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Abstract

Contaminant co-precipitation with continuously generated and transformed iron corrosion products has received relatively  
little attention in comparison to other possible removal mechanisms (adsorption, oxidation, precipitation) in Fe0/H2O systems at 
near neutral pH values. A primary reason for this is that the use of elemental iron (Fe0) in environmental remediation is based 
on the thermodynamic-founded premise that reducible contaminants are potentially reduced while Fe0 is oxidised. However, 
co-precipitation portends to be of fundamental importance for the process of contaminant removal in Fe0/H2O systems, as the 
successful removal of bacteria, viruses and non reducible organic (e.g. methylene blue, triazoles) and inorganic (e.g. Zn) com-
pounds has been reported. This later consideration has led to a search for the reasons why the importance of co-precipitation 
has almost been overlooked for more than a decade. Three major reasons have been identified: the improper consideration 
of the huge literature of iron corrosion by pioneer works, yielding to propagation of misconceptions in the iron technology 
literature; the improper consideration of available results from other branches of environmental science (e.g. CO2 corrosion, 
electrocoagulation using Fe0 electrodes, Fe or Mn geochemistry); and the use of inappropriate experimental procedures (in 
particular, mixing operations). The present paper demonstrates that contaminant co-precipitation with iron corrosion products 
is the fundamental mechanism of contaminant removal in Fe0/H2O systems. Therefore, the ‘iron technology’ as a whole is to be 
revisited as the ‘know-why’ of contaminant removal is yet to be properly addressed.
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Introduction

The use of iron-based alloys (elemental iron, zerovalent iron, 
Fe0 materials or simply Fe0) for environmental remediation is 
certainly one of the ideas that have fascinated environmental 
scientists during the last 2 decades (Gillham and O’Hannesin, 
1994; Lipczynska-Kochany et al., 1994; Matheson and Trat-
nyek, 1994; Schreier and Reinhard, 1994; O’Hannesin and 
Gillham, 1998; Bigg and Judd, 2000; Scherer et al., 2000; Lee 
et al., 2004; Bojic et al., 2007; Henderson and Demond, 2007; 
Laine and Cheng, 2007; Cundy et al., 2008; Jeen et al., 2008; 
Thiruvenkatachari et al., 2008). After the successful implemen-
tation of the first iron walls (O’Hannesin and Gillham, 1998), 
and the controversial use of iron nano-particles for quantita-
tive contaminant reduction at source zones (Gillham, 2003, 
Noubactep and Caré, 2010a), Fe0 materials could be regarded 
as the media of choice for all contamination events. Presently, 
around 120 Fe0 barriers are installed worldwide and most of 
them currently meet design specifications (Jambor et al., 2005; 
Henderson and Demond, 2007; Cundy et al., 2008).

The primary use of Fe0 materials in environmental reme-
diation is based on the premise that quantitative contaminant 
removal in Fe0/H2O systems is mostly due to contaminant 
reduction through electrons from the metal body (Matheson 
and Tratnyek, 1994; Weber, 1996, O’Hannesin and Gillham, 
1998). Because of the electrochemical nature of aqueous corro-
sion, this is only possible:

• At the Fe0 surface
• Through defects in the metal such as pits
• At the surface of an overlaying electrically conductive 

oxide-film. 

However, given that under typical ranges of sub-surface pH 
(6 ≤ pH ≤ 9) (e.g. Aleksanyan et al., 2007) there are several 
other possible contaminant removal mechanisms (adsorption, 
co-precipitation, indirect reduction) in Fe0/H2O systems (e.g. 
Stipp et al., 2002), it is doubtful whether direct reduction may 
be the major contaminant removal pathway as it is commonly 
assumed.

The concept of reductive transformation (degradation of 
organics and precipitation of inorganics) in Fe0/H2O systems 
persists in current literature, despite a number of papers that 
have attempted to theoretically and experimentally point out 
their inherent shortcomings, as summarised by Noubactep 
(2007; 2008; 2010). In particular, the observed lag time 
between Fe0 supply and quantitative contaminant removal is 
a strong argument against direct reductive transformations 
(electrons from Fe0). Evidently, the cited papers (Noubactep, 
2007; Noubactep, 2008; Noubactep, 2010; Noubactep et al., 
2010a) and related papers (Noubactep, 2009a-g; Noubactep and 
Schöner, 2009; Noubactep et al., 2009a; 2009b; Noubactep, 
2010b; Noubactep and Caré, 2010a; Noubactep and Schöner, 
2010a) are not clear enough in their explanation to convince 
many authors of current articles dealing with contaminant 
removal in Fe0/H2O systems (Elsner et al., 2007; Jeen et al., 
2008; Katsoyiannis et al., 2008; Wang and Cheng, 2008; Kang 
and Choi, 2009; Tratnyek and Salter, 2010). An understanding 
of how aqueous contaminants are effectively removed in the 
presence of Fe0 is essential for proper designing of the reactive 
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barrier (e.g. used amounts of Fe0 or/and barrier thickness) and 
discussing the stability of removed contaminants.

The results of previous works aimed at questioning the 
validity of the reductive transformation concept can be summa-
rised in 3 major points:
• The dynamic nature of the process of corrosion product 

generation has not been considered (Noubactep, 2007; 
Noubactep 2010a; Noubactep et al., 2010a)

• The combined problem of mass transport and chemical 
reaction in Fe0/H2O systems has not been properly con-
sidered (Noubactep 2008, Noubactep, 2009c; Noubactep, 
2009d)

• The results available from other branches of science using 
Fe0 (aqueous Fe0 corrosion, electrocoagulation using iron 
electrodes, hydrometallurgy, Fe0 in the petroleum industry) 
have not been properly considered (Noubactep and Schöner, 
2009; Noubactep, 2010b; Noubactep and Schöner, 2010a).

As a result adsorption (onto) and co-precipitation (with) iron 
corrosion products as fundamental contaminant removal mech-
anism has been suggested (Noubactep, 2007; 2008; 2010a) and 
experimentally validated (Noubactep et al., 2003; Noubactep et 
al., 2006a; Noubactep, 2009c; Noubactep 2009e; Noubactep et 
al., 2009a; Ghauch et al., 2010a; Ghauch et al., 2010b).

This paper attempts to further clarify the fundamental 
mechanism of contaminant removal in Fe0/H2O systems at 
near neutral pH values by approaching the subject from a new 
perspective: the similitude between Fe0/H2O systems and geo-
chemical systems involving iron and manganese precipitation 
is underlined. As recalled above, the concept of contaminant 
reductive transformation through Fe0 is the main prop that 
holds up the iron reactive barrier technology. The origin of the 
instable premise is identified, an alternative and more reliable 
interpretation for the process of contaminant removal in Fe0/
H2O systems is proposed, and recommendations for future 
works are made.

The process of aqueous Fe0 oxidation

Elemental iron (Fe0) is unstable under environmental condi-
tions (Knowlton, 1928; Brondel et al., 1994; Aleksanyan et al., 
2007; Nesic, 2007). Its oxidation yields FeII species the stability 
of which is mostly dependent on the pH value and the redox 
potential (Liu and Millero, 1999). In the pH range relevant 
for natural waters, FeII species are of limited stability and are 
very sensitive to molecular oxygen (O2) (e.g. Aleksanyan et al., 
2007; Nesic, 2007). The oxidation of FeII species by molecular 
oxygen is quite rapid. Resulting FeIII species (primarily Fe3+ 
ions) readily hydrolyse, precipitate (Fig. 1) and transform to 
oxides ([Fe(H2O)6]

3+
 (aq) ⇒ Fe(OH)3 (aq) ⇒ Fe(OH)3 (s) ⇒ oxides). 

Depending on the O2 availability, various oxides (FeIIO, 
FeIIFeIIIO4, FeIIIOOH, FeIII

2O3) are generated (Mackenzie et al., 
1999; Wilkin et al., 2003; Mielczarski et al., 2005). The theo-
retical ratio between the volume of corrosion products and the 
volume of iron in the crystal structure varies between 2.0 for 
Fe3O4 and 6.40 for Fe(OH)3.3H2O (Caré et al., 2008). 

The process of abiotic and biotic FeII oxidation is widely 
described in the geochemical literature (Davison and Seed, 
1983; Millero et al., 1995; Morgan and Lahav, 2007). The 
discussion of the involved processes is often coupled to those 
occurring during abiotic and biotic Mn2+ oxidation (Postma, 
1985; Post, 1999; Martin, 2005 and references therein). One 
of the central features of these systems is the fact that Fe2+/
Mn2+ oxidative precipitation at near neutral pH values is 

accompanied by inorganic and organic molecule entrapment 
(co-precipitation). The process of co-precipitated contaminant 
release during reductive dissolution of Fe and Mn oxides is 
almost an independent branch of geochemical research (Stone 
and Morgan, 1984a; Stone and Morgan, 1984b; Stone, 1987a; 
Stone, 1987b; Weaver and Hochella 2003; Shi and Stone, 
2009a; Shi and Stone, 2009b). This fact is mostly materialised 
by an independent step in schemes used for sequential extrac-
tion to reductively dissolve Fe and Mn hydroxides (using 
mostly NH2OH HCl as reducing agent) to liberate seques-
trated metal species (Tessier et al., 1979; Kasalainen and 
Yli-Halla, 2003; Madrid et al., 2007). Therefore, it is rather 
surprising that contaminant co-precipitation (the process and 
its importance) with continuously generated and ageing corro-
sion products has almost been overlooked in the ‘iron technol-
ogy’ literature for more than a decade. Two possible reasons 
for this are:
• The extreme specialisation in modern scientific research. 

This specialisation creates new branches and researchers 
starting at a later time scale may loss the contact to the 
mother branch.

• The educational background of individual researchers as 
environmental scientists is of very heterogeneous origin. It 
is not likely that the subtlety and scientific diversity of the 
physical and chemical processes involved in iron corrosion 
will be easily understood by individual scientists.

Readers interested in more detail on the process of co-precipi-
tation are encouraged to read 2 excellent works by Crawford et 
al. (1993a, 1993b). It should be noted that:
• Co-precipitation is a primarily unspecific removal mecha-

nism that occurs whenever an abundant species (iron) 
precipitates (here as oxide) in the presence of trace amounts 
of foreign species (here contaminants)
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 Figure 1
Comparison of solubility data of FeII and FeIII. Data for FeIII 

solubility (0.01 M NaCl at 25°C) are from Liu and Millero (1999) 
while data for FeII solubility are from Rickard (2006). Although 

the experiments are performed under different conditions, it can 
be seen that iron solubility is minimal between pH 5 and 10. The 

represented line (150 µg/ℓ Fe) corresponds to the theoretical 
aqueous iron concentration at 1% Fe0 consumption under the 

experimental conditions of Katsoyiannis et al. (2008). Therefore, 
contaminant removal experiments in Fe0/H2O systems are mainly 

performed under conditions where solubility limits of FeII and 
FeIII species is exceeded. Given the relative abundance of Fe 

and contaminant (molar ratio), it is very likely that contaminants 
are simply sequestrated in the matrix of precipitating iron oxides 

(co-precipitation).
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• Co-precipitated contaminants are not likely to be released 
into the environment unless iron oxides are dissolved 
(Stipp et al., 2002; Noubactep et al., 2003; Noubactep et 
al., 2006a; Noubactep et al., 2006b; Noubactep, 2009c; 
Noubactep et al., 2009a; Ghauch et al., 2010a). 

Therefore, although contaminants are not necessarily reduced 
in Fe0/H2O systems, they are successfully removed and strongly 
sequestrated in the matrix of iron oxides. This is the major 
reason why no carbon balances between reactants and products 
have ever been successfully done for many chlorinated hydro-
carbons (Lee et al., 2004). The reported lack of mass balance 
indicates that reduction as removal mechanism by Fe0 is not 
certain. However, whether reaction products are environmen-
tally safe or not, the concept of contaminant co-precipitation 
with iron corrosion products suggests that contaminants, their 
possible reaction products, and all possible foreign species, are 
sequestrated in the matrix of iron oxides and are stable so far 
as oxides are not dissolved. This conclusion is supported by the 
observation that even bacteria (Hussam and Munir, 2007; Diao 
and Yao, 2009) and viruses (You et al., 2005) are successfully 
removed in Fe0/H2O systems. The latter observation has led to 
the suggestion of metallic iron as a universal filter material in 
small above-ground walls and household filters for treatment 
of waters of unknown quality (Noubactep and Woafo, 2008; 
Noubactep et al., 2009b; Noubactep and Schöner, 2010b). If 
successfully developed, this simple idea could enable universal 
access to safe drinking water in remote areas around the world. 
It should be kept in mind that underground reactive barriers are 
primarily implemented at sites with contaminant concentra-
tions that are not far above the MCL (maximum contaminant 
level). Thus, the total mass of contaminant passing through the 
barrier over its entire lifetime is small relative to the available 
Fe0 within the barrier (Palmer and Wittbrodt, 1991). Given the 
diversity of contaminant removal agents (Fe0 and corrosion 
products) and processes (adsorption, co-precipitation, reduc-
tion), the question to be answered is how long Fe0 consump-
tion (or corrosion) could/will enable satisfactory contaminant 
removal.

The discussion above shows clearly that pioneer works on 
contaminant removal in Fe0/H2O systems overlooked an impor-
tant pathway of contaminant removal. Several other aspects 
have not been properly considered. For example, since iron 
corrosion continues despite oxide-film formation, available 
information from other branches of science using Fe0 materials 
should have been exploited as thought-provoking impulses for a 
better comprehension of the processes of contaminant removal 
in Fe0/H2O systems (Noubactep and Schöner, 2009; Noubactep 
and Schöner, 2010a). An excellent example is a mechanistic 
model for carbon dioxide corrosion of mild steel in the presence 
of protective iron carbonate films, proposed by Nesic and his 
co-authors (Nesic and Lee, 2003; Nesic et al., 2003; Nordsveen 
et al., 2003). These 3 papers have discussed very useful numer-
ical simulation results, which are yet to be ‘discovered’ by ‘iron 
technology’ researchers.

For the sake of clarity the next section will present the pro-
cess of contaminant co-precipitation in some detail and show 
how it has been considered in the field of ‘iron technology’ to 
date.

Contaminant co-precipitation

Co-precipitation of substances with metal (mainly Fe, Al, Mn) 
oxides (Crawford et al., 1993a; 1993b; Karthikeyan et al., 1997) 

occurs in natural environments and is a remediation technology 
used to remove toxic elements (mainly metal, metalloid and 
radionuclides) from drinking water (Scott et al., 1995), waste-
water (Rangsivek and Jekel, 2005) and hydrometallurgical  
solutions (Dutrizac, 1991).

Co-precipitation is a process in which normally soluble 
species are carried out of solution by sequestration in a precipi-
tating phase. In other words, co-precipitation is the simultane-
ous removal of a foreign species (including living bacteria and 
viruses) during the formation of a primary metal precipitate 
(mainly Fe and Mn hydroxides). Co-precipitation can entail:
• Contaminant adsorption onto freshly formed hydrous oxide 

colloids (surface adsorption)
• Solid solution formation by contaminant incorporation into 

the hydrous oxide lattice (mixed-crystal formation)
• Mechanical enclosure of contaminant-containing solution 

by the precipitate (occlusion or mechanical entrapment) 
(Crawford et al., 1993a; 1993b; Karthikeyan et al., 1997).

Co-precipitation in any real-world system is necessarily a 
combination of these 3 processes. It is important to notice that 
only mixed-crystal formation is primarily specific for inorganic 
compounds as the atomic radii have to be comparable.

Knowledge of the co-precipitation of dissolved organic 
matter with iron hydroxides is still limited (Satoh et al., 2006 
and references therein). The mechanism of organic contami-
nant co-precipitation in Fe0/H2O systems can be described 
as follows: FeII species from Fe0 oxidation are released in the 
aqueous solution and are further oxidised to FeIII species by dis-
solved O2 or other oxidants (e.g. MnO2). The solubility of FeIII 
compounds at pH > 5.0 is very small; therefore, precipitates are 
formed (Liu and Millero, 1999; Rickard, 2006; Aleksanyan et 
al., 2007 – see Fig. 1). The most common FeIII species in natural 
waters is hydrated FeIII hydroxide oxide, which is commonly 
positively charged (Satoh et al., 2006). The FeIII precipitates 
electrostatically co-precipitate negatively charged colloids and 
dissolved substances, including organic matter (Sugiyama and 
Kumagai, 2001; Schwertmann et al., 2004; Satoh et al., 2006, 
Violante et al., 2007).

Although a Fe0/H2O system is rigorously a domain of pre-
cipitating iron oxide, research on using Fe0 for environmental 
remediation over the past 20 years has been based on the 
fortuitous observation that trichloroethylene is removed from 
aqueous solution in the presence of metallic iron (Reynolds 
et al., 1990). Therefore, Fe0 materials have been mostly tested 
and used for the removal of reducible substances (chlorinated 
hydrocarbons, nitro aromatics, CrVI, UVI). However, adsorp-
tion and co-precipitation have been widely and independently 
described as 2 active mechanisms to trap contaminants 
from contaminated waters (e.g. Langmuir, 1997; Stipp et al., 
2002; Schwertmann et al., 2004). Fixation of contaminants 
in solid phases can remove ions from solution retarding their 
transport. When a contaminant is incorporated in the matrix 
rather than simply adsorbed at the surface, it is less available 
and can be considered as ‘immobilised’ in the environment, 
at least until the host phase is dissolved (Noubactep et al., 
2006b). Therefore, contaminant co-precipitation is a suitable 
mechanism for long-term remediation under conditions of low 
solubility of the host phase (pH > 4 for iron hydroxides).  
This has been acknowledged and precipitation walls, using  
for example lime and calcium carbonate, have been engi-
neered for the remediation of heavy metal contaminated 
groundwater (Komnitsas et al., 2004; Lee et al., 2007; Sibrell 
et al., 2007).
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Concerning Fe0 reactive barriers, besides reduction by Fe0 
(and FeII), contaminant adsorption at hydrous oxide surfaces 
at near neutral pH values (5 ≤ pH ≤ 9) is widely reported in 
the literature (Matheson and Tratnyek, 1994; Mantha et al., 
2001; Stipp et al., 2002; Henderson and Demond, 2007), with 
sporadic mention of co-precipitation almost exclusively for 
inorganics (Noubactep et al., 2003; Lien and Wilkin, 2005; 
Rangsivek and Jekel, 2005). On the contrary, inorganic con-
taminant co-precipitation in Fe0/H2O systems at pH < 5 (mostly 
acid mine drainage) has been largely reported (Wilkin and 
McNeil, 2003; Bartzas et al., 2006; Komnitsas et al., 2007) and 
will not be further considered in this work. However, according 
to the definition of co-precipitation recalled above, regardless 
of the pH value, a Fe0/H2O system should be regarded as the 
domain of co-precipitating iron hydroxide. Each species (liv-
ing, organic, inorganic) flowing into this domain should be 
regarded as foreign species that will co-precipitate with iron 
hydroxide (Noubactep, 2009f). Taken alone, this stoichiomet-
ric argument is a very strong argument for co-precipitation 
as fundamental mechanism of contaminant removal by Fe0. 
Moreover, contaminants and their derivates are co-precipitated 
and are not likely to be quantitatively released to the environ-
ment. Furthermore, even though some removed contaminants 
may be released while iron oxide is structurally transformed 
(Fe(OH)2/Fe(OH)3 ⇒ FeOOH, Fe2O3, Fe3O4), they will be 
entrapped within the reactive walls by continuously generated 
new corrosion products. This is very likely the reason why, 
despite obvious reductive reactivity loss by Fe0 due to surface 
coverage by corrosion products, installed reactive Fe0 walls 
currently meet design specifications.

The next section gives an overview of the current con-
siderations of the mechanism of contaminant removal in Fe0/
H2O systems, and an alternative taking co-precipitation into 
account.

Common considerations and their limitations

In investigating the removal of many chlorinated hydrocarbons 
in Fe0/H2O systems, no carbon balances between reactants and 
products have ever been successfully done (Lee et al., 2004). 
The situation is similar for inorganic species. Although reduc-
tive dissolution of Fe oxides is a well-known procedure to 
liberate bounded species (sequential extraction as discussed 
above), very few studies have used reductive dissolution of 
corrosion products for mass balance (Noubactep et al., 2006b). 
Furthermore, complexing solutions like Na2CO3 or NaHCO3 
for uranium have been used for speciation (Gu et al., 1998). 
However, uranium species (both UVI and UIV) are soluble in 
carbonate solutions while iron species (FeII and FeIII) are not. 
Therefore, co-precipitated uranium will not be released in car-
bonate solutions. Co-precipitated uranium is regarded by these 
investigators as reductively precipitated by Fe0.

Contaminant removal in Fe0/H2O systems has been assumed 
to be driven by an electrochemical reduction between redox-
sensitive species and elemental iron (Laine and Cheng, 2007; 
Matheson and Tratnyek, 1994; Powell et al., 1995; Schreier and 
Reinhard, 1994; Weber, 1996). These considerations suggest that 
all contaminants with an electrode potential higher than the elec-
trode potential of the redox couple FeII/Fe0 (-0.44 V) should be 
reduced in Fe0/H2O systems. However, the redox potential (E0) 
is a thermodynamic parameter. As such, E0-values only indicate 
the possibility of a reaction. Therefore, the reaction rate and the 
reaction mechanism should have been properly demonstrated for 
individual compounds. This has not been the case.

In discussing the mechanism of contaminant removal 
in Fe0/H2O systems, a general consensus is that elemental 
iron serves as reducing agent (direct reduction through 
Fe0 - O’Hannesin and Gillham 1998) and the overlay-
ing oxide film serves as catalyst (e.g. indirect reduction 
through FeII). This consensus totally neglects the fact that 
oxide film formation is a dynamic process, in the course 
of which contaminants are certainly entrapped in the mass 
of precipitating iron oxides (co-precipitation). Moreover, 
the oxide-film should be regarded as a mixture of oxides 
of different reactivity, acting both as adsorbents and co-
precipitants. Adsorbed and co-precipitated contaminants 
can be subsequently reduced by direct or/and indirect reduc-
tion. Therefore, indirect reduction is more likely than direct 
reduction as the presence of a conductive oxide-film is 
necessary for direct reduction (Noubactep, 2007; Noubactep, 
2008). Note that, despite the ‘broad consensus’ on reduction 
degradation of organics (O’Hannesin and Gillham 1998), 
some investigators could not traceably identify the role of 
Fe0 in contaminant reduction in Fe0/H2O systems. (Lavine 
et al., 2001; Lee et al., 2004; Jiao et al., 2009). For example, 
Jiao et al. (2009) found that the presence of carbon tetrachlo-
ride (CT) significantly accelerated aqueous iron corrosion 
and the iron corrosion was helpful for the reductive dechlo-
rination of CT. CT was already investigated in the seminal 
work of Matheson and Tratnyek (1994) as model contami-
nant and further investigated over the years by several 
research groups univocally reporting on reductive dechlo-
rination by Fe0 (e.g. Helland et al. 1995; Erbs et al., 1999; Li 
and Farrell, 2000; Li and Farrell, 2001; Doong et al., 2003; 
Meng et al., 2006). Jiao and colleagues (2009) concluded 
that the removal efficiency of CT is strongly dependent on 
the extent of iron corrosion in aqueous solutions at differ-
ent pH values (0.4 ≤ pH ≤ 14). Clearly, the results of Jiao 
et al. (2009) demonstrate that CT reduction is not a direct 
reduction by Fe0, validating the adsorption/co-precipitation 
concept (Noubactep, 2007; Noubactep, 2008).

Three possible functions have been attributed to the univer-
sal oxide-film on Fe0 (Scherer et al., 2000; Huang and Sorial, 
2007): 
• The oxide film serves as a physical barrier inhibiting  

electron transfer from Fe0 to the electron acceptor contami-
nant and the electron transfer may occur from the metal to 
the dissolved substance through defects in the metal such 
as pits

• The oxide film mediates electron transfer from Fe0 to the 
contaminant by acting as a semiconductor

• The oxide film acts as a coordinating surface containing 
sites of FeII, which complexes with the contaminant and 
then reduces it. 

It is evident, that this well-accepted model from Scherer et 
al. (2000) aims at explaining why contaminant reduction may 
occur despite the presence of the oxide film. Again the fact that 
oxide films continuously entrap adsorbed contaminants and 
contain already entrapped contaminants is not noticed.

One of the primary interests in the behaviour of contami-
nants in Fe0/H2O is in the manner in which they are removed 
from the aqueous phase. Adsorption on particles (Fe0, oxide 
film) is obviously the primary contaminant removal mecha-
nism from the aqueous solution. Consequently, a primary 
consideration in predicting the behaviour of any contaminant 
should be to properly consider its affinity for available surfaces. 
Relatively few studies have properly incorporated the affinity 
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between contaminants and solid surfaces in the discussion of 
experimental results. The situation is exacerbated by the use 
of inappropriate experimental conditions (Noubactep, 2007; 
Noubactep, 2009c; Noubactep, 2009e; Noubactep et al., 2009a). 
The affinity between contaminants and solid surfaces is mostly 
determined by: the solution pH, the contaminant characteristics 
(pKa-, pKs-values), and the point of zero charge (pHpzc) of solid 
surfaces (Nesic, 2007).

Alternative perspective

Aqueous contaminant removal in Fe0/H2O systems can be 
viewed as a ‘trickle down’ (Keeney-Kennicutt and Morse, 
1985), in which a fraction of the targeted contaminant is 
continuously adsorbed onto in situ generated high adsorptive 
corrosion products. Contaminants are subsequently entrapped 
into the structure of ageing corrosion products (co-precipita-
tion). In this situation, an equilibrium is not possible before 
Fe0 is depleted. Therefore, the use of adsorption isotherms 
(e.g. Freundlich, Langmuir) to interpret data of contaminant 
removal from short-term batch experiments is not justified. 
Furthermore, adsorbed or co-precipitated contaminants can 
be further reduced both by a direct and an indirect mecha-
nism. The direct contaminant reduction is not always the most 
favourable reduction pathway (Noubactep, 2008; Noubactep, 
2010a; Noubactep et al., 2010a). Contrary to this obviously 
plausible interpretation, it has been contended, without demon-
stration nor verification, that progressive contaminant removal 
in Fe0/H2O systems is the result of a direct reduction reaction 
according to Eq. (1). Equation (2) represents a reaction path 
that is possibly more favourable, not only thermodynamically 
(Noubactep, 2008; Noubactep, 2010a).

Fe0 + Ox ⇒ Fe2+ + Red            (1)

Where Ox and Red are the oxidised and the reduced form of the 
contaminant, respectively.

Fe2+
(s) + Ox ⇒ Fe3+

(s) + Red           (2)

Fe2+
(s) stands for surface adsorbed FeII or structural FeII (White 

and Peterson, 1996).

Concluding remarks

In investigating the process of contaminant removal in Fe0/
H2O systems, care is often taken to ensure that experimen-
tal data actually measure Fe0 surface oxidative dissolution 
reactions and not the process of product diffusion. Fe0 oxida-
tive dissolution is supposedly coupled to contaminant reduc-
tive removal (Matheson and Tratneyk, 1994; Powell et al., 
1995; Weber, 1996; Laine and Cheng, 2007). Traditionally, 
this objective is accomplished by mixing (shaking, stirring) 
the experimental vessels such that diffusion is faster than 
Fe0-surface chemistry. Unfortunately, any mixing operation 
inevitably accelerates the process of iron corrosion as the 
transport of primary corrosion products (FeII species) is accel-
erated (Polasek, 2007; Noubactep, 2009c; Noubactep, 2009g; 
Noubactep et al., 2009a). Transporting FeII ions away from the 
vicinity of the Fe0 surface inevitably disturbs (delays or even 
avoids) the process of oxide film formation. The discussion 
above has demonstrated the importance of oxide films for the 
process of contaminant removal. Therefore, besides the focus 
on the thermodynamic of the redox couple FeII/Fe0, mixing is 

probably the disturbing factor that has impeded or delayed the 
acceptance of the importance of adsorption and co-precipi-
tation as basic contaminant removal mechanisms (Lee, et al., 
2004; Noubactep, 2007; Noubactep, 2008; Noubactep, 2010a). 
In fact, the term mixing is confusing (Polasek, 2007) because 
it is randomly interchangeable, used to describe: transport 
mechanisms for reagent dispersion and homogenisation with 
water mixing (flash mixing), and agitation (flocculation mix-
ing). However, each of these mechanisms (flash mixing and 
flocculation mixing) requires different flow characteristics 
in order to take place with maximum efficiency. For Fe0/H2O 
systems, depending on the mixing type and the mixing inten-
sity, Fe0 and corrosion products may remain at the bottom 
of the reaction vessels or be held suspended in the aqueous 
phase. To be pertinent for real-world applications however, 
oxide-films have to be generated at the Fe0 surface.

Next to the disturbing effect on the oxide film forma-
tion, mixing has other obvious disadvantages for mechanistic 
investigations: 
• Producing more corrosion products which are well known 

as good adsorbents for both organics and inorganics 
(Brown et al., 1999; Stipp et al., 2002), besides serving as 
catalyst for reduction through structural FeII (Riba et al, 
2008 and references therein)

• Keeping corrosion products suspended and therefore facili-
tating the accessibility of the Fe0 surface for contaminants 
(Polasek, 2007). 

Clearly, for the investigation of processes in Fe0/H2O systems, 
mixing should not be considered as a helpful tool to facili-
tate contaminant transport from the bulk solution to the Fe0 
surface but rather as a possible disturbing factor (Lee et al., 
2004; Noubactep, 2010a; Noubactep, 2009c; Noubactep et 
al., 2009a). This hypothesis could be verified experimentally 
while investigating the process of methylene blue discolora-
tion by Fe0. It was shown that shaking intensities >50 min-1 
are disturbing (Noubactep, 2009c). Consequently, in experi-
ments investigating the process of contaminant removal 
by elemental iron materials, mixing operations (type and 
intensity) should be proven non-disturbing before being 
employed (Noubactep, 2007; Noubactep, 2009g; Noubactep 
et al., 2009a). Since in-situ formed corrosion products have 
to develop and remain on the Fe0 surface to mimic natural 
situations in subsurface reactive walls, mixing operations 
involving Fe0 particle movement (e.g. end-over-end agitation) 
inevitably introduced experimental biases. Depending on the 
used Fe0 particle sizes, all other mixing operations will more 
or less disturb the process of oxide film formation on Fe0 (Lee 
et al., 2004; Noubactep, 2010a).

For the further development of the ‘iron technology’, com-
prehensive investigations under more relevant experimental 
conditions are needed. Ideally a unified experimental procedure 
should be developed to enable better inter-laboratory compari-
son of results. In up-scaling results from well-thought-through 
experiments for the design of reactive barriers (Noubactep and 
Caré, 2010b; Noubactep and Caré, 2010c), available models for 
co-precipitation phenomena will be very useful (e.g. Komnitsas 
et al., 2006; Tokoro et al., 2008).
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