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S1 Suitable porous materials to sustain Fe0/sand filters 

Natural minerals and rocks are of various porosities [1-8]. For rocks, a certain trend exists For 

example, volcanic rocs (pumices) are the most porous (up to more than 80 %) while granites 

are among the less porous. However, compacted pumices with a porosity of only 32 % were 

reported [9]. Similarly, Morales et al. [6] reported porosity values from 6.29 to 26.43 % for 

sandstones from several sites in Germany. This work tests the hypothesis, that porous 

minerals and rocks have the potential to extend iron filter life. Some suitable porous materials 

are enumerated below. 

S1.1 Activated carbon 

Activated carbons are the porous carbonaceous materials. Their structure is very complicated 

and their surface is highly heterogeneous. Generally, they can be made of various raw 

materials such as coal, lignite, nut-shell, peat, saw dust and synthetic polymers [10]. The form 

of activated carbons suitable in iron filters is granular which is very popular in commercial 

uses but could be manufactured locally [11,12]. 

Activated carbon is renowned for its large surface area and tailored pore structure. It is 

expected that a considerable fraction of porous structure (macro- and mesopores) could be 

accessible to in-situ generated iron corrosion products. Activated carbon is widely used in 
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many fields, including medical treatment, energy storage, radiation protection and also in the 

military field. Recently, granular activated carbon (GAC) was mixed with Fe
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work of internal electrolysis for wastewater treatment [13,14]. Here, a mixture of iron grains 

and GAC particles induces numerous microscopic galvanic cells between the particles of iron 

(anodes) and carbon (cathodes), sustaining iron corrosion and thus contaminant removal. 

S1.2  Porous rocks 

Various readily available rocks are porous and could be used to sustain iron filter efficiency. 

The discussion will be limited to sedimentary and volcanic rocks. 

S1.2.1  Sedimentary rocks 

Sedimentary rocks originate from accumulation of small grains of sand or clay often together 

with organic material. Sedimentation takes place through the action of wind and water, and 

leads to a highly porous unconsolidated agglomerate (primary porosity: 50 – 80 %). The 

sedimentation process is followed by compaction and diagenesis causing the unconsolidated 

mass to become a consolidated rock by flow of pore filling fluids accompanied by dissolution 

and other chemical processes [15-17]. The resulting secondary porosity is usually less, but 

sometimes greater than the primary porosity. Sedimentary rocks are divided into classes such 

as sandstones or limestones depending upon their composition. Two principal characteristics 

of sedimentary rocks are: (i) connected porous structure, (ii) porosity ranging from 5 to 25 %. 

S1.2.2  Volcanic rocks 

In volcanic rocks, porosity, pore shape, tortuosity of pore pathways, and pore size 

distributions vary during magma ascent and eruption because of bubble growth, coalescence, 

shear, collapse, and the presence of crystals. The pore structure formed by bubble expansion 

has a lower permeability (less connectivity) than that formed by bubble collapse at equivalent 

porosity [18-21]. 

The complexity of pore geometries and the resulting range of permeabilities have led to 

numerous models of permeability–porosity relationships for volcanic rocks [21]. For 
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simplification, this study assumes that the porosity of volcanic rocks is available as storage 

room of ICPs. In other words, “fluidic” iron hydroxides should penetrate in all pores, even if 

when they are not well interconnected. Wright et al. [21] reported on volcanic rocks having 

porosities varying from less than 20 % to more than 60 %. Pumices are the most porous rocks. 

Pumice is a light, sponge-like porous volcanic rock that is formed during explosive eruptions 

[20,21]. It is probably the most uniformly porous rock that exists. It consists of a network of 

gas bubbles fixed amidst fragile volcanic glass and minerals. Pumice’s pores are irregular in 

shape and generally not well connected to each other [22]. Like sand, pumice is used as a 

biofilm support material in water treatment. In many regions of the world, highly porous 

pumice will be readily available.  

S1.3 Natural zeolites 

Natural zeolites (e.g. analcime, barrerite, chabazite, clinoptilolite, laumontite, mazzite, 

mordenite, offretite, paulingite, phillipsite, stilbite) are worldwide occurring hydrated 

aluminosilicate minerals of a porous structure. They exhibit valuable physicochemical 

properties including cation exchange, molecular sieving, catalysis and sorption. Application 

of natural zeolites for water and wastewater treatment has been realized and is still a 

promising technique in environmental cleaning processes [23,24]. The porosity of natural 

zeolite is mostly due to their tabular morphology showing an open reticular structure of easy 

access exhibited by channels up to 0.7 nm in diameter [24,25]. Natural zeolites from various 

regions show different sorption and ion-exchange behaviour, the difference being mainly 

caused by different composition of zeolitic tuffs. They are generally characterized by their 

maximum sorption capacity or their cation exchange capacity (CEC). However because of 

their worldwide occurrence their porous structure may serve as magazine of iron corrosion 

products in Fe0 filters. 

S1.4  Natural manganese oxides (MnO1+x) 
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Manganese oxyhydroxides (MnO1+x) are highly reactive mixed-valent mineral phases of 

poorly crystalline and porous structure. They are a group of multifunctional materials which 

are ubiquitous reactive constituents of soils, sediments and aquifer materials and they have the 

potential to be major contributors to natural attenuation in the subsurface. MnO
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shown to oxidize CrIII, SeIV, AsIII, CoII, NH3, organic-N, and humics, and facilitate 

degradation of phenols, some chlorinated VOCs, and pesticides [26-28]. Technically, MnO1+x 

are used as molecular sieves, catalysts, battery materials, and gas sensors [29,30]. 

MnO1+x characteristically have open crystal structures, large surface areas with high negative 

charges, and exchangeable charge-balancing cations (Na+, K+, Mg2+, Ca2+, Cu2+, Ni2+, and 

Mn2+). The basic unit of most Mn oxide minerals is the MnO6 octahedron, which is generally 

arranged into either layer structures or chain/tunnel structures. The tunnel structures have 

single, double, or triple chains of edge-sharing MnO6 octahedra in which the chains share 

corners to form tunnels of square or rectangular cross section [29]. 

Recently MnO1+x was discussed as reactive additive to sustain Fe0 reactivity by virtue of 

continuous generation of highly reactive iron hydroxides [31-33]. Using the porous structure 

of MnO1+x as storage room for in situ generated corrosion products will be coupled with the 

reactivity sustaining properties. Given that MnO1+x has been successfully used to sustain Fe0 

reactivity in SONO arsenic filters [34-36], more attention should be paid to the 

Fe0/MnO2/porous rocks system. 
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