Characterizing the reactivity of metallic iron upon methylene blue 1 discoloration in Fe⁰/MnO₂/H₂O systems 2 3 Noubactep C. Angewandte Geologie, Universität Göttingen, Goldschmidtstraße 3, D - 37077 Göttingen, Germany. 4 5 e-mail: cnoubac@gwdg.de; Tel. +49 551 39 3191, Fax: +49 551 399379 6 7 Abstract 8 A simple method is proposed for testing the reactivity of elemental iron materials (Fe^{0} 9 materials) using methylene blue (MB) as reagent. The method is based on the oxidative reactivity of Fe^{II} for reductive dissolution of MnO₂. Fe^{II} is produced in-situ by the oxidation 10 of a Fe^{0} material. The in-situ formed Fe^{II} reacted with MnO₂ delaying the bulk precipitation of 11 12 iron corrosion products and thus MB co-precipitation (MB discoloration). For a given MnO₂, the extent of MB discoloration delay is a characteristic of individual Fe⁰ materials under given 13 experimental conditions. The MB discoloration method for testing the reactivity of Fe⁰ 14 15 materials is facile, cost-effective and does not involve any stringent reaction conditions. 16 Keywords: Adsorption, Co-precipitation, Methylene blue, Manganese oxides, Reactivity, 17 Zerovalent iron.

18 Introduction

19 Since the introduction of permeable reactive barriers of metallic iron for groundwater remediation (Fe⁰ PRB technology), various Fe⁰ types were tested and mostly successfully 20 21 used for environmental remediation. Despite the reported successes, little progress has been made toward characterizing the variability in reactivity among Fe⁰ samples from different 22 23 sources [1,2]. Available works attempted to relate corrosion rates to: (i) the rate of hydrogen evolution [3,4] or (ii) to the extend of contaminant removal by used Fe⁰ materials [1,5]. 24 Among the reactivity parameters, the composition of the aqueous solution, the Fe⁰ elemental 25 composition (alloying elements) and the surface properties (specific surface area, oxidation 26

state) have been largely discussed [3,6,7]. However, none of these parameters is independent 27 and Fe⁰ aqueous reactivity further depends on method of manufacture [8,9]. According to Van 28 29 Orden [8], whether a metal is cast, forged, wrought or welded are as important as the 30 environment in the corrosion process. One major limitation of the current material testing 31 procedures is that each material is used for remediation tests and the reactivity is ascertained at the end of the possibly cost-intensive and time consuming experiments. An alternative 32 approach consisting in testing the reactivity of Fe⁰ materials in dilute EDTA 33 34 (ethylenediaminetetraacetic acid) was recently presented [2]. However, EDTA is a strong 35 chelating agent known to delay the process of iron hydroxide precipitation [10] at near neutral 36 pH which is characteristic for most natural systems.

There is a need to develop simple, reliable and cost-effective methods to test the reactivity of Fe⁰ materials. Ideally such methods should (i) be performed under conditions where iron solubility is not enhanced, and (ii) be applicable for material screening in preliminary works to avoid analytical cost. This study proposed a simple approach to compare the reactivity of Fe⁰ toward methylene blue discoloration. Four materials of known relative reactivity [2] were tested to ascertain the efficiency of the new method. The selected materials are representative for the large array of powdered and granular Fe⁰ materials used in environmental remediation.

44 Background of the experimental methodology

45 Methylene blue (MB) discoloration in the presence of Fe^0 results mostly from MB co-46 precipitation with in situ generated iron corrosion products [11,12]. Therefore, in a Fe^0/H_2O 47 system, the extend of MB discoloration should increase steadily from the start of the 48 experiment to the time of total discoloration. If the process of corrosion product precipitation 49 is delayed, the resulting MB discoloration is also delayed.

50 The differentiation of the reactivity of Fe^0 materials in $\text{Fe}^0/\text{MB/H}_2\text{O}$ systems is based on the 51 reaction of Fe^{II} with MnO₂ [13,14]. Fe^{II} is generated in-situ from Fe^0 oxidation. Because 52 liberated Fe^{II} species are used for the reductive dissolution of MnO₂ (at the MnO₂ surface), they are not available for quantitative MB co-precipitation. Thus, the blue intensity of MB solution will not decreased as rapidly as in the system without MnO₂. Accordingly, for parallel experiments with a given MnO₂ and various Fe^0 samples, the extent of MB discoloration will be a reflection of the chemical reactivity of individual Fe^0 samples. Therefore, if a Fe^0 sample is low reactive no or little delay of MB discoloration will be observed (**assumption 1**). For reactive Fe^0 samples the more reactive the sample the more extensive the discoloration delay (**assumption 2**).

The used methodology for testing the reactivity of Fe^{0} in MnO₂/MB/H₂O systems consists in following the process of MB discoloration in a given MnO₂/H₂O system as influenced by various Fe^{0} while testing the validity of assumptions 1 and 2. It should be kept in mind that MB discoloration and not MB removal is discussed in this study. For the discussion of MB removal TOC measurements for instance should have been necessary to account for MB reduction to colorless leuco-methylene blue (LMB) [15] which remains in solution.

66 Materials and Methods

67 Solutions

Methylene blue (MB) is a traditionally favourite dye of choice for laboratory and technical purposes [16,17]. Its molecule has a minimum diameter of approximately 0.9 nm [18] and is also used as redox indicator [15]. The used initial concentration was 12 mg/L (~0.037 mM) MB and it was prepared by diluting a 1000 mg/L stock solution. All chemicals were analytical grade.

73 Solid materials

One scrap iron (ZVI1) and three commercially available iron materials (ZVI2 to ZVI4) have been tested in the present study. Table 1 summarizes the main characteristics of these materials together with their iron content. Before used ZVI4 (Tab. 1) was crushed and sieved; the size fraction 1.0-2.0 mm was used without any further pretreatment. The specific surface area of the materials were not available nor determined. This parameter is known as one of the 79 most important reactivity factors [20]. However, it is not the objective of this study to 80 investigated the impact of the specific surface area on the reactivity of the material, but rather to compare the material in the form in which they could be used in field applications. 81 82 Therefore, all other materials were used as obtained. Crushing and sieving ZVI4 aimed at 83 working with materials of particle size relevant for field applications. The materials differ 84 regarding their characteristics such as content of metallic iron, additives, grain size and shape. 85 No information about the manufacture process (e.g. raw material, heat treatment) was 86 available.

The used MnO₂ is commercial sample from Merck (85 - 90% MnO₂; synthetic pyrulosite).
The powdered sample was used without any pre-treatment.

89 **Discoloration studies**

Batch experiments with a shaking intensity of 50 min⁻¹ were conducted in essay tubes for an 90 91 experimental duration of 6 days. The essay tubes were immobilized on a support frame. A 92 rotary shaker HS 501 D from "Janke & Kunkel", DCM Laborservice was used. The batches consisted of 0 to 9.0 g/L of the synthetic pyrulosite (MnO₂) and 5 g/L of each Fe⁰. A parallel 93 experiments with the Fe⁰ materials alone was performed. The extent of MB discoloration in 94 95 the investigated systems was characterized by allowing 0.0 to 0.20 g of MnO₂ and 0.11 g of each Fe⁰ to react in sealed sample tubes containing 22.0 mL of a MB solution (12 mg/L) at 96 97 laboratory temperature (about 20 ± 2 ° C). Initial pH was ~7.8. After equilibration, up to 3 mL 98 of the supernatant solutions were carefully retrieved (no filtration) for MB measurements (no 99 dilution). Each experiment was performed in triplicate and averaged results are presented.

100 Analytical methods

101 MB concentrations were determined by a Cary 50 UV-Vis spectrophotometer at a wavelength 102 of 664.5 nm using cuvettes with 1 cm light path. The pH value was measured by combined 103 glass electrodes (WTW Co., Germany). Electrodes were calibrated with five standards 104 following a multi-point calibration protocol in agreement with the current IUPAC 105 recommendation [21].

106 **Expression of experimental results**

After the determination of the residual MB concentration (C) the corresponding percent MBdiscoloration was calculated according to the following equation (Eq. 1):

109

$$\mathbf{P} = [1 - (\mathbf{C}/\mathbf{C}_0)] * 100\% \tag{1}$$

110 where C_0 is the initial aqueous MB concentration (about 12 mg/L), while C gives the MB 111 concentration after the experiment. The operational initial concentration (C_0) for each case 112 was acquired from a triplicate control experiment without additive material (so-called blank). 113 This procedure was to account for experimental errors during dilution of the stock solution, 114 MB adsorption onto the walls of the reaction vessels and all other possible side reaction 115 during the experiments.

116 **Results and Discussion**

117 Effect of MnO₂ on the process MB discoloration in Fe⁰/H₂O systems

118 Figure 1 compares the extent of MB discoloration in the three investigated systems: (i) 0 to 9.0 g/L MnO₂ (System I), (ii) 0 to 9.0 g/L Fe^0 (System II) and (iii) 5 g/L Fe^0 and 0 to 9.0 g/L 119 120 MnO₂ (System III). From Figure 1a it can be seen that System II is more efficient at 121 discolouring MB at all tested material loadings. This observation is consistent with the 122 intrinsic nature of both materials. MnO₂ acts mostly as an absorbent with limited adsorption capacity. Fe⁰ and its oxidation products can adsorb MB. Oxidation products of Fe⁰ include 123 124 Fe(OH)₂, Fe(OH)₃, FeOOH, Fe₂O₃, Fe₃O₄, and green rust [22-24]. Their role in the 125 mechanisms of aqueous contaminant removal is yet to be properly characterized [24,25]. It is 126 certain that, during their precipitation corrosion products sequestrate MB in their structure [11]. Therefore, in a Fe⁰/MB/H₂O system, MB discoloration may occur via adsorption and co-127 precipitation. Reduction to colourless LMB is also likely to occur. Whatever the actual MB 128 discoloration mechanisms in Fe⁰/H₂O systems are, the addition of various amounts of MnO₂ 129

to 5 g/L Fe⁰ should have increased the extend of MB discoloration relative to the experiment 130 with 5 g/L Fe^0 alone as represented in Fig. 1a. Accordingly, the discoloration extend of 52 % 131 with 5 g/L Fe⁰ in the absence of MnO₂ should increase with increasing MnO₂ loading to reach 132 95 % discoloration at 9.0 g/L MnO₂. This theoretical prediction (Fig. 1a) could not be verified 133 134 experimentally as shown in Fig. 1b. Instead of increasing with increasing MnO₂ loading, the 135 discoloration extent decreased from 52 % at 0 g/L MnO₂ to 40 % for MnO₂ loadings > 2 g/L. 136 This observation is compatible with MB co-precipitation as main discoloration mechanism. 137 The observed discoloration extent of 40 % for MnO_2 loadings > 2 g/L corresponds to the discoloration in: (i) system I (MnO₂ alone) for MnO₂ loadings > 6.5 g/L or (ii) system II (Fe⁰ 138 alone) for Fe^0 loadings > 2.0 g/L. This observation suggests that mixing 5 g/L Fe^0 with 0 to 139 9.0 g/L MnO₂ results in a system less efficient at discolouring MB than a system with only 140 2.5 g/L Fe⁰. Note that if MB was acting as redox indicator, the discoloration extend should 141 142 have steadily increased with increasing MnO₂ loading. This observation corroborates the 143 prediction that iron hydroxides sequestrate MB while precipitating.

144 Effect of various Fe⁰ on the process of MB discoloration

Figure 2 compares the extent of MB discoloration by tested Fe⁰ materials in the presence and 145 146 in the absence of MnO₂. From Fig. 2a the following order of efficiency can be observed: 147 $ZVI3 < ZVI1 \cong ZVI4 < ZVI2$. This order of efficiency was the same than that obtained by Noubactep et al. [2] while testing the same materials for U^{VI} removal and for Fe dissolution in 148 0.02 M EDTA (see also Tab. 2). These results suggest that MB discoloration in $Fe^{0}/H_{2}O$ 149 150 systems is a simple method to differentiate the reactivity of materials. However, due to the diversity of possible discoloration mechanisms, it was important to make sure that Fe⁰ 151 152 oxidative dissolution is evidenced. For this purpose MnO₂ is added to the systems to evidence the effects of in-situ generated Fe^{II}. Fig. 2b summarises the results. The same order of 153 154 reactivity was found (ZVI3 < ZVI1 \cong ZVI4 < ZVI2). A close consideration of Fig. 2b reveals that ZVI3 is low reactive (assumption 1: no delay of MB discoloration) because unlike for the 155

156 three other materials no initial discoloration decrease was observed upon MnO₂ addition. All 157 other materials are more reactive than ZVI3 (assumption 2: the more extensive the 158 discoloration delay the more reactive the sample). Powdered ZVI2 was the most reactive material. The increased MB discoloration efficiency with ZVI2 is due to the increased Fe⁰ 159 160 surface area resulting in a better solid/H₂0 contact. Again granular ZVI1 and ZVI4 showed 161 very close reactivity, suggesting that the MB discoloration method is as powerful as the two 162 other tests but essentially simpler. The reactivity of used materials is also reflected by the 163 final pH value (Eq. 2). According to Eq. 2 (H^+ production), the more reactive a material, the 164 lower the final pH value (Tab. 2).

165
$$2 \operatorname{Fe}^{2+} + \operatorname{MnO}_2 + 2 \operatorname{H}_2 O \implies 2 \operatorname{FeOOH} + \operatorname{Mn}^{2+} + 2 \operatorname{H}^+$$
 (2)

166 The verification of assumptions 1 and 2 validates the efficiency of MB discoloration for 167 testing the reactivity of Fe^0 materials in $Fe^0/MnO_2/H_2O$ systems.

168 Conclusions

Methylene blue has been used for the characterization of the reactivity of Fe⁰ materials. The 169 170 proposed method is simple and does not involve any stringent reaction conditions. This 171 method is a good alternative for reported costly instrumental procedures [2]. The proposed method has been successfully applied to differentiate the reactivity of four Fe⁰ materials of 172 173 known relative reactivity. This method can be used for material screening prior to cost-174 intensive investigations. Moreover, the test can be further developed to yield a characteristic parameter for Fe⁰ materials similar to iodine number or methylene blue number for the 175 176 characterization of activated carbons [16,18].

177 Acknowledgments

178 Josee Vouffo (student research assistant) is acknowledged for technical support. The work

- 179 was granted by the Deutsche Forschungsgemeinschaft (DFG-No 626/2-2).
- 180 **References**

- [1] R. Miehr, P.G. Tratnyek, Z.J. Bandstra, M.M. Scherer, J.M. Alowitz, J.E. Bylaska,
 Diversity of contaminant reduction reactions by zerovalent iron: Role of the reductate.
 Environ. Sci. Technol. 38 (2004), 139-147.
- [2] C. Noubactep, G. Meinrath, P. Dietrich, M. Sauter, B. Merkel, Testing the suitability of
 zerovalent iron materials for reactive Walls. Environ. Chem. 2 (2005), 71-76.
- [3] J.E. Reardon, Anaerobic corrosion of granular iron: Measurement and interpretation of
 hydrogen evolution rates. Environ. Sci. Technol. 29 (1995), 2936-2945.
- [4] E.J. Reardon, Zerovalent irons: Styles of corrosion and inorganic control on hydrogen
 pressure buildup. Environ. Sci. Tchnol. 39 (2005), 7311-7317.
- [5] R.L. Landis, R.W. Gillham, E.J. Reardon, R. Fagan, R.M. Focht, J.L. Vogan, An
 examination of zero-valent iron sources used in permeable reactive barriers. 3rd
 International Containment Technology Conference (10-13 June 2001), Florida State
 University, Tallahassee. Orlando, FL. (2001) 5 pages.
- [6] M.R. Powell, W.R. Puls, K.S. Hightower, A.D. Sebatini, coupled iron corrosion and
 chromate reduction: Mechanisms for subsurface remediation. Environ. Sci. Technol. 29
 (1995), 1913-1922.
- [7] M.L. Támara, E.C. Butler, Effects of iron purity and groundwater characteristics on rates
 and products in the degradation of carbon tetrachloride by iron metal. Environ. Sci.
 Technol. 38 (2004), 1866-1876.
- [8] A.C. van Orden, Corrosion mechanisms relevant to high-level waste repositories. Eng.
 Geol. 26 (1989), 331-349.
- 202 [9] G.W. Whitman, R.P. Russel, V.J. Altieri, Effect of hydrogen-ion concentration on the
 203 submerged corrosion of steel. Indust. Eng. Chem. 16 (1924), 665-670.
- 204 [10] E.M. Pierce, D.M. Wellman, A.M. Lodge, E.A. Rodriguez, Experimental determination
- 205 of the dissolution kinetics of zero-valent iron in the presence of organic complexants.
- 206 Environ. Chem. 4 (2007), 260-270.

- 207 [11] C. Noubactep, Processes of contaminant removal in "Fe⁰–H₂O" systems revisited. The 208 importance of co-precipitation. Open Environ. J. 1 (2007), 9-13.
- 209 [12] C. Noubactep, Characterizing the discoloration of methylene blue in $Fe^{0}/H_{2}O$ systems. J.
- 210 Hazard. Mater. In Press, Available online 7 November 2008.
- [13] D.F.A. Koch, Kinetics of the reaction between manganese dioxide and ferrous ion. Aust.
- 212 J. Chem 10 (1957), 150-159.
- [14] D. Postma, C.A.J. Appelo, Reduction of Mn-oxides by ferrous iron in a flow system:
 column experiment and reactive transport modelling. Geochim. Cosmochim. Acta 64
 (2000), 1237-1247.
- [15] B.D. Jones, J.D. Ingle, Evaluation of redox indicators for determining sulfate-reducing
 and dechlorinating conditions. Water Res. 39 (2005), 4343-4354.
- [16] J.H. Potgieter, Adsorption of methylene blue on activated carbon: An experiment
 illustrating both the Langmuir and Freundlich isotherms. J. Chem. Educ. 68 (1991), 349350.
- [17] J. Avom, J. Ketcha, C. Noubactep, P. Germain, Adsorption of methylene blue from an
 aqueous solution onto activated carbons from palm-tree cobs. Carbon 35 (1997), 365369.
- [18] A.A. Attia, B.S. Girgis, N.A. Fathy, Removal of methylene blue by carbons derived from
 peach stones by H₃PO₄ activation: Batch and column studies. Dyes and Pigments 76
 (2008), 282-289.
- [19] C. Mbudi, P. Behra, B. Merkel, The Effect of Background Electrolyte Chemistry on
 Uranium Fixation on Scrap Metallic Iron in the Presence of Arsenic. Paper presented at
 the Inter. Conf. Water Pollut. Natural Porous Media (WAPO2), Barcelona (Spain) April
 11 13 (2007), 8 pages.
- [20] T.L. Johnson, M.M. Scherer, P.G. Tratnyek, Kinetics of halogenated organic compound
 degradation by iron metal. Environ. Sci. Technol. 30 (1996), 2634-2640.

- 233 [21] R.P. Buck, S. Rondinini, A.K. Covington, F.G.K. Baucke, C.M.A. Brett, M.F. Camoes,
- M.J.T. Milton, T. Mussini, R. Naumann, K.W. Pratt, P. Spitzer, G.S. Wilson,
 Measurement of pH. Definition, standards, and procedures (IUPAC Recommendations
 2002), Pure Appl. Chem. 74 (2002), 2169-2200.
- [22] P.D. Mackenzie, D.P. Horney, T.M. Sivavec, Mineral precipitation and porosity losses in
 granular iron columns. J. Hazard. Mater. 68 (1999), 1-17.
- [23] P.M.L. Bonin, M.S. Odziemkowski, E.J. Reardon, R.W. Gillham, In situ identification of
 carbonate-containing green rust on iron electrodes in solutions simulating groundwater.
- 241 J. Sol. Chem. 29 (2000), 1061-1074.
- [24] M.S. Odziemkowski, R.P. Simpraga, Distribution of oxides on iron materials used for
 remediation of organic groundwater contaminants Implications for hydrogen evolution
 reactions. Can. J. Chem./Rev. Can. Chim. 82 (2004), 1495-1506.
- [25] J.A. Mielczarski, G.M. Atenas, E. Mielczarski, Role of iron surface oxidation layers in
 decomposition of azo-dye water pollutants in weak acidic solutions. Applied Catalysis
 B: Environ. 56 (2005), 289-303.

Table 1: Main characteristics and iron content of the four tested Fe^0 materials. The material code ("code") are from the author, the given form is as supplied; d (μ m) is the diameter of the supplied material and the Fe content is given in % mass.

Supplier denotation	code	form	d	Fe
			(µm)	(%)
Sorte 69 ^(b)	ZVI1	fillings	-	93 ^(c)
FG 0000/0080	ZVI2	powder	≤ 80	92 ^(d)
Hartgussstrahlmittel	ZVI3	spherical	1200	n.d. ^(e)
Schwammeisen	ZVI4	spherical	9000	n.d.
	Supplier denotation Sorte 69 ^(b) FG 0000/0080 Hartgussstrahlmittel Schwammeisen	Supplier denotation code Sorte 69 ^(b) ZVI1 FG 0000/0080 ZVI2 Hartgussstrahlmittel ZVI3 Schwanneisen ZVI4	Supplier denotationcodeformSorte 69(b)ZVI1fillingsFG 0000/0080ZVI2powderHartgussstrahlmittelZVI3sphericalSchwammeisenZVI4spherical	Supplier denotationcodeformd (μm) (μm) Sorte 69 ^(b) ZVI1fillings-FG 0000/0080ZVI2powder ≤ 80 HartgussstrahlmittelZVI3spherical1200SchwammeisenZVI4spherical9000

Metallpulver GmbH (Rheinfelden, Germany), ISPAT GmbH, Hamburg (Germany), Connelly GPM Inc.
 (USA), ^(b)Scrap iron material; ^(c) Mbudi et al. [19]; ^(d) average values from material supplier, ^(e)not

determined.

Table 2: Extent of MB discoloration (P_{MB}) at a Fe⁰ mass loading of 9.0 g/L, decrease of the percent MB discoloration (ΔP_{MB}), and final pH value in the presence of 5 g/L Fe⁰ as the MnO₂ loading varied from 0 to 1.1 g/L. For ZVI3 no decrease ($\Delta P_{MB} = 3.5$ %) was observed under the experimental conditions (50 min⁻¹ for 6 days). Data for the rate of iron dissolution in a 2 mM EDTA solution (a_{EDTA}) and the percent uranium removal (P_{U}) are presented for comparison.

Material	P _{MB}	ΔP_{MB}	$\mathbf{pH}_{\mathrm{final}}$	pH _{final} a _{EDTA} ^(a)	
	(%)	(%)		$(\mu M/h)$	(%)
ZVI1	48.8	-4.8	7.8	1.95	81.0
ZVI2	100.0	-38.4	7.4	2.65	100.0
ZVI3	31.9	3.5	8.6	1.54	63.1
ZVI4	49.1	-8.7	7.9	1.86	87.0

261 ^(a) Values according to Noubactep et al. [2].

Figure 2

- _...

278 Figure Captions

279

Figure 1: Methylene blue discoloration by MnO_2 , Fe^0 , and " $Fe^0 + MnO_2$ " for 6 days as a function of the material loading (Fe^0 , MnO_2). ZVI1 is the used Fe^0 source. In Fig 1a the theoretical discoloration extent assuming additive removal of Fe^0 (5 g/L) and varying amount of MnO_2 is represented. Fig. 1b represents experimental results for the three systems together with the line corresponding to MB discoloration by 5 g/L Fe^0 (no MnO_2 addition). All lines are not fitting functions, they simply connect points to facilitate visualization.

Figure 2: Methylene blue discoloration by the individual Fe^0 materials (a) and 5 g/L each material and varying amounts of MnO_2 (b). The experiments were performed for 6 days while shaking at 50 min⁻¹. The lines are not fitting functions, they simply connect points to facilitate visualization.