal k value for all training sample sets.

2.5. Accuracy Assessment and Comparisons

In order to assess the accuracy of classification performance, there are many metrics available in
the literature. The two most popular metrics are overall accuracy (OA) and Kappa statistic. Recently
however, the Kappa statistic is becoming less common in remote sensing classification accuracy
assessment [37]. One of the drawbacks of solely using the OA metric is that it does not show the
specific performance of classes. He and Garcia [56] stated that if input datasets (training samples) are
highly imbalanced, the OA value might be deceiving, because the rare classes may be classified very
poorly. He and Garcia [56] also suggested that when choosing OA as the criterion metric, the best class
distribution is followed by the naturally occurring.

In this study, we used a stratified sampling approach; moreover, we divided training data into
several sub-datasets, including imbalanced and balanced datasets. This approach matches the OA
metric. In addition, to compare the performance of each classifier, we used the same training (input)
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and testing (validation) datasets; thus, the effect of individual class’s distribution on OA does not
bias the results. We also calculated the 95% confidence interval (error tolerance) δ of the probability
estimate [57] for every OAs. Because we used the same testing datasets for all classification accuracy
assessment, thus the δ were not significant different. (The detail of OAs and δ are shown in Appendix B).
Therefore, to assess and compare the performance of the classifiers and the different datasets, we used
overall accuracy (OA) as the criterion. In total, we have seven imbalanced datasets, seven balanced
datasets, and three classifiers. Consequently, each classifier had 14 classification results, totaling 42
overall classification results.

3. Results

3.1. The Effects of Tuning Parameters on Classification Accuracies

Due to the limitation of space and the consistency of the results, only the results of eight
sub-datasets—4 balanced (bset_1, bset_3, bset_5, bset_7) and 4 imbalanced (iset_1, iset_3, iset_5,
iset_7)—are shown. The results of the remaining sub-datasets were still tested and showed a consistent
trend in results.

3.1.1. The kNN Classifier

With the kNN classifier, to classify one object, the algorithm bases the class attributes of its k
nearest neighbors [41]. Therefore, the k value plays an important role in the performance of kNN,
and is the key tuning parameter of kNN algorithm. In this study, we tested a range of k values (1 to 20)
for choosing the optimal parameter of the kNN classifier using different sub-datasets.

Figure 4 shows the results of the kNN classifier error when applied to different sub-datasets.
The lowest error was achieved with k = 1 for all datasets. As shown in Figure 4, when k increases from
1 to 20, the error of the kNN classifier subsequently increases. This finding is consistent with the study
by Qian et al. [46]. Therefore, the optimal k for the kNN classifier was chosen as k = 1.
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3.1.2. The RF Classifier

As stated in Section 2.4.2, there are two parameters that significantly affect the performance of
the RF classifier: ntree and mtry. In this study, we used Sentinel-2 with ten bands for classification,
meaning the input data has 10 variables. To find the optimal parameters for the RF classifier, several
values (mtry = 1:10; ntree = 100, 200, 500, and 1000) were tested for all 14 sub-datasets. The highest
results for all sub-datasets were obtained with mtry equal to 2, 3, or 4 (Figure 5).

As shown in Figure 5, when the mtry was 2, 3, or 4, the results of ntree 200, 500, and 1000
were similar. In addition, Figure 6 shows that out-of-bag (OOB) error decreased sharply when ntree
increased from 1 to 100. When ntree increased from 101 to 400, different sub-datasets had slightly
different trends, however, generally, the OOBs were slightly reduced at all sub-datasets. All OOBs of
all sub-datasets were almost remain stable when ntree increase from 400 to 500. Therefore, ntree = 500
was used as the optimal value for RF classifiers. The mtry value was chosen based on the highest
results of mtry = 2, 3, or 4.
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3.1.3. The SVM Classifier

In order to find the optimal values for the SVM model, several values were examined for C and γ:
C (2−2, 2−1, 20, 21, 22, 23, 24, 25, 26, 27), γ (2−5, 2−4, 2−3, 2−2, 2−1, 20, 21, 22, 23, 24).

Figure 7 shows the relationship between the OOB error and the SVM parameters. Based on these
results, the optimal parameters of the 14 sub-datasets were chosen according to the lowest OOB error
for each result. In general, a high value of C and a low value of γ produced the lowest error. The higher
error was observed with a low C value with both high (greater than eight) and low (less than 0.125)
value of γ (Figure 7). The optimal parameters (C and γ) of different sub-datasets varied (Table 4).

The optimal models (using optimal parameters) were applied to the whole image for
classification results.

Sensors 2018, 18, 18  11 of 20 

 

 

Figure 6. The relationship between OOB error (y-axis) and ntree parameter (x-axis) of the RF classifier 
using different sub-datasets of training sample data. 

3.1.3. The SVM Classifier 

In order to find the optimal values for the SVM model, several values were examined for C and 
γ: C (2−2, 2−1, 20, 21, 22, 23, 24, 25, 26, 27), γ (2−5, 2−4, 2−3, 2−2, 2−1, 20, 21, 22, 23, 24). 

Figure 7 shows the relationship between the OOB error and the SVM parameters. Based on these 
results, the optimal parameters of the 14 sub-datasets were chosen according to the lowest OOB error 
for each result. In general, a high value of C and a low value of γ produced the lowest error. The 
higher error was observed with a low C value with both high (greater than eight) and low (less than 
0.125) value of γ (Figure 7). The optimal parameters (C and γ) of different sub-datasets varied (Table 
4).  

The optimal models (using optimal parameters) were applied to the whole image for 
classification results.  

 
Figure 7. Cont.



Sensors 2018, 18, 18 12 of 20
Sensors 2018, 18, 18  12 of 20 

 

 
Figure 7. The relationship between classification error and parameters (C and γ) of the SVM classifier 
obtained from different sub-datasets of training sample data. 

Table 4. The optimal parameters (C and γ) of different sub-datasets varied. 

Imbalanced Dataset γ C Balanced Dataset γ C 
iset_1 0.03125 64 bset_1 0.03125 64 
iset_2 0.5 32 bset_2 0.125 32 
iset_3 0.03125 128 bset_3 0.125 64 
iset_4 0.25 32 bset_4 0.125 64 
iset_5 0.125 64 bset_5 0.125 128 
iset_6 0.5 32 bset_6 0.25 64 
iset_7 0.25 64 bset_7 0.25 128 

3.2. The Performance of Different Classifiers on Imbalanced Datasets 

As shown in Figure 8, with all seven sub-datasets (iset_1 to iset_7), SVM always showed the 
most accurate results, followed by RF and kNN. However, the three highest accuracies of all 
classifiers were only slightly different. The accuracy results of SVM were not significantly different 
among different training sample sizes; from iset_1 to iset_7, the lowest was iset_1 data at 93.76% and 
the highest was iset_5 data at 95.32%. In contrast, the classification accuracy of kNN and RF were 
significantly different between small sample sizes (iset_1) and large sample sizes (iset_7). With small 
and imbalanced training samples (iset_1, iset_2, and iset_3), there is a difference between 
classification accuracies. SVM produced a significantly higher accuracy than that of RF and kNN. 
This is consistent with the results reported from Shi and Yang [43]. From a small sample size (iset_1) 
to a larger sample size (iset_7), the accuracy significantly increased with RF and kNN, whereas the 
results of SVM were only slightly increased. It is indicated that the sample size and imbalanced data 
of training samples has more impact on the classification accuracy for kNN and RF than for SVM.  

The highest accuracy for the three classifiers occurred when the training sample size was large 
enough, i.e., iset_5; kNN, RF, and SVM were 94.59%, 94.70%, and 95.32%, respectively (Figure 8). 
However, when the training sample sizes increased further (iset_6 and iset_7), the overall accuracy 
of the classifiers slightly decreased; kNN, RF, and SVM for iset_6 (iset_7) were 93.85% (94.13%), 
94.32% (94.44%), and 95.12% (95.07%), respectively. It is suggested that if the training sample data is 
imbalanced between classes, the training sample sizes should be large enough to achieve the best 
performance of classifiers. If the training sample size is too large, it could change the proportion 
between classes, which lead to the decrease in overall accuracy. For all three classes in this study, the 

Figure 7. The relationship between classification error and parameters (C and γ) of the SVM classifier
obtained from different sub-datasets of training sample data.

Table 4. The optimal parameters (C and γ) of different sub-datasets varied.

Imbalanced Dataset γ C Balanced Dataset γ C

iset_1 0.03125 64 bset_1 0.03125 64
iset_2 0.5 32 bset_2 0.125 32
iset_3 0.03125 128 bset_3 0.125 64
iset_4 0.25 32 bset_4 0.125 64
iset_5 0.125 64 bset_5 0.125 128
iset_6 0.5 32 bset_6 0.25 64
iset_7 0.25 64 bset_7 0.25 128

3.2. The Performance of Different Classifiers on Imbalanced Datasets

As shown in Figure 8, with all seven sub-datasets (iset_1 to iset_7), SVM always showed the most
accurate results, followed by RF and kNN. However, the three highest accuracies of all classifiers were
only slightly different. The accuracy results of SVM were not significantly different among different
training sample sizes; from iset_1 to iset_7, the lowest was iset_1 data at 93.76% and the highest was
iset_5 data at 95.32%. In contrast, the classification accuracy of kNN and RF were significantly different
between small sample sizes (iset_1) and large sample sizes (iset_7). With small and imbalanced
training samples (iset_1, iset_2, and iset_3), there is a difference between classification accuracies. SVM
produced a significantly higher accuracy than that of RF and kNN. This is consistent with the results
reported from Shi and Yang [43]. From a small sample size (iset_1) to a larger sample size (iset_7),
the accuracy significantly increased with RF and kNN, whereas the results of SVM were only slightly
increased. It is indicated that the sample size and imbalanced data of training samples has more impact
on the classification accuracy for kNN and RF than for SVM.

The highest accuracy for the three classifiers occurred when the training sample size was large
enough, i.e., iset_5; kNN, RF, and SVM were 94.59%, 94.70%, and 95.32%, respectively (Figure 8).
However, when the training sample sizes increased further (iset_6 and iset_7), the overall accuracy
of the classifiers slightly decreased; kNN, RF, and SVM for iset_6 (iset_7) were 93.85% (94.13%),
94.32% (94.44%), and 95.12% (95.07%), respectively. It is suggested that if the training sample data
is imbalanced between classes, the training sample sizes should be large enough to achieve the best
performance of classifiers. If the training sample size is too large, it could change the proportion
between classes, which lead to the decrease in overall accuracy. For all three classes in this study,
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the highest accuracies were achieved when the training sample size represented approximately 0.26%
of the total study area. This is consistent with research of Colditz [58]; in which they stated that for
the RF classifier, the training sample size should account for 0.25% of the total study area. Our results
show that this case is not only valid for the RF classifier but also for the SVM and kNN classifiers.
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3.3. The Performance of Different Classifiers on Balanced Datasets

For balanced datasets (bset_1 to bset_7), the SVM classifier still produced the highest accuracy at
95.29%, followed by RF at 94.59% and kNN at 94.10%. However, the performance of each classifier on
different training sample sizes was only slightly different (Figure 9). For the kNN classifier with a small
training sample size (bset_1 to bset_4), the training sample size had a strong impact on the accuracy
of classification. The overall trend showed that the larger the training sample size, the higher the
accuracy. Increasing the sample size from 50 pixels/class (bset_1) to 500 pixels/class (bset_4) resulted
in an accuracy increase from 89.85% to 93.45%. However, when the training sample size was high
enough (more than 750 pixels/class), as it is for bset_5, bset_6, and bset_7, the classification accuracy
was stable at 93.96%, 94.10%, and 94.02%, respectively.

With the RF classifier, the larger training sample also produced higher accuracy with the first 4
sub-datasets (bset_1 to bset_4). However, the difference at bset_1 and bset_4 was not as large as with
the kNN classifier. With the smallest training sample (bset_1), RF produced a higher accuracy (91.47%)
than that of kNN (89.95%); however, with bset_4 (750 pixels/class), the accuracy results of RF and
kNN were similar at 93.61% and 93.45%, respectively. The stable accuracy results of bset_5, bset_6,
and bset_7 (93.47%, 94.42%, 94.59%) were also observed with the RF classifier.

The SVM classifier showed different results. When the training sample size was small (bset_1 and
bset_2), the classification accuracy was high and slightly different at 92.63% and 92.35%, respectively.
However, when the training sample size increased from 125 pixels/class (bset_2) to 250 pixels/class
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(bset_3) and 500 pixels/class (bset_4), the training sample size had a strong impact on classification
accuracy. This is an interesting finding; because the results showed a contrast with previous studies
which stated that the training sample size was less sensitive with SVM. This might be true if the training
sample size is small enough (less than 125 pixels/class) or large enough (greater than 750 pixels/class).
Figure 9 shows that when the balanced training sample size increasing from 0.20% (bset_5) to 0.33%
(bset_7) of the total study area, the performance of the classifiers were similar between different
training sample sizes. When comparing the three classifiers, SVM produced the highest accuracy,
followed by RF and kNN.
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4. Discussion

Figure 10 shows the difference between OA of imbalanced and balanced sub-datasets from the 42
results of the 14 different training sample sizes for each classifier. Two different trends are clear: when
training sample sizes were large (greater than or equal to 500 pixels/class) the performance of kNN,
RF, and SVM on balanced and imbalanced datasets was not significantly different, except for kNN
with dataset_5 (approximately 750 pixels/class).

Due to the actual proportion of land cover type on the landscape, the rare classes have a low
number of pixels in the training sample (Table 2); therefore, in all sub-datasets (set_1 to set_7),
the number of pixels in balanced datasets is always smaller than those of imbalanced sub-datasets.
However, as mentioned earlier, when the training sample size is large enough, the performance of
classifiers on balanced and imbalanced sub-datasets was similar. In other words, the classifiers are less
sensitive to the imbalanced training data if the training sample size is large enough (i.e., greater than
750 pixels/class).
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Figure 10 shows that the performance of kNN at all sub-datasets for dataset_1, dataset_6,
and dataset_7 was similar for balanced and imbalanced datasets, whereas the results of kNN on
the remaining datasets were significantly different. It is indicated that the kNN classifier is less
sensitive with imbalanced training sample data, although it varies with training sample sizes. With the
RF and SVM classifiers, when training sample size is large enough (dataset_5, dataset_6, and dataset_7)
the results of imbalanced and balanced were similar and very high (greater than 94.32%).

Many studies investigated the performance of the RF classifier on different training sample sizes
and strategies of different satellite images, but the conclusions are contradictory. Colditz [58] and
Mellor et al. [59] found a trend for the area proportional allocation of training samples, in which
the greater the land cover class area is the more training samples are needed to produce the best
classification accuracy. In contrast, Dalponte et al. [60] and Jin et al. [61] stated that the RF classifier
would perform better with balanced training sample data. Our results (Figure 9) show that if training
sample size is small (less than 500 pixels/classes) the difference in accuracy of imbalanced and balanced
data would be large (dataset-1, dataset-3), or small (dataset-2). However, when the training sample
size is large enough (dataset-5, dataset-6, and dataset-7) the performance of RF on balanced and
imbalanced training samples were similar. It must be mentioned that for those different conclusions,
the RF classifier was used with different satellite imagery. Dalponte et al. [60] used HySpex-VNIR 1600
and HySpex-SWIR 320i data, Jin et al. [61] used Landsat imagery, Colditz [58] used MODIS imagery,
and Mellor et al. [59] used Landsat TM composited with topographic and climate variables. Therefore,
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it is suggested that the performance of the RF classifier on different satellite imagery data with different
training sample strategies (balanced versus imbalanced) is different.

With the SVM classifier, as shown in Figure 10 among the 42 classification results, the 8
highest accuracies belonged to the SVM classifier (SVM_set4, SVM_set5, SVM_set6, and SVM_set7).
Particularly, the SVM classifier had the superior performance capability with small training sample
sizes (set_1 and set_2 with approximately 50 pixels per class). SVM produced overall accuracies
ranging from 93.76% to 93.96% (92.35% to 92.63%) for imbalanced (balanced) sub-datasets, compared
to 89.80% to 92.06% (89.85% to 90.50%) and 90.71% to 92.34% (91.47% to 92.58%) for the kNN and RF
classifiers, respectively. This is consistent with the study of Shao and Lunetta [62].

5. Conclusions

Classification of Sentinel-2 imagery (ten bands, 20 m) using three different machine learning
algorithms were implemented, evaluated, and compared. Fourteen different sub-datasets, including
balanced and imbalanced, with different training sample sizes from 50 to more than 1250 pixels/class
were performed. All classification results (OA) were high, approximately ranging from 90% to 95%,
with the SVM classifier on average producing the highest OA with the least sensitivity to training
sample size, followed by the RF and kNN classifiers. The difference in OA between kNN and RF was
large when the training sample size increased from sub-dataset-1 to sub-dataset-4 for both imbalanced
and balanced cases; however, the difference between various training sample sizes of the SVM
classifier was insignificant. For all three classifiers, when the training sample was large enough (greater
than 750 pixels/class), with both imbalanced and balanced datasets (iset_5/bset_5, iset_6/bset_6,
and iset_7/bset_7), the OA was approximately similar and high (over 93.85%). Furthermore, it is
recommended that in land cover classification using remote sensing images and machine learning
algorithms, the training sample size should represent approximately 0.25% of the total study area.
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Appendix B 

Table A1. Overall Accuracy and 95% confidence interval (error tolerance) of the probability estimate 
of all 42 classification results.  

Classifier set1 set2 set3 set4 set5 set6 set7
RF_iset 90.71 ± 1.0 92.34 ± 0.9 93.64 ± 0.8 93.97 ± 0.8 94.70 ± 0.7 94.32 ± 0.8 94.44 ± 0.8 
RF_bset 91.47 ± 0.9 92.58 ± 0.9 92.60 ± 0.9 93.61 ± 0.8 94.59 ± 0.7 94.42 ± 0.8 94.37 ± 0.8 

SVM_iset 93.96 ± 0.8 93.76 ± 0.8 94.33 ± 0.8 94.78 ± 0.7 95.32 ± 0.7 95.12 ± 0.7 95.07 ± 0.7 
SVM_bset 92.63 ± 0.9 92.35 ± 0.9 93.71 ± 0.8 94.95 ± 0.7 95.10 ± 0.7 95.07 ± 0.7 95.29 ± 0.7 
kNN_iset 89.80 ± 1.0 92.06 ± 0.9 92.60 ± 0.9 93.37 ± 0.8 94.59 ± 0.7 93.85 ± 0.8 94.13 ± 0.8 
kNN_bset 89.85 ± 1.0 90.50 ± 1.0 91.81 ± 0.9 93.45 ± 0.8 93.96 ± 0.8 94.10 ± 0.8 94.02 ± 0.8 
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Figure A1. The classification results with the highest overall accuracy for each classifier.

Appendix B

Table A1. Overall Accuracy and 95% confidence interval (error tolerance) of the probability estimate of
all 42 classification results.

Classifier set1 set2 set3 set4 set5 set6 set7

RF_iset 90.71 ± 1.0 92.34 ± 0.9 93.64 ± 0.8 93.97 ± 0.8 94.70 ± 0.7 94.32 ± 0.8 94.44 ± 0.8
RF_bset 91.47 ± 0.9 92.58 ± 0.9 92.60 ± 0.9 93.61 ± 0.8 94.59 ± 0.7 94.42 ± 0.8 94.37 ± 0.8

SVM_iset 93.96 ± 0.8 93.76 ± 0.8 94.33 ± 0.8 94.78 ± 0.7 95.32 ± 0.7 95.12 ± 0.7 95.07 ± 0.7
SVM_bset 92.63 ± 0.9 92.35 ± 0.9 93.71 ± 0.8 94.95 ± 0.7 95.10 ± 0.7 95.07 ± 0.7 95.29 ± 0.7
kNN_iset 89.80 ± 1.0 92.06 ± 0.9 92.60 ± 0.9 93.37 ± 0.8 94.59 ± 0.7 93.85 ± 0.8 94.13 ± 0.8
kNN_bset 89.85 ± 1.0 90.50 ± 1.0 91.81 ± 0.9 93.45 ± 0.8 93.96 ± 0.8 94.10 ± 0.8 94.02 ± 0.8
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10. Topaloğlu, H.R.; Sertel, E.; Musaoğlu, N. Assessment of classification accuracies of SENTINEL-2 and
LANDSAT-8 data for land cover/use mapping. In International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences; ISPRS: Prague, Czech Republic, 2016; Volume XLI-B8, pp. 1055–1059.

11. Khatami, R.; Mountrakis, G.; Stehman, S.V. A meta-analysis of remote sensing research on supervised
pixel-based land cover image classification processes: General guidelines for practitioners and future
research. Remote Sens. Environ. 2016, 177, 89–100. [CrossRef]

12. Duro, D.C.; Franklin, S.E.; Dubé, M.G. A comparison of pixel-based and object-based image analysis with
selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG
imagery. Remote Sens. Environ. 2012, 118, 259–272. [CrossRef]

13. Xia, J.S.; Mura, M.D.; Chanussot, J.; Du, P.; He, X. Random subspace ensembles for hyperspectral image
classification with extended morphological attribute profiles. IEEE Trans. Geosci. Remote Sens. 2015, 53,
4768–4786. [CrossRef]

14. Chen, Y.; Dou, P.; Yang, X. Improving land use/cover classification with a multiple classifier system using
AdaBoost integration technique. Remote Sens. 2017, 9, 1055. [CrossRef]

15. Gomez, C.; White, J.C.; Wulder, M.A. Optical remotely sensed time series data for land cover classification:
A review. Int. Soc. Photogramm. 2016, 116, 55–72. [CrossRef]

16. Martins, V.S.; Barbosa, C.C.F.; de Carvalho, L.A.S.; Jorge, D.S.F.; Lobo, F.L.; Novo, E.M.L.M. Assessment of
atmospheric correction methods for Sentinel-2 MSI images applied to Amazon floodplain lakes. Remote Sens.
2017, 9, 322. [CrossRef]

17. Wang, Q.; Blackburn, G.A.; Onojeghuo, A.O.; Dash, J.; Zhou, L.; Zhang, Y.; Atkinson, P.M. Fusion of Landsat
8 OLI and Sentinel-2 MSI data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3885–3899. [CrossRef]

18. Gao, Q.; Zribi, M.; Escorihuela, M.J.; Baghdadi, N. Synergetic use of Sentinel-1 and Sentinel-2 data for soil
moisture mapping at 100 m resolution. Sensors 2017, 17, 1966. [CrossRef] [PubMed]

19. Yang, X.; Zhao, S.; Qin, X.; Zhao, N.; Liang, L. Mapping of urban surface water bodies from Sentinel-2 MSI
imagery at 10 m resolution via NDWI-based image sharpening. Remote Sens. 2017, 9, 596. [CrossRef]

20. Eitel, J.U.; Vierling, L.A.; Litvak, M.E.; Long, D.S.; Schulthess, U.; Ager, A.A.; Krofcheck, D.J.; Stoscheck, L.
Broadband red-edge information from satellites improves early stress detection in a New Mexico conifer
woodland. Remote Sens. Environ. 2011, 115, 3640–3646. [CrossRef]

21. Sibanda, M.; Mutanga, O.; Rouget, M. Examining the potential of Sentinel-2 MSI spectral resolution in
quantifying above ground biomass across different fertilizer treatments. ISPRS J. Photogramm. Remote Sens.
2015, 110, 55–65. [CrossRef]

22. Clevers, J.G.P.W.; Kooistra, L.; van den Brande, M.M.M. Using Sentinel-2 data for retrieving LAI and leaf
and canopy chlorophyll content of a potato crop. Remote Sens. 2017, 9, 405. [CrossRef]

23. Pesaresi, M.; Corbane, C.; Julea, A.; Florczyk, A.J.; Syrris, V.; Soille, P. Assessment of the added-value of
Sentinel-2 for detecting built-up areas. Remote Sens. 2016, 8, 299. [CrossRef]

24. Lefebvre, A.; Sannier, C.; Corpetti, T. Monitoring urban areas with Sentinel-2A data: Application to the
update of the copernicus high resolution layer imperviousness degree. Remote Sens. 2016, 8, 606. [CrossRef]

25. Lu, D.; Weng, Q.A. Survey of image classification methods and techniques for improving classification
performance. Int. J. Remote Sens. 2007, 28, 823–870. [CrossRef]

26. Friedl, M.A.; Brodley, C.E. Decision tree classification of land cover from remotely sensed data.
Remote. Sens. Environ. 1997, 61, 399–409. [CrossRef]

27. Waske, B.; Braun, M. Classifier ensembles for land cover mapping using multitemporal SAR imagery. ISPRS J.
Photogramm. Remote Sens. 2009, 64, 450–457. [CrossRef]

28. Li, C.; Wang, J.; Wang, L.; Hu, L.; Gong, P. Comparison of classification algorithms and training sample
sizes in urban land classification with Landsat Thematic Mapper imagery. Remote Sens. 2014, 6, 964–983.
[CrossRef]

29. Jhonnerie, R.; Siregar, V.P.; Nababan, B.; Prasetyo, L.B.; Wouthuyzen, S. Random forest classification for
mangrove land cover mapping using Landsat 5 TM and Alos Palsar imageries. Procedia Environ. Sci. 2015,
24, 215–221. [CrossRef]

http://dx.doi.org/10.3390/rs9060629
http://dx.doi.org/10.1016/j.rse.2016.02.028
http://dx.doi.org/10.1016/j.rse.2011.11.020
http://dx.doi.org/10.1109/TGRS.2015.2409195
http://dx.doi.org/10.3390/rs9101055
http://dx.doi.org/10.1016/j.isprsjprs.2016.03.008
http://dx.doi.org/10.3390/rs9040322
http://dx.doi.org/10.1109/TGRS.2017.2683444
http://dx.doi.org/10.3390/s17091966
http://www.ncbi.nlm.nih.gov/pubmed/28846601
http://dx.doi.org/10.3390/rs9060596
http://dx.doi.org/10.1016/j.rse.2011.09.002
http://dx.doi.org/10.1016/j.isprsjprs.2015.10.005
http://dx.doi.org/10.3390/rs9050405
http://dx.doi.org/10.3390/rs8040299
http://dx.doi.org/10.3390/rs8070606
http://dx.doi.org/10.1080/01431160600746456
http://dx.doi.org/10.1016/S0034-4257(97)00049-7
http://dx.doi.org/10.1016/j.isprsjprs.2009.01.003
http://dx.doi.org/10.3390/rs6020964
http://dx.doi.org/10.1016/j.proenv.2015.03.028


Sensors 2018, 18, 18 19 of 20

30. Basukala, A.K.; Oldenburg, C.; Schellberg, J.; Sultanov, M.; Dubovyk, O. Towards improved land use
mapping of irrigated croplands: Performance assessment of different image classification algorithms and
approaches. Eur. J. Remote. Sens. 2017, 50, 187–201. [CrossRef]

31. Prasad, A.; Iverson, L.; Liaw, A. Newer classification and regression tree techniques: Bagging and random
forests for ecological prediction. Ecosystems 2006, 9, 181–199. [CrossRef]

32. Naidoo, L.; Cho, M.A.; Mathieu, R.; Asner, G. Classification of savanna tree species, in the Greater Kruger
National Park region, by integrating hyperspectral and LiDAR data in a random forest data mining
environment. ISPRS J. Photogramm. Remote Sens. 2012, 69, 167–179. [CrossRef]

33. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
34. Adam, E.; Mutanga, O.; Odindi, J.; Abdel-Rahman, E.M. Land-use/cover classification in a heterogeneous

coastal landscape using RapidEye imagery: Evaluating the performance of random forest and support vector
machines classifiers. Int. J. Remote Sens. 2014, 35, 3440–3458. [CrossRef]

35. Ghosh, A.; Joshi, P.K. A comparison of selected classification algorithms for mapping bamboo patches in
lower Gangetic plains using very high resolution WorldView 2 imagery. Int. J. Appl. Earth Obs. Geoinf. 2014,
26, 298–311. [CrossRef]

36. Pouteaua, R.; Collinb, A.; Stolla, B. A Comparison of Machine Learning Algorithms for Classification of Tropical
Ecosystems Observed by Multiple Sensors at Multiple Scales; International Geoscience and Remote Sensing
Symposium: Vancouver, BC, Canada, 2011.

37. Heydari, S.S.; Mountrakis, G. Effect of classifier selection, reference sample size, reference class distribution
and scene heterogeneity in per-pixel classification accuracy using 26 Landsat sites. Remote Sens. Environ.
2018, 204, 648–658. [CrossRef]

38. U.S. Geological Survey. Available online: https://earthexplorer.usgs.gov/ (accessed on 22 July 2017).
39. Louis, J.; Debaecker, V.; Pflug, B.; Main-Knorn, M.; Bieniarz, J.; Mueller-Wilm, U.; Cadau, E.; Gascon, F.

Sentinel-2 Sen2Cor: L2A Processor for Users. In Proceedings of the Living Planet Symposium (Spacebooks
Online), Prague, Czech Republic, 9–13 May 2016; pp. 1–8.

40. Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 2008, 28, 1–26. [CrossRef]
41. Qian, Y.; Zhou, W.; Yan, J.; Li, W.; Han, L. Comparing machine learning classifiers for object-based land cover

classification using very high resolution imagery. Remote Sens. 2015, 7, 153–168. [CrossRef]
42. Knorn, J.; Rabe, A.; Radeloff, V.C.; Kuemmerle, T.; Kozak, J.; Hostert, P. Land cover mapping of large areas

using chain classification of neighboring Landsat satellite images. Remote. Sens. Environ. 2009, 113, 957–964.
[CrossRef]

43. Shi, D.; Yang, X. Support vector machines for land cover mapping from remote sensor imagery. In Monitoring
and Modeling of Global Changes: A Geomatics Perspective; Springer: Dordrecht, The Netherlands, 2015;
pp. 265–279.

44. Ballanti, L.; Blesius, L.; Hines, E.; Kruse, B. Tree species classification using hyperspectral imagery:
A comparison of two classifiers. Remote Sens. 2016, 8, 445. [CrossRef]

45. Exelis Visual Information Solutions. ENVI Help; Exelis Visual Information Solutions: Boulder, CO, USA, 2013.
46. Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines.

IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. [CrossRef]
47. Huang, C.; Davis, L.S.; Townshend, J.R.G. An assessment of support vector machines for land cover

classification. Int. J. Remote Sens. 2002, 23, 725–749. [CrossRef]
48. Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22.
49. Immitzer, M.; Atzberger, C.; Koukal, T. Tree species classification with random forest using very high spatial

resolution 8-Band WorldView-2 satellite data. Remote Sens. 2012, 4, 2661–2693. [CrossRef]
50. Zhang, H.K.; Roy, D.P. Using the 500 m MODIS land cover product to derive a consistent continental scale

30 m Landsat land cover classification. Remote Sens. Environ. 2017, 197, 15–34. [CrossRef]
51. Feng, Q.; Liu, J.; Gong, J. UAV remote sensing for urban vegetation mapping using random forest and texture

analysis. Remote Sens. 2015, 7, 1074–1094. [CrossRef]
52. Duda, R.; Hart, P. Pattern Classification and Scene Analysis; John Wiley & Sons: New York, NY, USA, 1973.
53. Franco-Lopez, H.; Ek, A.R.; Bauer, M.E. Estimation and mapping of forest stand density, volume and cover

type using the k-Nearest Neighbors method. Remote Sens. Environ. 2001, 77, 251–274. [CrossRef]
54. Akbulut, Y.; Sengur, A.; Guo, Y.; Smarandache, F. NS-k-NN: Neutrosophic Set-Based k-Nearest Neighbors

classifier. Symmetry 2017, 9, 179. [CrossRef]

http://dx.doi.org/10.1080/22797254.2017.1308235
http://dx.doi.org/10.1007/s10021-005-0054-1
http://dx.doi.org/10.1016/j.isprsjprs.2012.03.005
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1080/01431161.2014.903435
http://dx.doi.org/10.1016/j.jag.2013.08.011
http://dx.doi.org/10.1016/j.rse.2017.09.035
https://earthexplorer.usgs.gov/
http://dx.doi.org/10.18637/jss.v028.i05
http://dx.doi.org/10.3390/rs70100153
http://dx.doi.org/10.1016/j.rse.2009.01.010
http://dx.doi.org/10.3390/rs8060445
http://dx.doi.org/10.1109/TGRS.2004.831865
http://dx.doi.org/10.1080/01431160110040323
http://dx.doi.org/10.3390/rs4092661
http://dx.doi.org/10.1016/j.rse.2017.05.024
http://dx.doi.org/10.3390/rs70101074
http://dx.doi.org/10.1016/S0034-4257(01)00209-7
http://dx.doi.org/10.3390/sym9090179


Sensors 2018, 18, 18 20 of 20

55. Wei, C.; Huang, J.; Mansaray, L.R.; Li, Z.; Liu, W.; Han, J. Estimation and mapping of winter oilseed rape LAI
from high spatial resolution satellite data based on a hybrid method. Remote Sens. 2017, 9, 488. [CrossRef]

56. He, H.; Garcia, E.A. Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284.
57. Baraldi, A.; Puzzolo, V.; Blonda, P.; Bruzzone, L.; Tarantino, C. Automatic spectral rule-based preliminary

mapping of calibrated Landsat TM and ETM+ images. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2563–2586.
[CrossRef]

58. Colditz, R.R. An evaluation of different training sample allocation schemes for discrete and continuous land
cover classification using decision tree-based algorithms. Remote Sens. 2015, 7, 9655–9681. [CrossRef]

59. Mellor, A.; Boukir, S.; Haywood, A.; Jones, S. Exploring issues of training data imbalance and mislabelling
on random forest performance for large area land cover classification using the ensemble margin. ISPRS J.
Photogramm. Remote Sens. 2015, 105, 155–168. [CrossRef]

60. Dalponte, M.; Orka, H.O.; Gobakken, T.; Gianelle, D.; Naesset, E. Tree species classification in boreal forests
with hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2632–2645. [CrossRef]

61. Jin, H.; Stehman, S.V.; Mountrakis, G. Assessing the impact of training sample extraction on accuracy of an
urban classification: A case study in Denver, Colorado. Int. J. Remote Sens. 2014, 35, 2067–2081.

62. Shao, Y.; Lunetta, R.S. Comparison of support vector machine, neural network, and CART algorithms for
the land-cover classification using limited training data points. ISPRS J. Photogramm. Remote Sens. 2012, 70,
78–87. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/rs9050488
http://dx.doi.org/10.1109/TGRS.2006.874140
http://dx.doi.org/10.3390/rs70809655
http://dx.doi.org/10.1016/j.isprsjprs.2015.03.014
http://dx.doi.org/10.1109/TGRS.2012.2216272
http://dx.doi.org/10.1016/j.isprsjprs.2012.04.001
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Data Used 
	Training and Testing Sample Datasets 
	Classification Algorithms and Tuning Parameters 
	Support Vector Machine (SVM) 
	Random Forest (RF) 
	k-Nearest Neighbor (kNN) 

	Accuracy Assessment and Comparisons 

	Results 
	The Effects of Tuning Parameters on Classification Accuracies 
	The kNN Classifier 
	The RF Classifier 
	The SVM Classifier 

	The Performance of Different Classifiers on Imbalanced Datasets 
	The Performance of Different Classifiers on Balanced Datasets 

	Discussion 
	Conclusions 
	
	
	References

