2

On nanoscale metallic iron for groundwater remediation

Noubactep C.*^(a,c), Caré S.^(b)

^(a) Angewandte Geologie, Universität Göttingen, Goldschmidtstraße 3, D - 37077 Göttingen, Germany;

4 ^(b) Université Paris-Est, Laboratoire Navier, Ecole des Ponts - ParisTech, LCPC, CNRS, 2 allée Kepler, 77420

5 Champs sur Marne, France;

6 ^(c) Kultur und Nachhaltige Entwicklung CDD e.V., Postfach 1502, D - 37005 Göttingen, Germany.

7 * corresponding author: e-mail: <u>cnoubac@gwdg.de;</u> Tel. +49 551 39 3191, Fax: +49 551 399379

8 (Accepted 02.06.2010)

9 Abstract

This communication challenges the concept that nanoscale metallic iron (nano-Fe⁰) is a strong 10 11 reducing agents for contaminant reductive transformation. It is shown that the inherent relationship between contaminant removal and Fe^0 oxidative dissolution which is 12 conventionally attributed to contaminant reduction by nano-Fe⁰ (direct reduction) could 13 equally be attributed to contaminant removal by adsorption and co-precipitation. For 14 reducible contaminants, indirect reduction by adsorbed Fe^{II} or adsorbed H produced by 15 corroding iron (indirect reduction) is even a more probable reaction path. As a result, the 16 17 contaminant removal efficiency is strongly dependent on the extent of iron corrosion which is larger for nano-Fe⁰ than for micro-Fe⁰ in the short term. However, because of the increased 18 reactivity, nano-Fe⁰ will deplete in the short term. No more source of reducing agents (Fe^{II}, H, 19 H_2) will be available in the system. Therefore, the efficiency of nano-Fe⁰ as a reducing agent 20 21 for environmental remediation is yet to be demonstrated.

22 Keywords: Adsorption; Co-precipitation, Nanoscale iron; Reduction; Zerovalent iron.

23 **Capsule**: The scientific basis for the observed efficiency of nanoscale metallic iron for

24 environmental remediation is yet to be systematically addressed.

25 **1 Introduction**

26 Increased soil and groundwater contamination has prompted researchers to investigate 27 affordable and efficient strategies for environmental protection. One recent innovative possibility has been the use of microscale granular metallic iron (micro-Fe⁰ or Fe⁰), initially 28 for reductive dechlorination of halogenated carbons [1-4]. The success of Fe⁰ for reductive 29 dechlorination has encouraged researchers to test its applicability to several other classes of 30 substances [4-10]. In the meantime Fe^{0} is considered as a universal material for unspecific 31 32 contaminant removal from aqueous systems [6,8,11,12]. It is essential to note that neither isolated Fe⁰ nor its individual corrosion products are responsible for quantitative contaminant 33 removal. The whole dynamic process of Fe⁰ oxidative dissolution coupled to iron hydroxide 34 precipitation and crystallization at pH > 4.5 is responsible of contaminant removal and 35 sequestration [12,13]. In this dynamic process, contaminant reduction via surface-mediated 36 reaction (by Fe⁰, adsorbed Fe^{II} or adsorbed H) is likely to occur but the discussion of its extent 37 38 is a complex issue. It is the intension of this communication to draw the attention of the scientific community on this key issue for nanoscale Fe⁰ injected into the subsurface for 39 40 groundwater remediation.

41 **2. Nanoscale iron for groundwater remediation**

Reducing the particle size of granular Fe^0 materials (mm) to 10–100 nm (nanoscale Fe^0 or 42 nano-Fe⁰) increases surface area and thus chemical reactivity. Potentially, nano-Fe⁰ can be 43 44 readily placed in the subsurface in slurry form via injection to contaminated zones located well below the ground surface [14,15]. The creation of reactive zones by nano-Fe⁰ injection, 45 e.g. via monitoring wells extents the applicability of Fe⁰ technology to depths for which 46 engineered Fe⁰ walls may be prohibitively expensive [15]. Currently nano-Fe⁰ is mostly 47 synthesized via the borohydride-catalyzed reduction of dissolved Fe^{II} or Fe^{III} [16-18]. The 48 reactivity of nano-Fe⁰ is sometimes further enhanced by plating Fe⁰ by more electropositive 49 50 metals (e.g. Pd, Ni) to form so-called nanoscale bimetallic particles [19].

An inherent problem of nanoscale particles in aqueous solutions is the formation of 51 52 aggregates (particle aggregation). The aggregation of single nanoscale particles to micrometer size aggregates is coupled with reduced availability and transport limitations [20-23]. 53 Accordingly, nano-Fe⁰ must be readily dispersible in water such that they can migrate through 54 water saturated porous media to the domain where the reactive zone is to be built. Clearly, for 55 in situ environmental remediation, colloidal stability of aqueous nano-Fe⁰ dispersions is a 56 critical property [24,25]. To enhance nano- Fe^0 colloidal stability several tools have been 57 developed in recent years [23-25]. For example, Phenrat et al. [24] could stabilize nano-Fe⁰ 58 59 dispersions against aggregation and sedimentation by adsorbing anionic polyelectrolytes on their surface. Using a support material for nano-Fe⁰ is another way to solve the aggregation 60 problem. Due to their inexpensiveness, availability, environmental stability, abundant natural 61 resources (e.g. clay minerals, zeolites) are suitable candidates to work as supporting materials 62 63 [23,26]. As an example, Frost et al. [23] reported increased methylene blue discoloration by a natural palygorskite impregnated with Fe⁰. 64

65 **3. Rationale for enhanced reactivity of nano-Fe**⁰

Increased nano-Fe⁰ efficiency for contaminant removal relative to granular Fe⁰ can be mathematically demonstrated on the basis of the ratio surface to diameter of the particles. The relation between the specific surface area (SSA) of a spherical particle and its diameter is given by Eq. 1 [15]

(1)

$$SSA = 6/\rho^*d$$

Where d is the diameter of the spherical Fe⁰ particle and $\rho = 7,800 \text{ kg/m}^3$ the specific weight of iron. Eq. 1 shows that the smaller the particle size (d), the larger the specific surface area (SSA). For example, a granular Fe⁰ having a mean diameter of 50 µm theoretically has a SSA of about 15 m²/kg while a nano-Fe⁰ with a mean particle diameter of 50 nm has a SSA of about 15,000 m²/kg. That is a reactivity ratio of 1,000 (10³). This large reactivity ratio explains why nano-Fe⁰ is much more reactive than granular Fe⁰. Actually, what is the

meaning of "more reactive"? The next section will attempt to answer this question while 77 78 considering that the same material is available in micro and nano-size.

4. Significance of increased reactivity of nano-Fe⁰ 79

80 4.1. Modeling iron dissolution

Assuming the same material, available in two fractions: micro-Fe⁰ (material 1, $d_1 = 50 \mu m$) 81 and nano-Fe⁰ (material 2, d₂ = 50 nm), the material reactivity is solely a function of the 82 particle size. If parallel experiments are performed with 0.25 g (2.5*10⁻⁴ kg or 250 mg) of 83 each material, the number of Fe⁰ particles at the beginning of the experiment can be 84 85 calculated using Eq. 2:

86
$$N = \frac{M}{\rho_{Fe} \cdot 4 / 3\pi \cdot R_0^3}$$
(2)

where M is the mass of Fe 0 (2.5*10⁻⁴ kg), ρ_{Fe} is the specific weight of Fe (7,800 kg/m³) and 87 R_0 is the initial radius of the Fe particle ($R_1 = 25 \mu m$ or $R_2 = 25 nm$). 88

Calculations (table 1) show that $N_1 = 1958042$ and $N_2 = 1,96.10^{15}$ particles are equivalent to 89 2.5*10⁻⁴ kg of Fe⁰. The corresponding ratio N₂/N₁ (= $10^9 = [(10^3)^3]$) gives a more realistic 90 explanation of the reactivity difference than the ratio of SSA (10^3) . The number of Fe⁰ atoms 91 per particle (N') and the number of Fe⁰ atoms at the surface of each particle (N'') are 92 93 evaluated in both cases. Calculations are made by considering the following formula (Eq. 3 94 and Eq. 4) for the spheres:

95
$$V = 4/3(\pi R^3)$$
 (3)

96

$$\mathbf{S} = 4\pi \mathbf{R}^2 \tag{4}$$

(4)

97 Fe (α -Fe) is body-centered cubic (bcc) in structure. The bcc system has one atom in the center of the unit cell in addition to the eight corner atoms. It thus has a net total of two atoms per 98 unit cell (2 Fe per cube). The lattice parameter of α -Fe is a = 2.866 Å (1 Å = 10⁻¹⁰ m). The 99 corresponding volume is given by $V = a^3$ and the cross section by $S = a^2$. A monolayer is 100 supposed to be made up of individual unit cells of Fe⁰ (cubes). Accordingly, each layer has a 101

102 thickness of a (lattice parameter) and its cross section S is the area occupied by 2 Fe^{0} . 103 Calculations attested that there are 10⁹ times more Fe^{0} in and at the surface of micro Fe^{0} than 104 in nano Fe^{0} (table 1).

105 **4.2 Discussion of modeling results**

106 Assuming uniform corrosion for spherical particles, the corrosion process of concentric layers 107 of Fe^0 yields concentric layers of iron oxides (iron corrosion products) (Fig. 1). The number 108 of Fe atom per particle can be calculated using Eq. 5.

109 N' = 2.[4/3(
$$\pi R^3$$
)]/a³ (5)

110 Similarly, the number of Fe atom at the surface of each particle can be calculated using Eq. 6.

111 N'' = 2.[4
$$\pi$$
R²]/a² (6)

112 The factor "2" in Eq. 5 and Eq. 6 accounts for the fact that each unit cell contains 2 Fe atoms. Calculations shown that $9.36*10^{16}$ atoms ($1.55*10^{-7}$ moles or 0.155μ mol) of Fe⁰ is dissolved 113 in the first stage of micro-Fe⁰ corrosion versus 9.36*10¹⁹ atoms (1.55*10⁻⁴ moles or 155 114 μ mol) for nano-Fe⁰. This corresponds to a molar ratio of 10³ and is the most elegant way to 115 explain increased reactivity of nano-Fe⁰ relative to micro-Fe⁰. The reactivity ratio based on 116 the specific surface area was also 10^3 and that based on the number of particles 10^9 . Although 117 all three approaches exhibit the same trend, Fe^0 oxidative dissolution is a chemical process 118 119 which is discussed the best on the basis of molar ratios (from the surface). Additionally, the 120 amount of available contaminant has to be considered as well. In other words the molar ratio 121 of dissolved Fe to available contaminants should be used to discuss difference in reactivity.

For example, complete dissolution of 250 mg Fe⁰ yields 4.47 mM Fe^{II}. Nano-Fe⁰ (88 layers per particle) is depleted when only 0.3 % of micro-Fe⁰ is dissolved (see also Fig 2). Assuming that the initial contaminant concentration is 84 μ M (e.g. 20 mg/L uranium), the molar ratio Fe^{II}/contaminant is larger than 53 in the nano-Fe⁰ system at Fe⁰ depletion. In the system with the micro-iron (0.3 % consumption at 88 layers), the molar ratio Fe^{II}/contaminant is only 0.16. Actually, the dissolution of the first layer of nano-Fe⁰ yields 152 μ M Fe^{II} which corresponds to 1.8 times the stoichiometric amount of Fe^0 necessary for the reduction of the contaminant (84 μ M). On the other hand, to reduce the 84 μ M of contaminant 552 layers of the micro-Fe⁰ should be dissolved. All this calculations have intentionally neglected (i) Fe⁰ oxidation by water, (ii) precipitation of Fe^{II}/Fe^{III} species, (iii) contaminant reduction by Fe^{II} or H/H₂, and (iv) the differential dissolution kinetics of particle of different sizes. Nevertheless, it is clear that the current approach of comparing Fe⁰ material of different size should be improved.

134 The relevance of such pre-experimental theoretical calculations for future works is depicted in 135 table 2. Tab. 2 compares some important issues of the experimental conditions of Katsenovich 136 and Miralles-Wilhelm [27] and three of the references therein. The four works obviously employed varying experimental procedures to characterize the efficiency of nano-Fe⁰ for 12 137 138 different compounds. These procedures differ in initial contaminant concentration, Fe⁰ dosage, Fe⁰ preparation, particle size (10 - 200 nm), volume of experimental bottles, volume 139 140 of added solution (50 - 150 mL), experimental time, mixing type and mixing intensities. The 141 lack of systematic study designed to elucidate the effects of operational conditions on the efficiency of nano-Fe⁰ has certainly complicated the elucidation of the intrinsic reactivity of 142 143 these materials.

144 5 Mechanism of contaminant removal by nano-Fe⁰

The hart fact that nano-Fe⁰ is more reactive and extremely efficient for contaminant removal 145 compared to granular Fe^0 (mm and μ m) is certainly due to their increased surface area as 146 confirmed above by calculations. However, this evidence tells little about the real mechanism 147 of contaminant removal. In fact, increased Fe⁰ reactivity also means increased iron corrosion 148 product generation. From these corrosion products Fe^{II} (dissolved or adsorbed) and hydrogen 149 150 (atomic or molecular) are also reducing agents and should be regarded as co-reductants rather that iron corrosion products (ICPs). These co-reductants do compete with non-corroded Fe^{0} 151 152 for contaminant reductive transformation. On the other hand, precipitated and precipitating ICPs are contaminant scavengers. Contaminants enmeshed in the structure of precipitating 153

ICPs could be further reduced by co-reductants as demonstrated for micro-scale Fe^{0} [6,8]. In 154 155 other words, it is not likely, that increased reactivity changes the fundamental mechanism of contaminant removal by Fe⁰. This statement is supported by a recent report from Nawrocki et 156 al. [31] showing that "steady water" has reductive properties in a Fe⁰-based water pipe. The 157 158 reductive characteristic of corrosion scales on iron is well-documented [6,32]. The so-called "steady water" is an electrolyte and can dissolve reducing agents and facilitate the transport of 159 reactive species. As discussed above for 250 mg of Fe^0 , Fe^0 depletion occurs in the nano- Fe^0 160 system as only 0.3 % is consumed in the micro-Fe⁰ system (Fig. 2). In groundwater, anoxic 161 162 conditions prevail and iron oxidation is coupled with water electrolysis resulting in the production of hydrogen (molecular and atomic). Adsorbed Fe^{II}, dissolved Fe^{II}, atomic (H) and 163 164 molecular (H₂) hydrogen all served as an electron donor for contaminant reduction. Therefore, the reported high-effective reduction by nano-Fe⁰ results from reducing conditions created by 165 166 providing the system in the short-term with elevated amount of electron donors. Accordingly, contaminant reduction induced by nano-Fe⁰ is efficient for the short term. The question is 167 168 how long these reductive conditions will prevail or whether they could manage to reductively 169 transformed the whole contamination.

170 **6 Efficiency of nano-Fe⁰ reactive zones**

The first problem of reactive zones is inherent to the high reactivity of nano-Fe 0 [33]. Unlike 171 172 inert adsorbents (e.g. activated carbons) having an adsorbing area (adsorption capacity) which is only "reserved" to contaminants, nano-Fe⁰ are readily oxidized by water and the primary 173 products (Fe^{II}, H/H₂) are transported by water or are adsorbed on Fe⁰, solid corrosion products 174 or geo-materials. Unless nano-Fe⁰, is added to sustain a process in the subsurface its 175 efficiency in the short and middle term is questionable. In fact, whether nano-Fe⁰ is 176 transported to the reactive zone or not, it will be oxidized by water. Nano-Fe⁰ oxidation can 177 be accelerated by contaminants which are then reduced more likely by co-reductants [6,8]. 178 But once Fe⁰ is depleted, no subsequent supply of co-reductants is possible. From this time 179

180 on, quantitative contaminant removal can only be attributed to adsorption on iron corrosion 181 products and available biomaterials. The long-term stability of adsorbed contaminants is uncertain. On the other hand, the long-term stability of contaminant removal in micro-Fe⁰ 182 systems is mainly due to their continuous enmeshment in the matrix of in-situ generated 183 corrosion products in the inter-particular space (pores) within the Fe⁰ wall [12]. Beside the 184 side exclusion favouring this dynamic process, the long-term availability of Fe⁰ was the other 185 warrant for this mechanism. The efficiency of size exclusion in reactive zone is uncertain and 186 Fe⁰ depletion is rapid. Therefore, the stability of removed contaminants in reactive zone 187 created by nano-Fe⁰ injection is uncertain. 188

189 **7 Concluding remarks**

This communication has complained that the reaction kinetics in systems with nano- Fe^0 is not 190 191 properly considered in the current discussion of the efficiency of reactive zones. More 192 reactive materials (smaller particle size) may rapidly reduced contaminants but also rapidly produced co-reductants. Accordingly, it is still not certain whether the Fe⁰ surface (direct 193 reduction) plays any important role in the process of contaminant removal in Fe⁰/H₂O 194 systems. Fortunately, for micro-Fe⁰ removed contaminants are enmeshed in the matrix of iron 195 corrosion products and are stable under natural conditions [34]. For nano-Fe⁰ however, upon 196 Fe⁰ depletion contaminants will be simply adsorbed on aged iron corrosion products. In other 197 words, although nano- Fe^0 is currently regarded as an established remediation technology, its 198 199 efficiency is still to be demonstrated.

200 Acknowledgments

Sven Hellbach (student research assistant) is acknowledged for technical assistance. The
 manuscript was improved by the insightful comments of anonymous reviewers from Journal
 of Hazardous Materials.

204 **References**

- [1] R.W. Gillham, S.F O'Hannesin, Enhanced degradation of halogenated aliphatics by zerovalent iron, Ground Water 32 (1994), 958–967.
- [2] L.J. Matheson, P.G. Tratnyek, Reductive dehalogenation of chlorinated methanes by iron
 metal, Environ. Sci. Technol. 28 (1994), 2045–2053.
- [3] S.F. O'Hannesin, R.W. Gillham, Long-term performance of an in situ "iron wall" for
 remediation of VOCs, Ground Water 36 (1998), 164–170.
- [4] M.M. Scherer, S. Richter, R.L. Valentine, P.J.J. Alvarez, Chemistry and microbiology of
 permeable reactive barriers for in situ groundwater clean up, Rev. Environ. Sci.
 Technol. 30 (2000), 363–411.
- [5] A.D. Henderson, A.H. Demond, Long-term performance of zero-valent iron permeable
 reactive barriers: a critical review, Environ. Eng. Sci. 24 (2007), 401–423.
- 216 [6] C. Noubactep, Processes of contaminant removal in "Fe⁰–H₂O" systems revisited, The 217 importance of co-precipitation. Open Environ. J. 1 (2007), 9–13.
- [7] A.B. Cundy, L. Hopkinson, R.L.D. Whitby, Use of iron-based technologies in
 contaminated land and groundwater remediation: A review, Sci. Tot. Environ. 400
 (2008), 42–51.
- [8] C. Noubactep, A critical review on the mechanism of contaminant removal in Fe^0-H_2O systems, Environ. Technol. 29 (2008), 909–920.
- [9] M. Diao, M. Yao, Use of zero-valent iron nanoparticles in inactivating microbes, Water
 Res. 43 (2009), 5243–5251.
- [10] T. Pradeep, Anshup, Noble metal nanoparticles for water purification: A critical review,
 Thin Solid Films 517 (2009), 6441–6478.
- [11] C. Noubactep, A. Schöner, P. Woafo, Metallic iron filters for universal access to safe
 drinking water, Clean 37 (2009), 930–937.
- [12] C. Noubactep, The suitability of metallic iron for environmental remediation, Environ.
- 230 Progr. (2009) doi: 10.1002/ep.10406.

- [13] C. Noubactep, A. Schöner, M. Sauter, Significance of oxide-film in discussing the
 mechanism of contaminant removal by elemental iron materials, In "PhotoElectrochemistry & Photo-Biology for the Sustainablity"; S. Kaneco, B. Viswanathan,
 H. Katsumata (Eds.), Bentham Science Publishers 1 (2010), 34–55.
- [14] C.B. Wang, W.-X. Zhang, Synthesizing nanoscale iron particles for rapid and complete
- dechlorination of TCE and PCBs, Environ. Sci. Technol. 31 (1997), 2154–2156.
- [15] C. Macé, S. Desrocher, F. Gheorghiu, A. Kane, M. Pupeza, M. Cernik, P. Kvapil, R.
 Venkatakrishnan, W.-X. Zhang, Nanotechnology and groundwater remediation: A step
 forward in technology understanding, Remediation 16 (2006), 23–33.
- [16] W-x. Zhang, Nanoscale iron particles for environmental remediation: an overview, J.
 Nanopart. Res. 5 (2003), 323–32.
- [17] Z. Xiong, D. Dongye Zhao, G. Pan, Rapid and controlled transformation of nitrate in
 water and brine by stabilized iron nanoparticles, J. Nanopart. Res. 11 (2009), 807–819.
- 244 [18] J.T. Olegario, N. Yee, M. Miller, J. Sczepaniak, B. Manning, Reduction of Se(VI) to Se(-
- II) by zerovalent iron nanoparticle suspensions, J. Nanopart. Res. (2009), doi:
 10.1007/s11051-009-9764-1.
- [19] W.-x. Zhang, C.-B. Wang, H.-L. Lien, Treatment of chlorinated organic contaminants
 with nanoscale bimetallic particles, Catal Today 40 (1998), 387–95.
- [20] T. Phenrat, N. Saleh, K. Sirk, R.D. Tilton, G.V. Lowry, Aggregation and sedimentation
 of aqueous nanoscale zerovalent iron dispersions, Environ. Sci. Technol. 41 (2007),
 251 284–290.
- [21] M. Baalousha, Aggregation and disaggregation of iron oxide nanoparticles: Influence of
 particle concentration, pH and natural organic matter, Sci. Tot. Environ. 407 (2009),
 2093–2101.

- [22] B. Gilbert, R.K. Ono, K.A. Ching, C.S. Kim, The effects of nanoparticle aggregation
 processes on aggregate structure and metal uptake, J. Colloid Interf. Sci. 339 (2009),
 285–295.
- [23] R.L. Frost, Y. Xi, H. He, Synthesis, characterization of palygorskite supported zerovalent iron and its application for methylene blue adsorption, J. Colloid Interf. Sci. 341
 (2010), 153–161.
- [24] T. Phenrat, N. Saleh, K. Sirk, H.-J. Kim, R.D. Tilton, G.V. Lowry, Stabilization of
 aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed
 anionic polyelectrolyte layer properties and their effect on aggregation and
 sedimentation, J. Nanopart. Res. 10 (2008), 795–814.
- [25] H. Kim, H.-J. Hong, J. Jung, S.-H. Kim, J.-W. Yang, Degradation of trichloroethylene
 (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead, J. Hazard.
 Mater. 176 (2010), 1038–1043.
- [26] J.R. Kiser, B.A. Manning, Reduction and immobilization of chromium(VI) by iron(II)treated faujasite, J. Hazard. Mater. 174 (2010), 167–174.
- [27] Y.P. Katsenovich, F.R. Miralles-Wilhelm, Evaluation of nanoscale zerovalent iron
 particles for trichloroethene degradation in clayey soils, Sci. Tot. Environ. 407 (2009),
 4986–4993.
- [28] S. Choe, S.-H. Lee, Y.-Y. Chang, K.-Y. Hwang, J. Khim, Rapid reductive destruction of
 hazardous organic compounds by nanoscale Fe⁰, Chemosphere 42 (2001), 367–72.
- [29] H.-L. Lien, W.-x. Zhang, Nanoscale iron particles for complete reduction of chlorinated
 ethenes, Colloid Surf. A191 (2001), 97–105.
- [30] J.T. Nurmi, P.G. Tratnyek, V. Sarathy, D.R. Baer, J.E. Amonette, K. Pecher, C. Wang,
- 278 J.C. Linehan, D.W. Matson, R.L. Penn, M.D. Driessen, Characterization and properties
- of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics, Environ.
- 280 Sci. Technol. 39 (2005), 1221–1230.

- [31] J. Nawrocki, U. Raczyk-Stanisawiak, J. Swietlik, A. Olejnik, M.J. Sroka, Corrosion in a
 distribution system. Steady water and its composition, Water Res. 44 (2010), 1863–
 1872.
- [32] M. Stratmann, J. Müller, The mechanism of the oxygen reduction on rust-covered metal
 substrates. Corros. Sci. 36 (1994), 327-359.
- [33] R.W. Gillham, Discussion of Papers/Discussion of nano-scale iron for dehalogenation.
- 287 by Evan K. Nyer and David B. Vance (2001), Ground Water Monitoring & Remediation
- 288 v. 21, no. 2, pages 41–54. Ground Water Monit. Remed 23 (2003), 6–8.
- 289 [34] C. Noubactep, A. Schöner, G. Meinrath, Mechanism of uranium (VI) fixation by
- 290 elemental iron, J. Hazard. Mater. 132 (2006), 202–212

Table 1: Overview on the differential reactivity of microscale ($d_1 = 50 \ \mu m$) and nanoscale (d_2 = 50 nm) metallic iron as reflected by the difference of the number of Fe atom at the surface of individual particles. N is the total number of particles in 250 mg of the material. N' is the number of Fe atoms per particle (sphere). N'' is the number of Fe atoms at the surface of the individual spheres. N¹ = N * N'' is the total number of Fe⁰ which is exposed to the aqueous solution and could be oxidized to Fe^{II} in the first stage assuming uniform corrosion (first stage of monolayer dissolution).

Material	Ν	N'	N"	N^1	N^1	
	(-)	(-)	(-)	(atoms)	(moles)	
Micro-Fe ⁰	489510	5.56*10 ¹⁵	1.91*10 ¹¹	9.36*10 ¹⁶	1.55*10 ⁻⁷	
Nano-Fe ⁰	4.90*10 ¹⁴	5.56*10 ⁶	1.91*10 ⁵	9.36*10 ¹⁹	1.55*10 ⁻⁴	

300

Table 2: Comparison of the experimental conditions of Katsenovich and Miralles-Wilhelm302[27] and three therein referenced articles on remediation with nano-Fe⁰. SSA is the303specific surface area. The large variability of used experimental conditions304evidences the difficulty of comparing achieved results. In particular, the molar ratio305 Fe^0 /contaminant varies from 26 to 1160.

Contaminant (X)	[X]	Material	Fe ⁰ size	SSA	[Fe ⁰]	V	[Fe ⁰]/[X]	Ref.
	(mg/L))		(m ² /g)	(mg)	(L)	(-)	
Trichloroethene	9.0	Fe ⁰	120 nm	6	50	150	86	[27]
	9.0	Fe ⁰	120 nm	6	125	150	215	
	9.0	Fe ⁰	120 nm	6	200	150	344	
Trichloroethylene	10.0	Fe ⁰	1 - 200 nm	31.4	625	125	1170	[28]
Chloroform	10.0	Fe ⁰	1 - 200 nm	31.4	625	125	1065	
Nitrobenzene	10.0	Fe ⁰	1 - 200 nm	31.4	625	125	1100	
Nitrotoluene	10.0	Fe ⁰	1 - 200 nm	31.4	625	125	1225	
Dinitrobenzene	10.0	Fe ⁰	1 - 200 nm	31.4	625	125	1513	
Dinitrotoluene	10.0	Pd ⁰ /Fe ⁰	1 - 200 nm	31.4	625	125	1653	
Tetrachloroethene	20.0	Pd ⁰ /Fe ⁰	10-100 nm	35	250	50	740	[29]
Trichloroethene	20.0	Pd ⁰ /Fe ⁰	10-100 nm	35	250	50	587	
1,1-dichloroethene	20.0	Pd ⁰ /Fe ⁰	10-100 nm	35	250	50	433	
Cis-1,2-dichloroethene	20.0	Pd ⁰ /Fe ⁰	10-100 nm	35	250	50	433	
Trans-1,2-dichloroethene	20.0	Pd ⁰ /Fe ⁰	10-100 nm	35	250	50	433	
Vinyl chloride	20.0	Pd ⁰ /Fe ⁰	10-100 nm	35	250	50	279	
Carbon tetrachloride	0.6	Fe ⁰	70 nm	29	150	120	5580	[30]
Carbon tetrachloride	0.6	Fe ⁰	10-100 nm	33.5	300	120	11161	
Carbon tetrachloride	132.6	Fe^{0}	70 nm	29	150	120	26	
Carbon tetrachloride	132.6	Fe ⁰	10-100 nm	33.5	300	120	52	

Figure 2

319 **Figure captions**

320

Figure 1: Time dependence consumption of Fe⁰ from a spherical material assuming uniform
 corrosion. Initial concentric layers of Fe⁰ atoms are progressively transformed to
 concentric layers of iron hydroxides which are further transformed to iron oxides.

324

Figure 2: Residual mass of metallic iron (Fe⁰) as function of consumed layers from individual Fe⁰ particles. It is evident that nano-Fe⁰ is depleted as only 0.30 % of micro-Fe⁰ is consumed. Uniform corrosion is assumed and material is supposed to be ideal concentric layers of Fe⁰. Accordingly a nanoscale particle is made up of 88 layers of Fe⁰.