ZEITSCHRIFT

FÜR

GEOPHYSIK

Herausgegeben im Auftrage der

Deutschen Geophysikalischen Gesellschaft

von

W. Dieminger, Lindau über Northeim

unter Mitwirkung von B. Brockamp, Münster i. W. – A. Defant, Innsbruck – W. Hiller, Stuttgart K. Jung, Kiel – O. Meyer, Hamburg – F. Möller, München – H. Reich, Göttingen

Jahrgang 31

1965

Heft 1

PHYSICA-VERLAG·WÜRZBURG

INHALTSVERZEICHNIS

BOSE, S. K.: Generation of Lg-Waves and S-Velocity Distribution in the Crust	1
JUNG, K., MENZEL, H., und O. ROSENBACH: Gravimetermessungen im Nördlinger Ries	7
RASTOGI, R. G.: Lunar Tidal Oscillations in H and f_0F_2 at Equatorial Stations	27
PETERSCHMITT, E., MENZEL, H., und K. FUCHS: Seismische Messungen in den Alpen. — Die Beobachtungen auf dem NE-Profil Lago Lagorai 1962 und ihre vorläufige	
Auswertung	41
Kurzmitteilung	50

DIE ZEITSCHRIFT FÜR GEOPHYSIK

erscheint zweimonatlich. Der Bezugspreis beträgt je Jahrgang 48,— DM, Einzelhefte je nach Umfang. Abonnements verlängern sich jeweils um einen Jahrgang, falls keine ausdrückliche Abbestellung zum Ende eines Jahrgangs vorliegt.

In der Zeitschrift werden Originalarbeiten, die weder im In- noch im Ausland veröffentlicht wurden und die der Autor auch anderweitig nicht zu veröffentlichen sich verpflichtet, aus dem Gebiet der reinen und angewandten Geophysik sowie aus den Grenzgebieten aufgenommen. Mit der Annahme des Manuskriptes geht das ausschließliche Verlagsrecht an den Verlag über.

Die Autoren werden gebeten, die Manuskripte in Maschinenschrift mit handschriftlich eingetragenen Formeln druckfertig einzureichen und gesondert eine "Anweisung für den Setzer" beizufügen, aus der zu ersehen ist, wie kursiver, gesperrter oder fetter Satz und griechische, gotische oder einander ähnliche Typen und Zeichen kenntlich gemacht sind (z. B. durch farbige Unterstreichung). Die Vorlagen für die Abbildungen sollen reproduktionsfertig (Tuschzeichnung) möglichst im Maßstab 2:1 eingesandt werden. Die Beschriftung der Abbildungen soll auf einem lose vorgeklebten, durchsichtigen Papier erfolgen. Fußnoten sind fortlaufend zu numerieren und am Ende des Manuskriptes zusammenzustellen; bei Zitaten sind neben Autornamen, Titel und Zeitschriftentitel auch Bandnummer, Erscheinungsjahr und Seitenzahl anzugeben.

Jeder Arbeit ist eine "Zusammenfassung" in deutscher und englischer oder französischer Sprache beizufügen.

Der Verfasser liest von der Arbeit in der Regel nur eine Korrektur; etwaige Autorenkorrekturen können nur als Fußnoten bzw. am Schluß des Artikels gebracht werden. Umfangreiche Änderungen bedürfen der Zustimmung des Herausgebers und können nur gebracht werden, wenn sich der Autor bereit erklärt, die Korrekturkosten zumindest teilweise zu tragen.

Von seiner Arbeit erhält der Verfasser 50 Sonderdrucke ohne Umschlag kostenlos. Weitere Sonderdrucke liefert der Verlag gegen Berechnung. Eine Honorierung der Beiträge erfolgt nicht.

Für die Zeitschrift für Geophysik bestimmte Manuskripte und redaktionelle Anfragen bitten wir an den Herausgeber zu richten:

Prof. Dr. WALTER DIEMINGER, Max-Planck-Institut für Aeronomie, 3411 Lindau über Northeim (Hann.)

Anschrift der Deutschen Geophysikalischen Gesellschaft: 2 Hamburg 13, Von-Melle-Park 6, 14. Stockwerk, Postscheck: Hamburg Nr. 55983

Es ist ohne ausdrückliche Genehmigung des Verlages nicht gestattet, fotografische Vervielfältigungen, Mikrofilme, Mikrofotos u. ä. von den Zeitschriftenheften, von einzelnen Beiträgen oder von Teilen daraus herzustellen.

Bekanntmachung It. Bayer. Pressegesetz: Verlag: PHYSICA-VERLAG Rudolf Liebing K.-G., Würzburg, Münzstr 12. Pers. haft. Ges.: Rudolf Liebing, Arnulf Liebing und Hildegund Haller, sömtlich Buchhöndler in Würzburg Kommanditisten: Friedr Gäbler, Buchhöndler, und Charlotte Kuhnert, beide Würzburg.

Druckerei: R. Oldenbourg, Graph. Betriebe GmbH, München

Printed in Germany

Generation of Lg-Waves and S-Velocity Distribution in the Crust

By S. K. BOSE, Calcutta¹)

Eingegangen am 7. Januar 1964

Zusammenfassung: Es wird gezeigt, wie Lg-Wellen in einer Erde entstehen, in der die S-Geschwindigkeit in der Kruste gleichmäßig mit der Tiefe zunimmt. Dazu wird die veränderliche Festigkeit in eine Fourier-Cosinus-Reihe entwickelt. Ferner wird gezeigt, daß die Lg-Welle nicht in einem andersartigen Modell auftreten kann, das von EWING, JARDETZKY, und PRESS vorgeschlagen wurde.

Summary: The generation of Lg-waves has been demonstrated in an earth in which the S-velocity in the crust increases uniformly with depth. The analysis has been done by expanding the variable rigidity in a Fourier cosine series. Finally, it has been suggested that the Lg-phenomenon can not take place in an alternative model suggested in EWING, JARDETZKY, and PRESS [2].

1. Indroduction

Seismograms of earthquakes with epicentres on the continents and continental paths show a phase called the *Lg*-phase. The waves in this phase have, small period (1 to 6 sec.), phase velocities nearly equal to the *S*-velocity in the upper part of the crust (3.51 km/sec.) and large amplitude motion which is predominantly transverse with some vertical motion. Other characteristics are, elimination by even small intervening oceans (as little as 2^0) and long duration.

It is believed (cf. EWING, JARDETZKY, and PRESS [2]) that these waves are Lovewaves, with phase velocity nearly equal to the mean S-velocity in the crust, in which the S-velocity, either decreases uniformly or first decreases and then increases, with depth.

Here it is intended to demonstrate mathematically that the Lg-phenomenon can take place with the first model of the crust a model now widely accepted. For simplicity, a flat earth, with a homogeneous mantle and a crust in which the variations in *S*-velocity is due to variations in the rigidity only has been considered. Taking *z*-axis vertically upwards the rigidity of the crust, a linear function of *z* according to the first model, can be represented by

$$\mu = \mu_0 \left(1 + \varepsilon_1 \cos mz + \varepsilon_3 \cos 3 mz + \ldots \right)$$

¹) S. K. BOSE, Presidency College, Calcutta.

where the coefficients $\varepsilon_1, \varepsilon_3, \cdots$, are positive and small and μ_0 is the mean rigidity (mean with respect to the depth) which takes place mid-way into the crust.

The first order analysis for SH motion in such an earth shows that, large amplitude and short period waves propagating with mean S-velocity in the crust are generated. These waves correspond to the end of the Love-wave spectrum as stated in EWING, JARDETZKY, and PRESS [2]. Reasons have been given why these are completely attenuated by even small intervening oceans and how some vertical oscillations can be associated with these. The Lg-waves showing similar characteristics are identified with these waves and hence the truth of the first model is demonstrated. Lastly, the second model has been considered and it has been indicated why such a model is less acceptable.

2. The problem and the basic equations

Consider a semi-infinite homogeneous isotropic solid with an in-homogeneous isotropic superficial crust of thickness H. Let the density and rigidity of the mantle be ϱ_1 and μ_1 and those of the crust be ϱ assumed uniform throughout and μ (uniformly increasing with depth) respectively. Let the source of disturbance be a periodic (period $2 \pi/\omega$) line source S, on the free surface of the crust.

Taking the x-axis, on the interface in the direction of wave propagation, and z-axis vertically upwards through S. The field equations for SH motion are

$$\mu_1 \left(\frac{\partial^2 v_1}{\partial x^2} + \frac{\partial^2 v_1}{\partial z^2} \right) = \varrho_1 \frac{\partial^2 v_1}{\partial t^2}, \qquad z < 0,$$
(1)

and

$$\mu\left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial z^2}\right) + \frac{\mathrm{d}\mu}{\mathrm{d}z}\frac{\partial v}{\partial z} = \varrho \frac{\partial^2 v}{\partial t^2}, \quad 0 < z < H, \qquad (2)$$

with

$$\mu = \mu_0' - az \,. \tag{3}$$

Making the transformation $mz = \zeta$, where $m = \pi/H$, we get

$$\mu = \mu'_0 - \frac{aH}{\pi} \zeta \,, \quad 0 < \zeta < \pi \,.$$

Using the Fourier cosine expansion of ζ , v i z.

$$\zeta = \frac{\pi}{2} - \frac{4}{\pi} \left(\frac{\cos \zeta}{1^2} + \frac{\cos 3\zeta}{3^2} + \frac{\cos 5\zeta}{5^2} + \dots \right)$$

the expression for μ takes the form

$$\mu = \mu_0 \left(1 + \sum_{n=1, 3, 5} \varepsilon_n \cos nmz \right),$$

$$m = \pi/H.$$
(4)

In the above aH being the increment in μ from the upper free surface to the interface, ε_1 , ε_3 , \cdots are all small positive numbers in rapidly decreasing order of magnitude. The boundary conditions are

The boundary conditions are

on
$$z = H$$
, $\frac{\partial v}{\partial z} = -2\pi G e^{-i\omega t} \delta(x)$, $G = \text{const}$,
on $z = 0$, $v = v_1$ and $\mu \frac{\partial v}{\partial z} = \mu_1 \frac{\partial v_1}{\partial z}$, and
as $z \to -\infty$, $v_1 \to 0$, (5)

the last condition being necessary if the waves are to remain confind largely in the layer.

3. The solution of the field equations

If the waves produced have a period $2 \pi/\omega$, the solution of (1) appropriate to the last of the boundary conditions (5) is

$$v_1 = e^{-i\omega t} \int_{-\infty}^{\infty} C(k) e^{s_1 z} e^{ikx} dk$$
(6)

where

$$s_1^2 = k^2 - \frac{\omega^2}{\beta_1^2}, \beta_1^2 = \frac{\mu_1}{\rho_1}.$$
 (7)

For the solution of (2), let

$$v = e^{-i\omega t} \int_{-\infty}^{\infty} V(z,k) e^{ikx} dk, \quad 0 < z < H.$$
(8)

Making the substitution in (2) and using (4), V satisfies the equation

$$(1 + \sum \varepsilon_n \cos nmz) \frac{\partial^2 v}{\partial z^2} - (\sum \varepsilon_n mn \sin nmz) \frac{\partial v}{\partial z} + [s_0^2 - k^2 (\sum \varepsilon_n \cos nmz)] V = 0, \quad 0 < z < H, \quad (9)$$

where the summation is over odd positive integers n and

$$s_0^2 = \frac{\omega^2}{\beta_0^2} - k^2, \qquad \beta_0^2 = \frac{\mu_0}{\varrho}.$$
 (10)

Looking at the forms of the coefficients ε_n we find that $mn\varepsilon_n$ are second order terms and hence to a first order the term containing $\partial v/\partial z$ in (9) can be removed.

Equation (9) with the second term removed is similar to one encountered by BOSE [1]. Proceeding along the same line, its solution to a first order in the εs is

$$V(z) = A(k) e^{is_0 z} \left[1 - \sum \frac{\varepsilon_n}{2} \frac{s_0^2 + k^2}{(s_0 - nm)^2 - s_0^2} e^{-inmz} - \sum \frac{\varepsilon_n}{2} \frac{s_0^2 + k^2}{(s_0 + nm)^2 - s_0^2} e^{inmz} \right] + B(k) e^{-is_0 z} \left[1 - \sum \frac{\varepsilon_n}{2} \frac{s_0^2 + k^2}{(s_0 - nm)^2 - s_0^2} e^{inmz} - \sum \frac{\varepsilon_n}{2} \frac{s_0^2 + k^2}{(s_0 + nm)^2 - s_0^2} e^{-inmz} \right],$$
(11)

the expression being invalid for $s_0 = nm/2$. The corresponding expressions can be found out as indicated by Bose [1].

4. Determination of A(k) and B(k)

The integrals (6) and (8) with (11) can now be fitted into the boundary conditions (5), to obtain A(k) and B(k) when $s_0 \neq nm/2$. The second and the third boundary conditions of (5) give

$$(A+B)\left[1-\sum \varepsilon_n \frac{s_0^2+k^2}{n^2m^2-4s_0^2}\right] = C,$$
(12)

$$(A-B)(1+\sum \varepsilon_n) \left[1+\sum \varepsilon_n \frac{s_0^2+k^2}{n^2m^2-4s_0^2}\right] = -i\frac{\mu_1 s_1}{\mu_0 s_0}C.$$
 (13)

The first of the boundary conditions (5) gives

$$(Ae^{is_0H} - Be^{-is_0H}) \left[1 - \sum \varepsilon_n \frac{s_0^2 + k^2}{n^2 m^2 - 4 s_0^2} \right] = \frac{iG}{s_0}.$$
 (14)

The solution of (12), (13) and (14) yield

$$2A = C \left[1 - \frac{i\mu_{1}s_{1}}{\mu_{0}s_{0}} (1 - \sum \varepsilon_{n}) + \left(1 + \frac{i\mu_{1}s_{1}}{\mu_{0}s_{0}} \right) \sum \varepsilon_{n} \frac{s_{0}^{2} + k^{2}}{n^{2}m^{2} - 4s_{0}^{2}} \right],$$

$$2B = C \left[1 + \frac{i\mu_{1}s_{1}}{\mu_{0}s_{0}} (1 - \sum \varepsilon_{n}) + \left(1 - \frac{i\mu_{1}s_{1}}{\mu_{0}s_{0}} \right) \sum \varepsilon_{n} \frac{s_{0}^{2} + k^{2}}{n^{2}m^{2} - 4s_{0}^{2}} \right],$$

$$\Delta C = \frac{G}{s_{0}\sin s_{0}H} \left[1 + \sum \varepsilon_{n} \frac{s_{0}^{2} + k^{2}}{n^{2}m^{2} - 4s_{0}^{2}} \right] \left[1 - \frac{1}{\Delta} \left\{ \frac{\mu_{1}s_{1}}{\mu_{0}s_{0}}\cot s_{0}H \sum \varepsilon_{n} + \left(1 + \frac{\mu_{1}s_{1}}{\mu_{0}s_{0}}\cot s_{0}H \right) \sum \varepsilon_{n} \frac{s_{0}^{2} + k^{2}}{n^{2}m^{2} - 4s_{0}^{2}} \right] \right]$$

$$(15)$$

where

$$\Delta = 1 - \frac{\mu_1 s_1}{\mu_0 s_0} \cot s_0 H \,. \tag{16}$$

Only first power of the εs are to be retained when A(k) and B(k) are substituted in (11).

5. The predominant Phases

The first order integral representation of v given by (8) with (11) and (15), when integrated by the usual methods of contour integration will consist of superposition of several phases, those corresponding to the poles of the integrand, i. e. $\Delta = 0$ and those corresponding to the branch points for $s_0 = 0$ and $s_1 = 0$; the former being predominant at large distances from the source. These predominant phases are the Love-waves satisfying the dispersion equation

$$\cot s_0 H = \frac{\mu_0 s_0}{\mu_1 s_1},$$
(17)

where from (7) and (10), we have, for the phase velocity c and period $2 \pi/\omega$

$$\left\{ c^{2} = \beta_{0}^{2} \beta_{1}^{2} \frac{s_{0}^{2} + s_{1}^{2}}{\beta_{0}^{2} s_{0}^{2} + \beta_{1}^{2} s_{1}^{2}}, \\ \omega^{2} = \beta_{0}^{2} \beta_{1}^{2} \frac{s_{0}^{2} + s_{1}^{2}}{\beta_{1}^{2} - \beta_{0}^{2}} \right\}$$
(18)

The solutions of (17) are such that

$$(p-1)\pi < s_0H < (2p-1)\frac{\pi}{2} = \frac{n\pi}{2}, \quad p=1,2,3,...$$

In the p^{th} mode, as $s_0 H$ increases from $(p-1)\pi$ to $(2p-1)\pi/2$, s_1 increases from 0 to ∞ , c diminishes from β_1 to β_0 and the period diminishes from

$$\frac{\sqrt{\beta_1^2 - \beta_0^2}}{\beta_0 \beta_1} \frac{2H}{(p-1)\pi}$$

(which is ∞ for the first mode) to 0.

As in Bose [1], it appears from the expression for v that the dispersive phases for which $s_0 \rightarrow (nm/2)^-$ or $s_0H \rightarrow (n\pi/2)^-$ then $s_0^2 + k^2 = \omega^2/\alpha_0^2 \rightarrow \infty$ and the first order terms become large as ∞^2 . The phases for which this condition is satisfied will have, comparatively large amplitudes if the viscosity of the crust is not very high, velocities

S. K. BOSE

nearly but slightly greater than β_0 and small periods (extremely small periods being absent due to considerable dissipation due to viscosity). The range within which the periods of these large amplitude waves will lie, will depend on the range of transmission and the viscosity of the crust. One thing more we observe is that the ϵs of high degree harmonic terms being very small, the low period phases corresponding to high modes of (17) are unlikely to make in an appearance.

For these large amplitude waves, it becomes necessary to retain the higher power of the $\varepsilon's$. For this omission, the result is not vitiated qualitatively, as has been shown by BOSE [1]; but for a complete quantitative result, particularly for the determination of the range of period, not only these should be retained but also the viscosity of the crust be taken into account.

The large amplitude waves will be completely eliminated across a small intervening ocean due to (1) short periods as shown by GHOSH [3], [4] and (2) negligible variation in the rigidity of the crust beneath the ocean. They may also be accompanied by vertical motion due to vertically polorised S-waves travelling with velocity β_0 directly through the crust.

The large amplitude waves discussed above most probably appear on seismograms as what are known as the Lg-waves. If this is the case then we have established that the first model proposed in EWING, JARDETZKY and PRESS [2] is correct. For, in the second model we will have to take a representation of μ in the form

$$\mu = \mu_0 \left(1 + \varepsilon_1 \cos mz + \ldots \right)$$

where $mH = 3 \pi/2$. As before the large amplitude waves will occur for $\omega \to \infty$ or $s_0 H \to (3 \pi/2)^-$, which diverge as ∞^1 , and seems to be slow for the marked *Lg*-phenomenon. Similarly for higher modes. In fact the analysis shows that any model of the crust is acceptable in which the Fourier expression for $\mu(\zeta)$ over $(0, \pi)$ contains only odd harmonic terms. But any other distribution being contrary to experience must be rejected.

References

- [1] BOSE, S. K.: Zeitschrift für Geophysik (in press).
- [2] EWING, M., F. PRESS, and W. S. JARDETZKY: Elastic Waves in Layered Media (1957), McGraw-Hill, 219-222.
- [3] GHOSH, M. L.: Gerl. Beitr. zur Geophys. 70 (1961), 319-342.
- [4] Ders.: G.J.R.A.S. 7 (1963), 350-360.

Gravimetermessungen im Nördlinger Ries¹)

Von K. JUNG, Kiel, H. MENZEL, Clausthal, und O. ROSENBACH, Mainz²)

Eingegangen am 26. März 1964

Summary: A gravity survey covering approximately 750 sq.km. was conducted over the Ries basin in Bavaria. Results of the measurements are presented as follows: 1. List of gravity stations containing all gravimetric and topographic data; 2. Bouguer gravity map of the Ries basin; 3. Map of Bouguer gravity values obtained from a detailing survey over the magnetic anomaly near Wörnitzostheim.

Zusammenfassung: Es wird über Gravimetermessungen im Nördlinger Ries berichtet. Die Meßergebnisse werden in folgender Form mitgeteilt: 1. Ein Verzeichnis der gravimetrischen Stationen mit allen gravimetrischen und topographischen Daten; 2. Eine Karte der Bouguer-Anomalien im Ries; 3. Eine Spezialkarte der Bouguer-Anomalie im Bereich der magnetischen Anomalie bei Wörnitzostheim.

1 Einleitung

1.1 Meßgebiet

Das Meßgebiet liegt im Bereich des morphologischen Beckens des Nördlinger Rieses nordwestlich von Augsburg. Es umfaßt etwa den Bereich des Blattes 593 "Nördlingen" der Karte 1:100000 und ist in seinen Abgrenzungen aus der Abb. 2 zu ersehen.

Das Nördlinger Ries ist bekanntlich seit Jahrzehnten ein interessantes Forschungsobjekt, insbesondere für Geologie und Geophysik, und ist in jüngster Zeit durch die Bildung der "Arbeitsgemeinschaft Ries" stärker in den Vordergrund getreten.

Die hier vorgelegten Meßergebnisse bilden einen geophysikalischen Beitrag für die Untersuchungen dieser Arbeitsgruppe und füllen gleichzeitig eine Lücke in der Schwerekarte der Geophysikalischen Reichsaufnahme aus. Es werden jedoch lediglich Meßergebnisse vorgelegt; eine eingehende Interpretation bleibt einer späteren Veröffentlichung vorbehalten.

1.2 Frühere geophysikalische Untersuchungen

Von den geophysikalischen Untersuchungen im Nördlinger Ries interessieren für diese Arbeit besonders die früheren gravimetrischen Publikationen von SCHÜTTE [1] über die Pendelmessungen, sowie von K. JUNG und A. BENTZ [2, 3] über die Dreh-

¹) Spezialuntersuchung im Rahmen des Schwerpunktprogramms der Deutschen Forschungsgemeinschaft "Geophysikalische Erforschung des tieferen Untergrundes in Mitteleuropa", Beitrag Nr. 19.

²) Professor Dr. K. JUNG, Institut für Geophysik der Universität Kiel; Professor Dr. H. MENZEL, Institut für die Physik des Erdkörpers der Universität Hamburg; Professor Dr.-Ing. O. ROSENBACH, Meteorologisch-Geophysikalisches Institut der Universität Mainz.

waagemessungen. Weiterhin muß noch die Publikationen von REICH und HORRIX [4] über refraktionsseismische und magnetische Untersuchungen erwähnt werden, da sie die Grundlage für einen Teil der Planung der gravimetrischen Messungen bildete, über die hier berichtet wird; außerdem enthält sie eine umfangreiche Bibliographie zum Riesproblem.

2 Feldmessungen

2.1 Anlage der Gravimetermessungen

Die Verteilung der Gravimeterpunkte im Meßgebiet erfolgte im wesentlichen flächenhaft, doch so, daß auch geeignete Profilschnitte mit hinreichender Punktdichte ausgewählt werden können. Einige Meßlinien sind über den morphologischen Rand des Rieses (Abb. 2) hinaus geführt worden. Die mittlere Punktdichte ist im Süden des Meßgebietes größer als im Norden. Auf einigen Meßlinien beträgt der Punktabstand ca. 1 km. Im Gebiet der magnetischen Anomalie von Wörnitzostheim ist eine Spezialvermessung mit einem mittleren Punktabstand von ca. 50 m durchgeführt worden (Abb. 3).

Die gravimetrischen Meßlinien wurden so gelegt, daß bei einer späteren Interpretation ein Vergleich der seismischen und gravimetrischen Ergebnisse möglich ist.

2.2 Durchführung der Messungen

Die Messungen wurden im Frühjahr 1962 von den drei Instituten in Clausthal, Kiel und Mainz gemeinsam durchgeführt und dauerten ca. 4 Wochen; im Herbst des gleichen Jahres nahm das Institut Kiel allein eine umfangreiche Ergänzungsmessung vor, die zwei Monate dauerte.

Für die Messungen standen folgende Geräte zur Verfügung:

Askania-Gravimeter, Typ GS 11, Nr. 146 (Kiel)

Worden-Gravimeter, Typ Master, Nr. 614 (Mainz)

Worden-Gravimeter, Typ Master, Nr. 635 (Clausthal)

3 Nivelliere Zeiß Ni 2, teils mit Aufsatzbussole für Kompaßzüge,

ferner

zwei Taschengefällmesser, Fabrikat Möller-Wedel, zur Messung der Geländeneigung für die Bestimmung der topographischen Nahwirkung.

Die Gravimeter wurden im Verlauf der Geländemessungen auf der Strecke Nördlingen—Forheim über einen Schwereunterschied von ca. 34 mgal verglichen. Später erfolgte eine Bestimmung der Skalenwerte durch eine Simultanmessung mit den drei Geräten auf der deutschen Gravimeter-Eichlinie zwischen Bad Harzburg und Torfhaus. Zu Beginn der Arbeiten im Ries wurde ein Basisnetz geschaffen. Es besteht aus 16 Schleifen mit 18 Meßpunkten. Die Schwereunterschiede auf den einzelnen Strecken wurden unabhängig voneinander mit mehrfacher Direktmessung ermittelt. Hierauf wurde das Netz der Feldpunkte, gemessen in Form von Schleifen, in das Basisnetz eingefügt.

Als Kartenunterlage diente die topographische Karte 1:25000 mit den Blättern:

7028	7029	7030
Unterschneidheim	Öttingen	Wolferstadt
7128	7129	7130
Nördlingen	Deiningen	Wemding
7228	7229	7230
Neresheim	Bissingen	Donauwörth

3 Bearbeitung der Meßwerte

3.1 Reduktionen

Aus den gemessenen Schwerewerten wurde die Bouguer-Anomalie nach folgender Formel berechnet:

$$\Delta g^{\prime\prime} = (g - g_{\text{Dei}}) - \delta g_{\text{top}} - \delta g_{\text{Bpl}} - \delta g_{\text{ni}} - \delta \gamma_0$$

Es bedeuten:

$(g - g_{\text{Dei}})$	die gemessene Schweredifferenz gegen den Basispunkt Deiningen
	(GP Nr. 233)
δg_{top}	die Geländewirkung
δg_{Bpl}	die Wirkung der ebenen Bouguer-Platte
δg_{ni}	die Niveauwirkung
δγο	den Unterschied der Normalschwere gegen die Normalschwere in der Breite $\varphi = 18^{\circ} 51'$.

Hinsichtlich der Berechnung der einzelnen Reduktionen sei folgendes bemerkt: Bei δg_{top} und δg_{Bpl} geht die Gesteinsdichte ein, die in diesem Fall zweckmäßigerweise nicht einheitlich für das gesamte Meßgebiet gewählt wird. Abweichend von den naturgemäß grobschematischen Annahmen der Dichte bei der geophysikalischen Reichsaufnahme sind für dieses Spezialgebiet die Dichten gemäß Abb. 1 (siehe S. 10) für die Reduktion benutzt worden. Als Bezugsniveau wurde 400 m ü. N.N. gewählt; sämtliche Geländehöhen im Meßgebiet liegen oberhalb dieses Niveaus. Die Reduktionsdichte σ wurde in folgender Weise angesetzt:

> $\sigma = 2,0$ g/cm³ für Gebiete mit einer Geländehöhe < 450 m, $\sigma = 2,3$ g/cm³ für Gebiete mit einer Geländehöhe \geq 450 m.

Abb. 1: Annahmen über die Dichteverteilung im Meßgebiet.

Abweichend hiervon ist für die Höhenrücken zwischen Alerheim und der Mündung der Eger in die Wörnitz die Dichtegrenze bei der Höhe 420 m angenommen worden.

Diese Wahl der Dichtewerte dürfte den geologischen Verhältnissen im Rieskessel und außerhalb desselben weitgehend Rechnung tragen, wenn sie auch für die Zwecke der Rechnung zwangsläufig schematisiert ist.

Geländewirkung

Bei der Bestimmung der Geländewirkung¹) wurden folgende Anteile unterschieden:

Nahwirkung (0 bis 100 m): Sie wurde mit einem Taschengefällmesser und geeigneten Auszähldiagrammen im Gelände ermittelt.

Hauptwirkung (100 m bis 5 km): Ihre Bestimmung erfolgte teils mit Hilfe der Nomogramme von Schleusener [5], teils nach den Formeln von Schweydar-Jung [6].

Fernwirkung (5 bis 20 km): Sie wurde stichprobenweise ermittelt und erwies sich als so klein, daß sie unberücksichtigt bleiben kann, besonders auch wegen der geringen Ausdehnung des Meßgebietes.

Wirkung der Bouguer-Platte

$$\delta g_{Bpl} = 0.04191 \cdot \sigma \cdot (h - h_0)_{(m)}$$
 mgal

 σ wie oben angegeben

h = Stationshöhe in Metern ü.N.N.

 h_0 = Bezugshöhe gleich 400 Meter ü.N.N. für das gesamte Meßgebiet.

Niveauwirkung

$$\delta g_{\rm ni} = -0.3086 \cdot (h - h_0)_{\rm (m)} \, {\rm mgal}$$

¹) Für die Bestimmung der Geländewirkung wurden zum Teil Diagramme und instrumentelle Hilfsmittel benutzt, die die PRAKLA freundlicherweise zur Verfügung stellte.

Normalschwere

 $\delta \gamma_0 = 0.8047 \cdot N_{(km)}$ mgal

N = Abstand des Meßpunktes in km von dem Bezugsbreitenkreis $\varphi = 48^{\circ} 51'$, nach Norden positiv gerechnet. Der konstante Nordgradient von 0,8047 mgal/km ist wegen der geringen Ausdehnung des Meßgebietes gerechtfertigt und nach der Internationalen Schwereformel bestimmt.

3.2 Genauigkeit

Gravimetermessungen: Die Schleifenschlußfehler in den Dreiecken des Basisnetzes waren in 14 Fällen dem Betrage nach ≤ 0.03 mgal, in je einem Falle wurden 0.04 und 0.08 mgal¹) erreicht. Im Mittel betrug der Schleifenschlußfehler 0.02 mgal. Die Schlußfehler des Basisnetzes wurden mit stufenweiser Ausgleichung [6, 7] beseitigt.

Der mittlere Fehler eines gemessenen Schwereunterschiedes beträgt etwa \pm 0,02 mgal.

Höhenmessungen: Die Genauigkeit des Nivellements entspricht der Genauigkeit der Gravimetermessungen. Aus dem mittleren Fehler der Höhenmessung folgt, daß die hierdurch verursachte Ungenauigkeit der Schwerereduktion bei \pm 0,01 mgal liegt, wobei δg_{ni} und δg_{Bpl} betroffen werden.

Geländereduktion: Die Geländereduktion betrug im allgemeinen weniger als 0,1 mgal. Gelegentlich wurden 0,3 und zweimal etwa 0,7 mgal erreicht. Hiernach dürften die Fehler in der Bestimmung der Geländereduktion im allgemeinen recht klein sein und bei vorsichtiger Schätzung ca. \pm 0,02 bis 0,03 mgal betragen.

Normalschwere: Die Änderung der Normalschwere mit der Breite kann als fehlerfrei angesehen werden.

Mit diesen Daten ist die Genauigkeit der einzelnen Terme in der Formel zur Berechnung der Bouguer-Anomalie nach Abschnitt 3.1 angegeben. Hieraus berechnet sich der mittlere Fehler der Bouguer-Anomalie zu fast \pm 0,04 mgal. Hierbei wurde die Reduktionsdichte als fehlerfrei angesehen. Abweichungen der wahren Dichte vom angenommenen Wert kommen in der Schwereanomalie mit zum Ausdruck.

4 Meßergebnisse

4.1 Zusammenstellung der Ergebnisse

Im folgenden werden die Ergebnisse der Messungen und ihrer ersten Bearbeitung mitgeteilt. Von einer ausführlichen Interpretation wird hier abgesehen, da diese einer in Vorbereitung befindlichen gesonderten Publikation vorbehalten bleiben soll.

Tabelle 1 enthält sämtliche Meßstationen und ihre wesentlichen gravimetrischen Daten.

¹) Der Schleifenschlußfehler von 0,08 mgal bezieht sich auf das Basisdreieck mit den Punkten 41, 134, 158 der Stationsliste (Tabelle 1). Im Falle einer späteren Spezialvermessung in diesem Raum, wären hier Kontrollmessungen anzuraten.

K. JUNG, H. MENZEL und O. ROSENBACH

Tabelle 1: Verzeichnis der gravimetrischen Stationen. (Geordnet nach fallenden Hochwerten.)

In Spalte 2 ist das Institut angegeben, das die Station bearbeitete. In Spalte 3 und 4 beziehen sich die Koordinaten entweder auf den dritten oder vierten Gitterstreifen.

GP	Institut	Koord Rechtswert	linaten Hochwert	Höhe über N.N.	σ Reduktions- Dichte	gemessene Schwere g—g _{Dei} [mgal]	$\Delta g^{\prime\prime}$
				[111]			[IIIgai]
1	2	3	4	5	6	1	8
1 2 ·	K K	⁴³ 97.820 98.640	⁵⁴ 34.330 33.520	421,28 421,53	2,0 2,0	+33,39 +31,77	+21,29 +20,35
3	K	98.940	32.580	421,69	2,0	+30,33	+19,70
4	K	99.260	31.440	420,24	2,0	+28,26	+18,23
5	K	99.260	30.660	420,53	2,0	+26,34	+17,00
6	K	99.160	29.760	419,62	2,0	+24,65	+15,82
/	K	93.890	.230	454,50	2,3	+10,34	+15,22
8	M	98.140	.120	424,17	2,0	+22,45	+13,24
9		43 04 690	28.730	487,19	2,3	+ 4,43	+10,74
10	K	44 02 720	.720	444,25	2,0	+17,07	+14,74
11	K	43 09 190	.380	431,07	2,3	+12,74	14.27
12		36 09 900	.490	427,00	2,0	+20,14	+14,27
13		44 02 540	28.000	470,10	2,5	+11,04	+14,30
14	K V	43 05 250	27.980	409,00	2,5	+ 3,33	+10,07
15	N M	08 440	.000	437,27	2,0	+10,70	+13,70
10	M	90.440	.300	422,30	2,0	+10,02	+12,34
17	C NI	36 08 070	.420	451 41	2,5	-2,43	+ 9,78
10	C M	44 07 100	.110	451,41	2,3	+12,20	+12,20
20	C, M	43 08 460	26.840	475,05	2,3	+ 3,37	+10,40
20	VI V	90.400	20.840	410,75	2,0	+17,90	+ 11,50
21	K	44 03 920	300	488 16	2,3	± 2.35	+10.53
22	M	44 06 430	370	484 58	2,3	+ 2,33 $+ 2.14$	+ 9.69
23	K	43 95 700	310	404,50	2,5	+ 15.28	+11.23
25	ĸ	94 120	25 920	437 19	2,0	+10.05	+ 8.38
25	K	44 02 860	910	463 25	2,0	+ 7.29	+10.64
20	C	36 09 390	820	483 77	2,3	+ 0.57	+ 849
28	ĸ	09.340	.020	479 44	2,3	+ 0.80	+ 815
29	M	43 98 090	430	418 38	2,0	+12.89	+7.28
30	M	44 05 420	390	520.91	23	- 5.48	+10.55
31	C	43 90 450	270	434 97	2.0	+ 8.42	+ 6.85
32	ĸ	44 02 410	24 920	452.20	2.3	+ 8.81	+10.65
33	M	04,420	.890	462.58	2.3	+ 5.99	+10.15
34	ĸ	43 93,950	.760	418.49	2.0	+ 9.49	+ 4.54
35	Ċ	91.220	.490	423.43	2.0	+ 8.30	+ 4.73
36	ĸ	³⁶ 09.770	.410	476.15	2.3	- 1.13	+ 6.47
37	ĸ	44 11.910	.350	559,96	2.3	-13.64	+11.36
38	К	09.340	.190	524,51	2,3	— 7 , 89	+ 9,78

				1			1
	t	Koord	linaten	Höhe	σ	gemessene	1
GP	Institut	Roord	inaton	über N.N.	Reduktions-	Schwere	$\Delta g^{\prime\prime}$
01		Rechtswert	Hochwert		dichte	<i>g—g</i> Dei	-8
Nr.				[m]	[g · cm ⁻³]	[mgal]	[mgal]
1	2	3	4	5	6	7	8
39	М	44 04.700	⁵⁴ 24.000	515,17	2,3	— 3,04	+12,83
40	С, М	⁴³ 97.500	23.990	417,48	2,0	+ 9,79	+ 5,14
41	C, K	³⁶ 06.940	.970	458,84	2,3	+ 5,34	+ 9,35
42	K	44 02.130	.870	432,40	2,0	+11,17	+ 9,95
43	K	10.840	.780	589,75	2,3	-21,17	+10,64
44	M	⁴³ 97.530	.550	418,58	2,3	+ 8,87	+ 4,80
45	K	44 02.830	.480	435,27	2,0	+ 9,93	+ 9,69
46	M	02.820	.480	432,32	2,0	+10,66	+ 9,75
47	K	⁴³ 99.620	.480	415,94	2,0	+10,51	+ 5,91
48	К	44 01.280	.430	422,24	2,0	+12,14	+ 8,99
49	C	⁴³ 91.180	.410	430,54	2,0	+ 3,70	+ 2,55
50	К	90.210	.360	431,93	2,0	+ 5,34	+ 4,60
51	ĸ	⁴⁴ 10.040	.330	555.92	2.3	-15,45	+ 9.56
52	к	⁴³ 93.810	.300	430.31	2,0	+ 3.31	+ 2.16
53	ĸ	98.410	.160	413,27	2.0	+ 9,77	+ 4,83
54	ĸ	44 06.260	.100	456.00	2.3	- 4.03	+ 8.49
55	К	04.060	.060	490.38	2.3	- 2.65	+ 8.72
56	К	⁴³ 96,560	22.970	416.02	2.0	+ 8.05	+ 3.91
57	C	90,170	.940	435.18	2.0	+ 3.19	+ 3.52
58	К	44 01.530	.920	424.32	2.0	+ 10.86	+ 8.55
59	ĸ	05.260	.870	496.33	2.3	- 5.01	+7.82
60	ĸ	09.300	.860	509.08	2.3	- 6.59	+ 8.82
61	ĸ	07.640	.860	525.08	2.3	- 9.61	+ 9.23
62	М	43 97 510	.670	416.13	2.0	+ 8.44	+ 4.52
63	М	36 03.340	.670	493.54	2.3	+ 0.21	+12.62
64	K	43 98,980	.630	415.87	2.0	→ 9.09	+ 5.15
65	к	44 02 160	560	425 23	2.0	+ 10.36	+ 8.57
66	ĸ	43 90 110	270	432.53	2.0	+ 2.44	-+ 2.69
67	ĸ	95 690	240	416.85	2,0	+ 5.88	+ 2.51
68	Ĉ	90 270	230	433 69	2,0	+ 2.18	+ 2.74
69	ĸ	44 01 180	180	419 27	2.0	+ 9.06	+ 6.24
70	ĸ	36 09 140	000	439 52	2,0	+ 3.93	+ 6.06
71	M	44 02 700	21 970	425.99	2,0	+10.47	+ 934
72	ĸ	43 93 980	950	420.83	2,0	+ 2.81	+ 0.64
73	ĸ	44 00 990	890	421 74	2,0	+ 9.75	+7.72
74	Ĉ	43 91 050	830	427.67	2,0	+ 2.78	+ 227
75	ĸ	91 860	800	433 38	2,0	+ 0.18	+ 0.96
76	ĸ	92,790	790	427 62	2,0	+ 0.33	-0.19
77	ĸ	35 08 100	780	435 87	2.0	+ 5.38	+ 6.77
78	ĸ	07 080	730	474 99	2.3	1 24	+ 811
79	M	05 140	21 530	450 53	2.3	+ 7.81	+12.02
80	M	43 97 760	470	415 75	2.0	+7.76	+ 4.74
81	M	36 03 930	420	480 34	2.3	+ 2.17	+12.83
01		05.750	.720	100,51	 ,5	· -,· /	1 12,00

	Institut	Koord	linaten	Höhe	σ Reduktions-	gemessene Schwere	Δα''
0r	mstitut	Pachtawart	Uashwart	uber IN.IN.	Dichte	g—g _{Dei}	Δg
Nr.		Keentswert	nochweit	[m]	[g · cm ⁻³]	[mgal]	[mgal]
1	2	3	4	5	6	7	8
82	к	44 01.260	⁵⁴ 21.360	418,06	2,0	+10,22	+ 7.77
83	C	⁴³ 91.520	.360	424,79	2,0	+ 1,76	+ 0,95
84	K	98.970	.340	415,37	2,0	+ 8,91	+ 5,91
85	K	44 00.110	.260	418,65	2,0	+ 9,00	+ 6,79
86	М	³⁶ 06.090	.220	453,72	2,3	+ 5,31	+10,47
87	K	09.460	.200	427,22	2,0	+ 6,16	+ 6,07
88	K	⁴³ 95.490	.170	417,82	2,0	+ 4,41	+ 2,13
89	C	⁴⁴ 05.770	20.950	445,81	2,0	+ 5,53	+ 9,75
90	С	⁴³ 92.720	.750	425,52	2,0	0,71	— 0,88
91	С	⁴⁴ 04.640	.730	435,64	2,0	+ 8,17	+10,21
92	K	³⁶ 05.670	.670	446,06	2,0	+ 7,03	+11,59
93	K	⁴³ 93.906	.630	423,86	2,0	+ 0,52	+ 0,05
94	K	³⁶ 08.670	.610	426,66	2,0	+ 4,62	+ 4,85
95	C	⁴⁴ 07.400	.580	519,65	2,3	— 9,79	+ 9,75
96	M	01.760	.500	421,62	2,0	+ 9,77	+ 8,77
97	C	07.980	.330	541,51	2,3	—13,14	+11,21
98	C	03.520	.320	429,32	2,0	+ 9,33	+10,23
99	М	⁴³ 99.910	.310	417,28	2,0	+ 8,91	+ 7,11
100	Μ	97.870	.310	416,59	2,0	+ 6,47	+ 4,53
101	М	⁴⁴ 00.670	.230	415,81	2,0	+ 9,99	+ 7,91
102	М	³⁶ 07.340	.230	432,39	2,0	+ 5,98	+ 7,81
103	K	⁴³ 94.900	.100	418,81	2,0	+ 2,12	+ 0,92
104	C	93.460	.040	423,92	2,0	— 0,50	— 0,47
105	K	³³ 09.500	19.9 20	434,56	2,0	+ 2,35	+ 4,92
106	C	44 02.450	.900	423,07	2,0	+10,15	+10,00
107	М	⁴³ 99.210	.820	411,81	2,0	+ 9,74	+ 7,14
108	K	96.830	.720	413,03	2,0	+ 4,58	+ 2,37
109	M	³⁶ 08.310	.680	439,29	2,0	+ 3,82	+ 7,63
110	C	⁴⁴ 08.150	.600	575,81	2,3	—21,36	+ 10,91
111	М	⁴³ 97.960	.580	413,44	2,0	+ 6,83	+ 4,78
112	K	90.950	.540	427,12	2,0	+ 0,59	+ 1,80
113	K	95.950	.520	413,71	2,0	+ 3,28	+ 1,42
114	K	92.570	.520	423,85	2,0	— 0,47	0,01
115	K	44 01.920	.490	418,81	2,0	+10,65	+ 9,86
116	K	³⁶ 05.940	.440	435,76	2,0	+ 7,03	+10,25
117	C	44 01.330	.430	418,33	2,0	+10,06	+ 9,21
118	C	10.240	.220	499,37	2,3	— 3,27	+12,99
119	K	** 07.740	.210	436,87	2,0	+ 4,80	+ 8,45
120	C	** 94.310	.120	419,98	2,0	+ 0,18	+ 0,06
121	к, м	⁵⁰ 09.520	18.950	425,24	2,0	+ 3,72	+ 4,97
122	C	** 00.160	.920	416,40	2,0	+10,27	+ 9,43
123	M	** 98.110	.900	419,14	2,0	+ 5,63	+ 5,41
124	ĸ	•• 06.390	.900	436,09	2,0	+ 3,60	+ 9,33

GP	Institut	Koord	inaten	Höhe über N.N.	σ Reduktions-	gemessene Schwere	$\Delta g^{\prime\prime}$
		Rechtswert	Hochwert		Dichte	g—g Dei	U
Nr.				[m]	[g · cm ⁻³]	[mgal]	[mgal]
1	2	3	4	5	6	7	8
125	к	43 95 090	54 18 800	421 16	2.0	+ 0.12	+ 0.50
125	C	44 09 390	760	515.60	2,0	- 7 78	+12.29
120	ĸ	01.020	710	434 97	2,5	⊥ 8 57	+12,29 +12.04
127	ĸ	36 08 460	700	431.00	2,0	+ 6.88	± 9.63
120	C K	44 08 420	600	527 42	2,0	-1152	± 11.31
130	ĸ	02 730	600	422 94	2,5	+10.05	+10.92
130	M	43 00 010	.000	410.69	2,0	+10,03	+10,92
131	M	91.060	.490	410.09	2,0	+136	± 2.40
132	C	91.000	230	411 38	2,0	\pm 7.34	+ 2,40 + 5,96
133	CM	96.230	.230	411,56	2,0	+ 7,34	+ 0.30
125	C, M	94.120	.230	421,90	2,0	- 0,07	+10.03
135		99.370	.160	410,40	2,0	+12,43	+10,93
130	C C	90.930	.150	420,22	2,0	+ 1,90	+ 2,00
137		44 04 450	.000	423,20	2,0	0,91	+ 0,33
130	к С	36 06 400	.040	432,09	2,0	+ 9,24	+12,70
139	C	00.400	.020	442,20	2,0	+ 4,72	+10,51
140		43 09 200	.010	430,23	2,5	+ 4,31	+11,51
141		¹⁰ 98.290	17.940	417,83	2,0	+ 5,89	+ 0,13
142	K C	35 04 970	.910	424,27	2,0	+ 1,41	+ 3,28
143		43 06 170	.910	448,84	2,0	+ 5,83	+13,23
144		¹⁰ 90.170 36 07 200	.880	424,92	2,0		+ 1,78
145		00.580	.820	439,95	2,0	+ 4,55	+ 10,01
146	K	09.640	./50	423,56	2,0	+ 4,64	+ 6,50
14/	C	03.360	./30	482,00	2,3	+ 1,43	+15,43
148	C	** 93.190	.700	421,73	2,0	+ 0,68	+ 2,14
149	K	36 07.570	.610	437,20	2,0	+ 5,30	+10,31
150	K	⁴⁴ 06.110	.600	478,19	2,3	- 3,26	+ 9,89
151	С, М	⁴³ 98.690	.570	412,89	2,0	+ 8,94	+ 8,48
152	K	⁴⁴ 04.580	.550	438,08	2,0	+ 7,86	+12,97
153	Μ	⁴³ 97.560	.540	417,34	2,0	+ 3,35	+ 3,84
154	K	44 07.250	.530	502,83	2,3	8,68	+ 9,74
155	K	⁴³ 90.140	.530	422,49	2,0	+ 4,17	+ 5,98
156	K	⁴⁴ 03.520	.490	422,75	2,0	+11,70	+13,41
157	C	³⁶ 04.160	.470	490,58	2,3	— 1,68	+14,37
158	С, К, М	08.360	.430	436,26	2,0	+ 5,27	+10,25
159	K	44 02.940	.360	419,93	2,0	+11,09	+12,25
160	K	³⁶ 06.630	.340	440,99	2,0	+ 4,57	+10,62
161	M	⁴³ 92.190	.290	420,02	2,0	+ 2,76	+ 4,13
162	C	94.500	.240	423,67	2,0	— 1,58	+ 0,66
163	C	95.910	.220	420,24	2,0	+ 0,46	+ 1,92
164	C	³⁶ 09.780	.190	424,22	2,0	+ 4,81	+ 6,81
165	K	.310	.160	430,21	2,0	. + 4,60	+ 8,40
166	K	07.070	.160	442,67	2,0	+ 3,44	+10,04
167	M	⁴³ 97.080	.130	416,33	2,0	+ 2,36	+ 2,96

•

GP	Institut	Koord	linaten	Höhe	σ Reduktions-	gemessene Schwere	<i>Λσ</i> ''
01	motifut	Rechtswert	Hochwert		Dichte	g—g Dei	
Nr.				[m]	[g · cm ⁻³]	[mgal]	[mgal]
1	2	3	4	5	6	7	8
168	к	³³ 07.490	⁵⁴ 17.040	438,51	2,0	+ 4,55	+10,14
169	K	05.740	.020	444,15	2,0	+ 6,29	+13,32
170	K	⁴³ 90.480	.010	423,01	2,0	+ 4,10	+ 6,42
171	Μ	98.490	16.960	412,52	2,0	+ 7,51	+ 7,37
172	C	96.230	.940	418,88	2,0	+ 0,90	+ 2,27
173	K	³⁶ 08.160	.820	435,02	2,0	+ 4,58	+ 9,73
174	K	.730	.770	431,02	2,0	+ 4,95	+ 9,25
175	С, М	⁴³ 92.940	.710	418,05	2,0	+ 2,57	+ 3,97
176	Μ	94.150	.700	415,36	2,0	+ 0,72	+ 1,50
177	С	98.060	.690	419,89	2,0	+ 2,56	+ 4,33
178	C	97.490	.650	422,66	2,0	+ 1,40	+ 3,83
179	M	96.650	.620	417,76	2,0	+ 1,34	+ 2,67
180	K	³⁶ 07.370	.620	433,00	2,0	+ 5,78	+10,62
181	K	06.220	.560	443,87	2,0	+ 5,64	+12,96
182	K	06.860	.540	438,60	2,0	+ 5,30	+11,45
183	K	44 04.310	.440	424,84	2,0	+11,46	+14,48
184	K	³³ 05.140	.410	446.90	2,0	+ 7,33	+15,46
185	K	08.250	.380	428,48	2,0	+ 6,29	+10,33
186	K	⁴³ 91.050	.310	419,94	2,0	+ 5,15	+ 7,33
187	K	⁴⁴ 02.970	.300	415,64	2,0	+12,23	+13,28
188	Μ	⁴³ 96.380	.280	417,05	2,0	+ 1,21	+ 2,66
189	Μ	98.630	.250	411,54	2,0	+ 8,20	+ 8,42
190	K	³³ 07.220	.240	437,04	2,0	+ 5,21	+11,30
191	С	⁴³ 97.040	.190	420,32	2,0	+ 1,09	+ 3,38
192	K	³⁶ 06.730	.070	437,50	2,0	+ 6,00	+12,31
193	К	⁴⁴ 06.910	.040	464,96	2,3	— 2,07	+ 9,60
194	K	³⁶ 09.000	.040	425,68	2,0	+ 6,34	+10,04
195	K	08.630	.020	426.96	2,0	+ 6,76	+10,77
196	K	⁴⁴ 08.060	15.990	530,35	2,3	—15,44	+10,10
197	С, М	⁴³ 94.870	.970	418,57	2,0	— 0,23	+ 1,86
198	K	³⁶ 08.230	.940	431,07	2,0	+ 6,98	+11,97
199	С	⁴³ 97.830	.920	419,66	2,0	+ 3,42	+ 5,76
200	С, К, М	⁴¹ 05.650	.840	441,02	2,0	+ 5,16	+12,32
201	Μ	⁴³ 95.620	.800	421,06	2,0	— 0,27	+ 2,50
202	С	97.240	.750	415,93	2,0	+ 2,52	+ 4,16
203	K	³⁶ 07.200	.740	436,57	2,0	+ 5,71	+12,06
204	К	44 09.160	.720	533,00	2,0	—16,21	+10,03
205	K	³⁶ 09.120	.660	425,24	2,0	+ 7,07	+10,98
206	К	08.580	.630	427,78	2,0	+ 7,42	+11,91
207	K	07.680	.630	434,81	2,0	+ 6,18	+12,23
208	K	05.000	.600	448,56	2,0	+ 7,55	+16,71
209	K	⁴⁴ 06.590	.560	458,56	2,3	— 0,82	+ 9,90
210	ĸ	°° 06.060	.560	438,72	2,0	+ 6,82	+13,81

GP	Institut	Koord	linaten	Höhe über N N	σ Reduktions-	gemessene Schwere	$\Delta a^{\prime\prime}$
UI	mstitut	Rechtswert	Hochwert		Dichte	<i>gg</i> Dei	Δg
Nr.				[m]	[g · cm ⁻³]	[mgal]	[mgal]
1	2	3	4	5	6	7	8
211	к	⁴⁴ 00.170	⁵⁴ 15.550	410,12	2,0	+13,13	+13,59
212	K	³⁶ 08.140	.530	431,69	2,0	+ 7,29	+12,74
213	K	06.590	.500	438,91	2,0	+ 6,19	+13,27
214	K	⁴⁴ 04.440	.460	426,35	2,0	+10,66	+14,81
215	K	⁴³ 99.620	.450	409,46	2,0	+13,18	+13,59
216	K	44 03.440	.400	420,64	2,0	+12,02	+15,02
217	K	³⁶ 05.560	.370	443,68	2,0	+ 6,96	+15,22
218	K	07.440	.340	434,57	2,0	+ 6,30	+12,54
219	K, M	43 98.890	.280	410,40	2,0	+10,20	+10,97
220	K	44 02.630	.240	416,26	2,0	+11,97	+14,04
221	K	³⁶ 06.960	.230	438,42	2,0	+ 5,69	+12,89
222	K	43 94.270	.120	415,92	2,0	+ 0,96	+ 3,17
223	K	97.300	.110	414,47	2,0	+ 3,44	+ 5,28
224	K	.930	.100	420,89	2,0	+ 3,85	+ 7,13
225	K	⁴⁴ 01.380	.080	413,17	2,0	+12,74	+14,25
226	K	³⁶ 06.640	.050	437,50	2,0	+ 6,58	+13,70
227	K	43 95.960	.040	421,60	2,0	+ 0,12	+ 3,64
228	K	90.610	.040	425,93	2,0	+ 6,33	+10,89
229	K	96.830	.030	419,32	2,0	+ 1,56	+ 4,57
230	K	93.160	.020	425,51	2,0	+ 0,92	+ 5,38
231	K	³⁶ 08.110	14.940	432,37	2,0	+ 7,31	+13,67
232	K	07.390	.920	434,83	2,0	+ 6,57	+13,22
233	C, K, M	43 95.210	.870	419,92	2,0	0,00	+ 3,29
234	K	94.880	.820	415,61	2,0	+ 1,06	+ 3,45
235	K	92.350	.810	426,39	2,0	+ 2,12	+ 6,96
236	K	91.620	.750	428,91	2,0	+ 3,32	+ 8,79
237	K	³⁵ 98.800	.740	475,64	2,3	+ 4,49	+19,79
238	K	⁴⁴ 03.850	.700	420,03	2,0	+11,09	+14,41
239	K	³⁶ 06.740	.700	432,42	2,0	+ 8,16	+14,41
240	C	43 94.530	.660	414,50	2,0	+ 1,62	+ 3,85
241	C	97.730	.590	415,69	2,0	+ 4,92	+ 7,42
242	K	44 06.620	.590	463,66	2,3	- 1,81	+10,77
243	C	43 96.560	.520	416,33	2,0	+ 2,35	+ 5,07
244	K	³⁶ 08.120	.480	428,22	2,0	+ 8,15	+13,65
245	K	43 90.990	.460	427,40	2,0	+ 4,77	+10,13
246	C, M	95.580	.460	421,73	2,0	+ 0,38	+ 4,37
247	K	³⁶ 07.310	.440	429,85	2,0	+ 7,98	+13,90
248	K	44 02.880	.390	414,64	2,0	+12,24	+14,62
249	K	³⁵ 99.520	.390	459,62	2,3	+ 8,16	+20,27
250	K	³⁶ 09.840	.380	427.94	2,0	+ 7,31	+12,88
251	K	⁴³ 90.600	.270	426,97	2,0	+ 5,96	+11,38
252	K	³⁶ 06.690	.240	434,86	2,0	+ 7,86	+15,05
253	K	08.660	.220	427,69	2,0	+ 8,17	+13,81

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1	1		1			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Koord	linaten	Höhe	σ	gemessene	
Nr.RechtswertHochwertImDichte $\mathcal{B}^{-\sigma}$ Det12345678254K 43 90.240 54 14.100427,592.0+ 6,60+12,30255K 36 08.490.100428,342.0+ 7,69+33,56256K 36 08.920.000428,192.0+ 8,28+14,14258M 49 99.100.060412,812.0+ 1,24+13,52259K92.820.030424,822.0+ 2,40+ 7,50260C94.250.010417,042.0+ 2,93+ 6,27261K 36 08.200.020430,832.0+ 7,77+14,26262C 43 97.610.000412,282.0+ 6,92+ 9,14263K 36 07.930.000433,332.0+ 7,35+14,43264K0.699013.980434,522.0+ 8,19+15,46267K.660.950435,392.0+ 8,13+15,46266K06.99013.980434,522.0+ 7,78+113,79270K06.440.900427,862.0+ 7,78+15,46266K90.900.880417,722.0+10,48+13,97271K40.060.690438,872.0+ 8,63+17,64273K06	GP	Institut			über N.N.	Reduktions-	Schwere	$\Delta g^{\prime\prime}$
Nr.[m][g \cdot cm ⁻³][mgal][mgal][mgal]12345678254K43 90.24054 14.100427,592.0+ 6,60+12,30255K35 99.920.100428,342.0+ 7,69+13,56256K35 99.920.000428,192.0+ 8,28+14,14258M43 99.100.060412,812.0+ 11,24+13,52259K92.820.030424,822.0+ 2,40+ 7,50260C94.250.010417,042.0+ 2,93+ 6,27261K36 08.200.000433,372.0+ 7,77+14,26262C43 97.610.000432,332.0+ 7,30+14,38264K07.570.000433,332.0+ 7,35+14,19265K.260.000435,392.0+ 8,13+15,46267K.699013.80435,4522.0+ 8,13+15,46268K44 01.760.900412,052.0+ 11,45+13,79270K06.440.890436,942.0+ 7,87+15,91271K46.1040.890436,942.0+ 7,87+15,91271K46.1040.890436,942.0+ 7,88+15,91271K46.1040.890436,942.0<			Rechtswert	Hochwert		Dichte	g—g Dei	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Nr.	1			[m]	[g · cm ^{−3}]	[mgal]	[mgal]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	2	2	4	5	4	7	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2	3	4		0	/	0
255K390.8.4901.00428,342.0+ 7,69+ 13,56256K3599.920100458,262.3+ 8,33+ 20,49257K360.8.920.080428,192.0+ 8,28+ 14,14258M459.9100.060412,812.0+ 11,24+ 13,52259K92.820.030424,822.0+ 2,40+ 7,50261K3688.20.020430,832.0+ 7,77+ 14,26262C4397,610.000412,282.0+ 6,92+ 9,14263K3607.930.000433,372.0+ 7,35+ 14,19265K.260.000433,332.0+ 7,89+ 14,94266K06.99013.980434,522.0+ 8,13+ 15,43268K4401.760.900412,052.0+ 8,19+ 15,73268K4401.760.900412,052.0+ 7,87+ 13,97270K06.440.890436,942.0+ 7,98+ 15,91271K4403.900.880417,722.0+ 10,48+ 13,97272K56.520.730436,942.0+ 7,87+ 13,99271K40.660.690498,222.0+ 11,79+ 13,34275K.520.730 <t< td=""><td>254</td><td>к</td><td>43 90 240</td><td>⁵⁴ 14 100</td><td>427.59</td><td>2.0</td><td>+ 6.60</td><td>+12.30</td></t<>	254	к	43 90 240	⁵⁴ 14 100	427.59	2.0	+ 6.60	+12.30
256K3599.9201100428,262.3+ 8,33+ 20,49257K3608.920080428,192.0+ 8,28+ 14,14258M4399.1000.60412,812.0+ 11,24+ 13,52259K92.8200.30424,822.0+ 2,40+ 7,50260C94.2500.10417,042.0+ 2,93+ 6,27261K360.200020430,832.0+ 7,77+ 14,26262C4397.6100.000432,332.0+ 7,30+ 14,38264K0.75700.000433,332.0+ 7,35+ 14,19265K.2600.000433,332.0+ 7,89+ 14,94266K06.99013.980434,522.0+ 8,13+ 15,46267K60950435,392.0+ 11,45+ 13,66268K4401.760.900427,862.0+ 7,87+ 13,79270K06.440890436,942.0+ 7,98+ 15,91271K4403.900.880417,722.0+ 10,48+ 13,97272K309.00.700427,162.0+ 8,63+ 17,94273K06.120.840438,872.0+ 8,63+ 17,94274K09.700.770429,162.0+ 8,63 </td <td>255</td> <td>ĸ</td> <td>³⁶ 08 490</td> <td>100</td> <td>428.34</td> <td>2,0</td> <td>+7.69</td> <td>+13.56</td>	255	ĸ	³⁶ 08 490	100	428.34	2,0	+7.69	+13.56
257K3636.920.100128.192.0+++14.14258M4399.100.060412.812.0++13.52259K92.820.030424.822.0+2.40+7.50260C94.250.010417.042.0+2.93+6.27261K3080.200.020430.832.0+7.77++14.26262C4497.610.000412.282.0+6.92+9.14263K3607.930.000433.372.0+7.35+14.19264K07.570.000432.332.0+7.35+14.19265K.260.000433.372.0+7.89+14.94266K.690.950435.392.0+8.13+15.46267K.690.950435.392.0+8.19+15.73268K4401.760.900412.052.0+14.45+13.69270K06.440.890435.942.0+7.87+13.79271K4403.900.880417.722.0+10.04+15.84273K06.120.840438.872.0+8.63+ </td <td>256</td> <td>ĸ</td> <td>35 99 920</td> <td>100</td> <td>458.26</td> <td>23</td> <td>+ 833</td> <td>+20.49</td>	256	ĸ	35 99 920	100	458.26	23	+ 833	+20.49
258M4399:100.060412,812.0+11,24+13,52259K92.820.030424,822.0+2.40+7,50260C94.250.010417,042.0+2.93+6.27261K36 80.200.020430,832.0+7,77+14,26262C43 97.610.000412,282.0+6.92+9,14263K36 07.930.000433,332.0+7,35+14,19265K.260.000433,332.0+7,89+14,94266K06.99013.980434,522.0+8,13+15,46267K.690.950435,392.0+8,19+15,73268K4401.760.900412,052.0+11,45+13,66269K.3510.040.900427,862.0+7,87+13,79270K.06.440.890436,942.0+7,98+15,91271K40.3900.880417,722.0+10,48+13,97272K3509.200.880427,532.0+10,48+13,97274K09.700.770429,162.0+8,63+17,04275K.520.730430,522.0+8,48+15,91276K4400.660.690408,222.0+11,79+13,34275<	250	ĸ	36 08 920	080	428 19	2,0	+ 8.28	+1414
259K92.8200.3012.812.00 $+ 2.40$ $+ 7.50$ 260C94.2500.10417,042,0 $+ 2.93$ $+ 6.27$ 261K 3^{5} 08.2000.20430,832,0 $+ 7.77$ $+ 14.26$ 262C4397.6100.000412.282,0 $+ 7.30$ $+ 14.94$ 263K 3^{6} 07.9300.00432,332,0 $+ 7.35$ $+ 14.19$ 265K0.600433,332,0 $+ 7.35$ $+ 14.94$ 266K0.69013.980434,522,0 $+ 8.13$ $+ 15.73$ 268K440.1760900412,052,0 $+ 1.45$ $+ 13.66$ 269K 35 10.040900427.862,0 $+ 7.87$ $+ 13.79$ 270K06.440890436.942,0 $+ 7.98$ $+ 15.91$ 271K440.3900880417.722,0 $+ 10.48$ $+ 13.97$ 272K3609.200880427.532,0 $+ 10.00$ $+ 15.84$ 273K06.120840439.522,0 $+ 8.63$ $+ 17.94$ 274K09.700.770429.162,0 $+ 8.64$ $+ 13.97$ 275K.520.730430.522,0 $+ 8.64$ $+ 14.58$ 275K.520.730430,622,0 $+ 9.42$ $+ 18.04$ 278C, K, M09.300620<	258	M	43 99 100	.000	412.81	2,0	+11.24	+13.52
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	259	ĸ	92 820	030	424 82	2,0	+ 240	+750
261K 36 08.200.020430,832,0+7,77+14,26262C 43 97.610.000412,282,0+6,92+9,14263K 36 07.930.000433,372,0+7,30+14,38264K07.570.000432,332,0+7,39+14,94265K.260.000433,332,0+7,89+14,94266K060950435,392,0+8,13+15,46267K.690.950435,392,0+8,13+15,46269K3610.040.900427,862,0+7,87+13,79270K06.440.890436,942,0+7,98+15,91271K4403.900.880417,722,0+10,48+13,97272K3609.200.880427,532,0+10,00+15,84273K06.120.840438,872,0+8,63+17,04274K09.700.770429,162,0+8,26+14,58275K.520.730430,522,0+8,48+15,13276K440.660.690432,302,0+8,84+15,13277K3605.20.570434,072,0+8,84+15,13276K440.650.570434,072,0+8,84+15,97	260	C	94 250	010	417.04	2,0	+ 2,40 + 2.93	+ 6.27
262C460.2001020412.282.0+6.92+9.14263K 36 07.930.000412.282.0+7.30+14.38264K07.570.000432.332.0+7.35+14.19265K.260.000433.332.0+7.89+14.94266K06.99013.980434.522.0+8.13+15.46267K.690.950435.392.0+8.13+15.46268K4401.760.900412.052.0+1.45270K06.440.900427.862.0+7.87++13.76271K440.900.880417.722.0+10.48+13.97272K3 ⁵ 0.9200.880427.532.0+8.63++17.94273K06.120.840438.872.0+8.63++17.94274K09.700.770429.162.0+8.63++13.34275K.520.730430.522.0+9.42++18.04278C, K, M09.300.620432.302.0+8.51++16.05280M4397.090.540411.772.0+7.40+9.19271K3	260	ĸ	36 08 200	.010	417,04	2,0	+ 2,75	+14.26
	201		43 07 610	.020	412.28	2,0	- 6.92	0 14
203K07.570.000 $432,33$ 2.0+7.35+14,19265K.260.000 $433,33$ 2.0+7.89+14,19266K06.99013.980 $434,52$ 2.0+8,13+15,46267K.690.950 $435,39$ 2.0+8,19+15,73268K4401.760.900412,052.0+11,45+13,66269K 3^{45} 10.040.900427,862.0+7.87+13,79270K06.440.890436,942.0+7.98+15,91271K4403.900.880417,722.0+10,48+13,97272K3^{5}09.200.880427,532.0+8,63+17,94273K06.120.840438,872.0+8,63+17,94274K09.700.770429,162.0+8,63+14,58275K.520.730430,522.0+8,48+15,13276K4406.660.690492,262.0+9,42+18,04278C, K, M09.300.620432,302.0+8,84+15,97279K07.260.570434,072.0+8,81+16,05280M439.030.500456,272.3+0,55+12,42283K360.300.440421,642.0+3,45+	202	v v	36 07 030	.000	412,20	2,0	+ 0,32	+ 14.38
204K07.370000432,332.0+7.33+14,19265K260000433,332.0+7.89+14,94266K06.99013.980434,522.0+8,13+15,46267K690950435,392.0+8,19+15,73268K4401.760900412,052.0+7.87+13,79270K06.440890436,942.0+7.98+15,91271K4403.900880417,722.0+10,48+13,97272K3609.200880427,532.0+ 8,63+17,04273K06.12080438,872.0+ 8,63+17,94274K09.700770429,162.0+ 8,26+14,58275K520730430,522.0+ 8,48+15,13276K440.660690408,222.0+ 11,79+ 13,34278C, K, M09.300620432,302.0+ 8,84+ 15,97279K07.260570434,072.0+ 8,51+ 16,05280M439.090.540411,772.0+ 8,46+ 14,97281K360.30460428,772.0+ 8,46+ 14,97284C, M439.030500456,27	203		07.930	.000	433,37	2,0	+7,30	+14,30
203K1.2001.000 $433,33$ 2.0 $+7,39$ $+14,34$ 266K06.99013.980 $434,52$ 2.0 $+8,13$ $+15,46$ 267K.690.950 $435,39$ 2.0 $+8,13$ $+15,46$ 268K 4^{4} 01.760.900 $412,05$ 2.0 $+11,45$ $+13,66$ 269K 3^{5} 10.040.900 $427,86$ 2.0 $+7,87$ $+13,79$ 270K06.440.890 $436,94$ 2.0 $+7,98$ $+15,91$ 271K 4^{4} 03.900.880 $417,72$ 2.0 $+10,48$ $+13,97$ 272K 3^{6} 09.200.880 $427,53$ 2.0 $+8,63$ $+17,04$ 273K06.120.840 $438,87$ 2.0 $+8,26$ $+14,58$ 275K.520.730 $430,52$ 2.0 $+8,48$ $+15,13$ 276K440.660.690 $408,22$ 2.0 $+11,79$ $+13,34$ 277K 3^{5} 05.790.690 $439,26$ 2.0 $+8,84$ $+15,97$ 279K07.260.570 $434,07$ 2.0 $+8,84$ $+15,97$ 279K07.260.570 $434,07$ 2.0 $+8,84$ $+15,97$ 280M 4^{13} 97.090.540 $411,77$ 2.0 $+8,46$ $+14,97$ 281K 3^{6} 05.380.510 $448,87$ 2.0 $+9,15$ $+20,09$ 282K $4^$	204	K V	07.370	.000	432,33	2,0	+7,33	+14,19
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	205	K V	.200	12 090	433,33	2,0	+ 7,09	+14,94
267K1.990433,392.0 $+$ 8,19 $+$ 13,66268K44 01.760.900412,052.0 $+$ 11,45 $+$ 13,66269K36 10.040.900427,862.0 $+$ 7,87 $+$ 13,79270K06.440.890436,942.0 $+$ 7,87 $+$ 13,79271K44 03.900.880417,722.0 $+$ 10,48 $+$ 13,97272K36 09.200.880427,532.0 $+$ 10,00 $+$ 15,84273K06.120.840438,872.0 $+$ 8,63 $+$ 17,04274K09.700.770429,162.0 $+$ 8,48 $+$ 15,13275K.520.730430,522.0 $+$ 8,48 $+$ 15,37279K0.660.690408,222.0 $+$ 9,42 $+$ 18,04278C, K, M09.300.620432,302.0 $+$ 8,84 $+$ 15,97279K07.260.570434,072.0 $+$ 8,51 $+$ 16,05280M43 97.090.540411,772.0 $+$ 7,40 $+$ 9,19281K36 05.380.510448,872.0 $+$ 3,45 $+$ 14,97284C, M43 96.03.400427,322.0 $+$ 3,45 $+$ 8,24285K92.760.400427,322.0 $+$ 3,45 $+$ 8,24286C95.070.400421,582.0 $+$	200	K	00.990	13.980	434,32	2,0	+ 8,13	+15,40
268K1.11,100.900412,032,0 $+11,43$ $+13,69$ 269K 3^5 10,040.900427,862,0 $+7,87$ $+13,79$ 270K06,440.890436,942,0 $+7,87$ $+13,79$ 271K 4^4 03.900.880417,722,0 $+10,48$ $+13,97$ 272K 3^6 09.200.880427,532,0 $+10,48$ $+13,97$ 272K 3^6 09.200.840438,872,0 $+8,63$ $+17,04$ 273K06.120.840438,872,0 $+8,63$ $+17,04$ 274K09.700.770429,162,0 $+8,26$ $+14,58$ 275K.520.730430,522,0 $+8,48$ $+15,13$ 276K440.660.690408,222,0 $+11,79$ $+13,34$ 277K 3^5 05.790.690432,302,0 $+8,84$ $+15,97$ 279K07.260.570434,072,0 $+8,84$ $+15,97$ 279K07.260.570434,072,0 $+9,15$ $+20,09$ 281K 3^6 05.380.510448,872,0 $+9,15$ $+20,09$ 282K4406.530.500456,272,3 $+0,55$ $+12,42$ 283K 3^6 0.680.330.460427,322,0 $+3,44$ $+9,61$ <td>207</td> <td>K V</td> <td>.090</td> <td>.930</td> <td>433,39</td> <td>2,0</td> <td>+ 0,19</td> <td>+13,73</td>	207	K V	.090	.930	433,39	2,0	+ 0,19	+13,73
269K270K270K270K173,79 $+13,79$ 270K44 03.900.880436,942,0 $+7,98$ $+15,91$ 271K44 03.900.880417,722,0 $+10,48$ $+13,97$ 272K36 09.200.880427,532,0 $+10,48$ $+13,97$ 273K06.120.840438,872,0 $+8,63$ $+17,04$ 274K09.700.770429,162,0 $+8,26$ $+14,58$ 275K.520.730430,522,0 $+8,48$ $+15,13$ 276K44 00.660.690408,222,0 $+11,79$ $+13,34$ 277K36 05.790.690439,262,0 $+9,42$ $+18,04$ 278C, K, M09.300.620432,302,0 $+8,84$ $+15,97$ 279K07.260.570434,072,0 $+8,84$ $+15,97$ 279K07.260.570434,072,0 $+8,84$ $+15,97$ 280M43 97.090.540411,772,0 $+7,40$ $+9,19$ 281K36 05.380.510448,872,0 $+9,15$ $+20,09$ 282K44 06.530.500456,272,3 $+0,55$ $+12,42$ 283K36 08,620.460428,772,0 $+8,46$ $+14,97$ 284C, M43 98,070.260410,5372,3 <t< td=""><td>208</td><td>K</td><td>36 10 040</td><td>.900</td><td>412,05</td><td>2,0</td><td>+11,43</td><td>+13,00</td></t<>	208	K	36 10 040	.900	412,05	2,0	+11,43	+13,00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	209	K	06 10.040	.900	427,80	2,0	+ 7,87	+15,79
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	270	K	44 02 000	.890	430,94	2,0	+ 7,98	+13,91
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2/1	K	⁴⁴ 03.900	.880	417,72	2,0	+10,48	+13,97
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	272	K	09.200	.880	427,53	2,0	+10,00	+15,84
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	273	K	06.120	.840	438,87	2,0	+ 8,63	+17,04
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	274	K	09.700	.770	429,16	2,0	+ 8,26	+14,58
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	275	K	.520	.730	430,52	2,0	+ 8,48	+15,13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	276	K	** 00.660	.690	408,22	2,0	+11,79	+13,34
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	277	K	** 05.790	.690	439,26	2,0	+ 9,42.	+18,04
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	278	С, К, М	09.300	.620	432,30	2,0	+ 8,84	+15,97
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	279	K	07.260	.570	434,07	2,0	+ 8,51	+16,05
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	280	M	⁴³ 97.090	.540	411,77	2,0	+ 7,40	+ 9,19
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	281	K	³⁶ 05.380	.510	448,87	2,0	+ 9,15	+20,09
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	282	K	⁴⁴ 06.530	.500	456,27	2,3	+ 0,55	+12,42
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	283	K	³⁶ 08.620	.460	428,77	2,0	+ 8,46	+14,97
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	284	С, М	⁴³ 96.030	.440	421,64	2,0	+ 3,45	+ 8,24
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	285	K	92.760	.400	427,32	2,0	+ 3,44	+ 9,61
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	286	C	95.070	.400	413,58	2,0	+ 5,07	+ 8,08
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	287	K	³⁶ 09.680	.330	436,37	2,0	+ 6,57	+14,87
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	288	K	00.770	.310	458,57	2,3	+ 8,40	+21,13
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	289	М	⁴³ 98.070	.260	410,60	2,0	+10,82	+13,28
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	290	K	³⁶ 04.950	.200	462,09	2,3	+ 7,49	+20,86
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	291	K	⁴⁴ 07.610	.090	482,80	2,3	- 6,07	+11,62
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	292	K	00.150	.060	410,84	2,0	+10,62	+13,28
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	293	K	³⁶ 04.180	.040	455,98	2,3	+ 8,33	+20,55
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	294	K	³⁶ 07.370	.000	437,05	2,0	+ 8,38	+17,06
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	295	C	⁴³ 94.250	12.980	412,58	2,0	+ 6,51	+ 9,68
	296	K	³⁶ 07.960	.910	430,36	2,0	+ 9,01	+16,28

GP	Institut	Koor	dinaten	Höhe über N N	σ Reduktions-	gemessene Schwere	$\Delta a^{\prime\prime}$
01	montut	Rechtswert	Hochwert	uber 14.14.	Dichte	<i>gg</i> Dei	Δg
Nr.				[m]	[g · cm ⁻³]	[mgal]	[mgal]
1	2	3	4	5	6	7	8
297	к	43 92 290	⁵⁴ 12,809	421.04	2.0	+ 675	+11 92
298	ĸ	36 09.800	.890	434.82	2,0	+ 6.77	+15.08
299	M	43 99 380	800	421.34	23	+ 8.17	+13,00
300	К	³⁶ 01.430	.800	452.12	2.3	+ 9.58	+21.42
301	K	44 04.130	.790	418,48	2.0	+ 9.51	+14.05
302	K	³⁶ 02.090	.790	449.53	2.0	+ 9.81	+21.60
303	К	44 08.300	.720	486.79	2.3	8.26	+10.62
304	ĸ	³⁶ 03.560	.700	450.53	2.3	+ 9.46	+20.83
305	ĸ	02.690	.680	447.15	2.0	+10.26	+21.55
306	ĸ	07.030	.570	435.12	2.0	+ 9.29	+17.90
307	C	⁴³ 95.370	.530	411.87	2.0	+ 8.55	+11.90
308	K	44 06.430	.540	446.57	2.0	+ 0.49	+11.58
309	М	⁴³ 99.070	.530	420.39	2.3	+ 7.70	+12.66
310	K	³⁶ 10.040	.480	440.21	2.0	+ 5.86	+15.87
311	K	06.700	.330	435,88	2,0	+10,00	+18,99
312	K	44 00.570	.190	410.26	2.0	+ 9.68	+12.90
313	K	43 91.950	.160	422,06	2,0	+ 7,15	+13.21
314	М	99.570	.050	428,64	2,3	+ 5,29	+12,41
315	K	44 03.800	11.980	419,97	2,0	+ 6,84	+12,33
316	С	⁴³ 93.570	.910	427,10	2,0	+ 7,46	+14,75
317	С	94.580	.850	412,54	2,0	+11,01	+15,08
318	М	44 00.206	.844	415,46	2,0	+ 7,96	+12,64
319	М	⁴³ 99.856	.840	416,99	2,0	+ 7,74	+12,81
320	, K	³⁵ 06.360	.830	437,79	2,0	+10,98	+20,84
321	M	44 00.212	.793	412,88	2,0	+ 8,49	+12,64
322	K	⁴³ 90.150	.790	441,34	2,0	+ 6,31	+17,00
323	М	99.933	.772	415,73	2,0	+ 7,70	+12,51
324	M	.975	.745	414,58	2,0	+ 7,93	+12,51
325	М	44 00.217	.742	411,03	2,0	+ 8,88	+12,65
326	K	09.000	.740	480,35	2,3	- 8,16	+10,10
327	М	00.013	.715	413,09	2,0	+ 8,25	+12,50
328	Μ	.221	.693	410,17	2,0	+ 9,04	+12,67
329	Μ	.056	.691	411,93	2,0	+ 8,54	+12,56
330	M	.100	.663	411,12	2,0	+ 8,77	+12,63
331	M	.227	.643	409,62	2,0	+ 9,16	+12,71
332	М	.143	.640	410,77	2,0	+ 8,85	+12,65
333	M	.190	.617	410,21	2,0	+ 9,01	+12,71
334	M	.431	.600	407,72	2,0	+ 9,82	+12,96
335	M	.385	.600	407,94	2,0	+ 9,68	+12,88
336	M	.335	.597	408,51	2,0	+ 9,48	+12,80
337	M	.225	.597	409,54	2,0 ·	+ 9,21	+12,78
338	M	.281	.594	409,09	2,0	+ 9,32	+12,78
339	M	.475	.592	407,47	2,0	+ 9,89	+12,97

.

	1				1		
		Koord	lington	Uähe	σ	gemessene	
GP	Institut	KOOIC	imaten	über N N	Reduktions-	Schwere	$\Delta a^{\prime\prime}$
Or	mstitut	Dephtomont	Hachwart	uber 14.14.	Dichte	<i>g—g</i> Dei	Δg
Nr.		Rechtswert	Hochwert	[m]	$[g \cdot cm^{-3}]$	[mgal]	[mgal]
1	2	3	4	5	6	7	8
340	м	44 00.184	⁵⁴ 11.592	410,20	2,0	+ 9,01	+12,73
341	М	.033	.591	412,23	2,0	+ 8,44	+12,63
342	M	.134	.590	410,56	2,0	+ 8,88	+12,69
343	M	.084	.590	411,32	2,0	+ 8,68	+12,66
344	M	43 99.985	.590	412,90	2,0	+ 8,25	+12,59
345	M	.935	.588	413,53	2,0	+ 8,07	+12,56
346	М	.883	.586	414.33	2.0	+ 7.87	+12.54
347	М	.835	.586	414,69	2.0	+ 7.84	+12.60
348	М	.725	.586	418.03	2.0	+ 7.28	+12.79
349	М	.785	.584	415.46	2.0	+ 7.68	+12.62
350	К	91.310	.580	430.09	2.0	+ 5.82	+14.10
351	C	96.090	.540	410.16	2.0	+10.10	+13.87
352	м	44 00.240	.525	409.46	2.0	+ 9.20	+12.80
353	M	43 99.730	.510	417.65	2.0	+ 7.26	+12.70
354	М	44 00.250	.475	410.23	2.0	+ 9.03	+12.84
355	M	.255	.425	410.66	2.0	+ 8.96	+12.91
356	M	266	.377	411.61	2.0	+ 8.73	+12.93
357	ĸ	06 090	320	460.08	2.3	- 4.63	+ 9.79
358	Ċ	43 92 660	280	424 14	2,0	+ 7.00	+14.15
359	ĸ	44 09 830	.170	506.53	2,3	-14.17	+10.09
360	ĸ	43 90 660	110	431.01	2.0	+7.28	+16.19
361	ĸ	98,950	.100	438.73	2.3	+ 2.45	+12.52
362	ĸ	44 04 200	000	426 59	2,0	+ 2.81	+10.66
363	ĸ	10 760	10,930	505.85	2,3	-14.13	+10.09
364	M	01 590	820	412 56	2,0	+ 8.06	+12.86
365	C	43 95 490	740	419.06	2,0	+720	+12,00 +13.60
366	ĸ	36 09 990	730	459.93	2,0	+2.55	+17.60
367	M	43 99 920	720	412 76	2,9	+ 8.25	+13,00
368	C	92 240	510	477.78	2,0	+ 5,53	+13,13 +14.02
369	CK	91 140	500	431 39	2,0	± 5.93	+15.40
370	K K	98.480	440	447 08	2,0	+ 0.42	+12,40 +12.82
370	ĸ	36 00 000	350	159.62	2,5	± 4.02	± 10.28
372	K	44 04 910	330	452.87	2,5	- 3.67	± 10.20
372	M	00.180	.550	410.57	2,5	— 5,07 ⊥ 6,65	+13,71
373	M	02 380	09.870	419,52	2,0	-4.25	$\pm 13,71$ ± 11.17
375	V	35 07 070	870	506 60	2,3	3 50	- 22.16
376	M	44 04 050	.070	500,09	2,3	14 37	± 10.31
377	K	43 97 620	.000	410.04	2,5	± 9.47	± 14.67
379	Ĉ	91 710	740	436.86	2,0	± 5.61	+ 16 95
370	ĸ	36 08 700	710	400 07	2,0	- 3,01 - 3,63	⊥20.60
320		43 05 220	700	12112	2,5	- 5,05	12 97
391	M	44 04 700	.700	421,12	2,0	- 13 60	± 0.10
201	V	43 01 200	.010	433,10	2,3	-15,00	+ 2,17 ⊥17.07
502	ĸ	71.090	.010	452,90	2,0	+ 0,50	

<u>CD</u>		Koord	inaten	Höhe	σ Reduktions-	gemessene Schwere	۸
GP	Institut	Dechternert	Uashuant	uder IN.IN.	Dichte	<i>g—g</i> Dei	Δg
Nr.		Rechtswert		[m]	[g · cm ⁻³]	[mgal]	[mgal]
1	2	3	4	5	6	7	8
383	M	44 00 310	⁵⁴ 09 400	407 32	2.0	+ 8.76	+13.68
384	ĸ	43 95 460	380	414 69	2,0	+ 8.55	+15,00
385	Ċ	96.100	260	417.27	2.0	+ 7.94	+15.14
386	M	44 05 890	.220	485.78	2.3		+ 8.97
387	C	⁴³ 91.880	.050	447.81	2.0	+3.73	+18.06
388	ĸ	95.270	.000	420.19	2.0	+ 6.81	+14.87
389	ĸ	³⁶ 08.070	08.950	477.17	2.3	+ 1.54	+21.70
390	к	06.370	.920	532.73	2.3		+21.92
391	ĸ	43 94 320	.890	422.97	2.0	+ 6.80	+15.61
392	ĸ	44 04.310	.830	502.06	2.3	-17.12	+ 8.39
393	ĸ	43 90 490	710	459.91	23	+4.50	+21.17
394	C M	97.010	700	413.87	2,0	+ 8.21	+15.15
395	M	44 00.590	.660	405.44	2.0	+ 6.42	+11.68
396	ĸ	³⁶ 04,540	.600	597.91	2.3	-23.13	+22.96
397	ĸ	⁴³ 91 840	600	455.25	2.3	+ 3.24	+18.92
398	ĸ	98 730	.580	412.10	2.0	+ 7.28	+13.86
399	' K	36 05 440	570	584 08	23		+22.56
400	C I	43 91 220	490	448.78	2,0	+ 6.49	+21.54
401	ĸ	44 03 980	490	523.81	2.3	-21.94	+ 8.47
402	K	43 92 960	.440	432.18	2.0	+ 6.17	+17.42
403	ĸ	³⁶ 03.650	.440	607.71	2.3		+-23.69
404	Ĉ	⁴³ 90,760	.210	459.80	2.3	+ 4.16	+21.14
405	ĸ	36 08 220	170	463.25	2.3	+ 3.38	+21.35
406	Ċ	43 96 830	100	419.29	2.0	+ 5.41	+13.99
407	ĸ	98,000	090	418 49	2.0	+ 5.32	+13,73
408	ĸ	44 03 580	07 990	487.95	23	-15.05	+ 8.18
400	ĸ	43 98 930	850	417 35	2,0	+ 3.86	+12.19
410	Ĉ	36 09 300	.750	454.68	2.3	+ 4.25	+20.64
411	M	44 01 470	730	409.61	2,0	+ 2.02	+ 8.87
412	M	06 480	670	461 50	2,3	-11.87	+ 5.77
412	ĸ	43 91 870	580	439 71	2,0	+ 7.16	+20.91
414	Ĉ	³⁶ 08 730	340	517.04	2.3	- 9.23	+20.81
415	C C	43 96 370	190	419 32	2,0	+4.93	+14.26
416	ĸ	44 04 240	150	408 54	2,0	-0.34	+ 6.84
417	ĸ	00.610	130	448 45	2.0	- 6.12	+ 9.94
418	ĸ	43 99 450	06 950	438.02	2.0	- 3.14	+10.64
419	ĸ	98.440	.880	439.57	2.0	- 2.29	+12.03
420	M	44 02.120	.790	410.11	2.0	- 0.89	+ 7.31
421	ĸ	43 91 720	.700	447.14	2.0	+ 2.77	+18.90
422	ĸ	97.420	.620	428.63	2.0	+ 0.25	+12.20
423	ĉ	96.350	.610	422.97	2.0	+ 2.67	+13.33
424	м	44 03.620	.560	445.06	2.0	- 8.74	+ 7.01
425	C	³⁶ 08.820	.510	466,79	2,3	— 0,34	+19,94

GP Nr.	Institut	Koord Rechtswert	Koordina!en Rechtswert Hochwert		σ Reduktions- Dichte [g · cm ⁻³]	gemessene Schwere ggDei [mgal]	$\Delta g^{\prime\prime}$ [mgal]
1	2	3	4	5	6	7	8
1 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444	2	3 36 09.650 44 04.940 43 92.450 95.080 36 07.630 43 99.850 44 02.370 43 96.180 44 05.850 44 03.070 35 10.080 44 01.310 43 95.420 44 04.460 43 90.460 36 08.480 43 92.300 44 00.340 36 07.550 43 07.550 44 07.550 44 07.550 44 07.550 44 07.550 44 07.550 45 07.550 46 07.550 47 07.550	4 ⁵⁴ 06.300 .240 .220 .160 .080 05.970 .950 .880 .750 .680 .620 .380 .390 .340 .120 .030 04.870 .740 .580 .580	5 496,10 447,88 441,85 428,70 481,57 459,86 537,52 422,07 476,84 516,88 537,90 562,25 431,53 412,27 493,14 567,16 480,48 558,00 534,20	6 2,3 2,0 2,0 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3	7	$\begin{array}{c} 8\\ +19,64\\ +7,12\\ +17,88\\ +13,46\\ +20,60\\ +8,55\\ +7,78\\ +11,80\\ +6,17\\ +6,97\\ +18,19\\ +8,82\\ +11,93\\ +5,37\\ +17,72\\ +20,08\\ +15,64\\ +8,66\\ +20,26\\ \end{array}$
445 446 447 448 449 450 451 452 453 454 455 456 457	C K K C C, K, M C C, M K K K	 43 95.380 90.760 91.790 99.930 36 07.480 43 95.510 36 06.590 44 05.430 43 95.470 96.180 44 07.300 09.120 08.070 	.180 .140 03.690 .650 .530 .360 .280 02.680 .670 .290 01.270 ⁵³ 98.550 96.960	477,98 574,03 512,52 513,44 575,66 461,36 574,44 404,19 451,88 445,05 419,12 400,80 401,10	2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,0 2,3 2,0 2,0 2,0 2,0 2,0 2,0	$\begin{array}{c}13,12 \\28,15 \\16,96 \\24,68 \\26,05 \\11,89 \\25,63 \\5,73 \\11,42 \\11,59 \\8,69 \\4,17 \\5,12 \end{array}$	$\begin{array}{r} +10,99\\ +16,53\\ +14,96\\ +7,23\\ +19,26\\ +9,50\\ +19,59\\ +3,87\\ +8,40\\ +7,77\\ +5,30\\ +7,780\\ +8,23\end{array}$

Abbildung 2 zeigt die Isogammen der Bouguer-Anomalie, gezeichnet auf Grund der Daten von Tabelle 1 (jedoch ohne die Stationen 1–6, 37, 43, 51, 118, 237, 359, 363 und 445–457, da diese außerhalb des in der Abbildung wiedergegebenen Gebietes liegen).

In Abbildung 3 (siehe S. 24) sind die Ergebnisse der Spezialvermessung im Gebiet der magnetischen Anomalie bei Wörnitzostheim gesondert dargestellt.

Abb. 2: Bouguer-Anomalien im Ries. Abstand der Isogammen: 1 mgal.

W

- Spezialvermessung Wörnitzostheim
- Gravimeterpunkt, z.T. mit 2369 • Bouguer-Anomalie in mgal

- Morphologischer Riesrand (nach Reich-Horrix)

23

Abb. 3: Spezialvermessung bei Wörnitzostheim im Gebiet |W| in Abb. 2.

4.2 Beschreibung des Isogammenbildes¹)

Das zentrale Minimum liegt im Nordries bei Dürrenzimmern. Der Schwereanstieg nach außen beträgt etwa 15 mgal und ist verhältnismäßig gleichmäßig, doch findet man besonders starken Schwereanstieg im Norden und im Südosten. Zwei zungenartige Vorsprünge des Minimums liegen im Südwesten. Nordwestlich von Nördlingen fällt eine Ausbuchtung der Isogammen mit der seismisch gefundenen Nebenmulde zusammen.

Außerhalb des Rieses steigt die Schwere im Westen und Südwesten bis auf über 20 mgal an, im Südosten bei Harburg fällt sie bis unter 10 mgal, im Osten und Nordosten liegt sie etwa bei 10 mgal, stets bezogen auf das zentrale Minimum. Im Norden steigt die Schwere allgemein beträchtlich an.

Die hohen Schwerewerte im Südwesten fallen mit den hohen Werten der erdmagnetischen Vertikalintensität zusammen. Die starke magnetische Anomalie bei Wörnitzostheim liegt im Bereich eines flachen, aber gut erkennbaren Schwereminimums, das

¹) Diese kurze Beschreibung der Meßergebnisse wurde von K. JUNG bereits anläßlich der Sitzung der "Arbeitsgemeinschaft Ries" am 25. 3. 1963 in München sowie beim DFG-Kolloquium im Rahmen des Schwerpunktprogramms "Erforschung des tieferen Untergrundes in Mitteleuropa" vom 22. bis 25. 4. 1963 in Stuttgart gegeber.

in das Randmaximum eingebettet ist. Eine Spezialvermessung deutet ein Schwereminimum an, dessen Zentrum nicht genau mit dem Zentrum der magnetischen Anomalie zusammenfällt.

5 Organisatorisches

Die vorliegende Gemeinschaftsarbeit der drei Institute für Geophysik in Clausthal, Kiel und Mainz wurde im Rahmen des Schwerpunktprogramms "Geophysikalische Erforschung des tieferen Untergrundes in Mitteleuropa" durchgeführt. Hierzu stattete die Deutsche Forschungsgemeinschaft die genannten Institute mit den erforderlichen Geräten aus und stellte die Mittel für die Feldmessungen sowie für die Bearbeitung der Meßergebnisse zur Verfügung.

Die Teilnehmer an der Gemeinschaftsarbeit sind in Tabelle 2 namentlich aufgeführt. Es handelt sich zum größten Teil um Studenten in mittleren und höheren Semestern, die auf diese Weise die Praxis der gravimetrischen Messungen an einem interessanten Objekt eingehend kennenlernen konnten.

Die Autoren danken der Deutschen Forschungsgemeinschaft für die großzügige finanzielle Förderung der Arbeiten.

Weiterhin danken sie der PRAKLA, Gesellschaft für praktische Lagerstättenforschung GmbH, Hannover, für die Überlassung von technischen Hilfsmitteln zur Bearbeitung der Meßergebnisse.

Schließlich danken sie sämtlichen Teilnehmern für ihr stetes Interesse und ihre sorgfältige Arbeit.

		Frühjahr 1962	1	Herbst 1962
Institut für Geophysik	Clausthal	Kiel	Mainz	Kiel
Leiter der Forschungsarbeit	H. Menzel	K. Jung	O. Rosenbach	K. Jung
Verantwortlicher Sachbearbeiter	A. Behle	W. Jacoby H. Pierau ¹)	О. Schmitt	Н. Ѕснаағ
Mitarbeiter	KP. Bonjer E. Hinz D. Kessel H. Mahrenholtz	W. Fromm O. Otte E. Pape H. Schaaf	F. Jordan P. Junk U. Mebold H. Wilhelm	W. Fromm H. Gütter E. Pape F. Theilen

Tabelle 2:	Verzeichnis	der	Mitarbeiter
------------	-------------	-----	-------------

¹) H. PIERAU war wesentlich an der Planung der Messungen beteiligt und wir verdanken ihm geologische Beratung.

Literatur

- SCHUTTE, K.: Das Ergebnis der Schweremessungen im Ries. S.-B. Bayer. Akad. Wiss., math.-naturwiss. Abt., München 1927.
- [2] BENTZ, A., und K. JUNG: Drehwaagemessungen im Ries bei Nördlingen. Ztschr. f. Geophys. 7, 1-21, 1931.
- [3] JUNG, K.: Angewandte Geophysik, Bücher der Technik, Wolfenbüttel 1948.
- [4] REICH, H., und W. HORRIX: Geophysikalische Untersuchungen im Ries und Vorries und deren geologische Deutung. Beih. Geol. Jb. 19, Hannover 1955.
- [5] SCHLEUSENER, A.: Nomogramme für Geländeverbesserungen von Gravimetermessungen der angewandten Geophyik. Beiträge zur angewandten Geophysik 8, 45—54, 1940.
- [6] JUNG, K.: Schwerkraftverfahren in der angewandten Geophysik, Leipzig 1961.
- [7] GROSSMANN, W.: Grundzüge der Ausgleichsrechnung. Berlin/Göttingen/Heidelberg 1953, S. 224ff.

Lunar Tidal Oscillations in H and $f_0 F_2$ at Equatorial Stations

By R. G. RASTOGI, Ahmedabad¹)

Eingegangen am 20. März 1964

Zusammenfassung: Es werden die mondzeitliche Welle L_2 der Horizontalkomponente des erdmagnetischen Feldes H während des Sonnentages und diejenige der Mittagswerte der kritischen Frequenz der ionosphärischen F_2 -Schicht f_0F_2 beschrieben, die an äquatornahen Stationen in Peru während des IGJ und IGC beobachtet wurden. Während aller Jahreszeiten hat der Betrag der Amplitudenschwankungen der Gezeitenwelle L_2 sowohl für H als auch für f_0F_2 ein Maximum über dem magnetischen Äquator, ähnlich demjenigen des Betrages von H selbst. An jeder Station sind die Änderungen der beiden Parameter nahezu in Gegenphase.

Die Ergebnisse hinsichtlich der L_2 -Wellen des Betrages von H in Huancayo (BARTELS und JOHNSTON (1940)) für die Periode 1922—1938 werden mit den Ergebnissen einer ähnlichen Untersuchung der Mittagswerte von f_0F_2 in Huancayo für die Periode 1938—1960 verglichen. Die jahreszeitlichen Änderungen der Amplitude der L_2 -Wellen beider Parameter sind einander sehr ähnlich mit einem Maximum im Januar und einem Minimum im Juni/Juli. Die Phase der L_2 -Wellen in beiden Parametern ändert sich gleichmäßig mit dem Monat des Jahres und bleibt dabei nahezu gegenphasig. Mit zunehmender Sonnenaktivität scheinen die Amplituden der L_2 -Wellen beider Parameter zuzunehmen, wobei die Phase konstant bleibt.

Vergleicht man die L_2 -Variationen in H und f_0F_2 für individuelle Stunden des Sonnentages so findet man, daß die Amplituden während der Tagesstunden groß sind und am Mittag ein Maximum erreichen. Auch hier sind die L_2 -Wellen in H und f_0F_2 für jede Tageszeit in Gegenphase.

Es wird daraus geschlossen, daß in der Nähe des magnetischen Äquators die mondzeitlichen Variationen im F_2 -Gebiet der Ionosphäre eng mit den mondzeitlichen Änderungen der Stärke des äquatorialen Elektrojets zusammenhängen.

Summary: The paper describes Lunar tidal, L_2 , oscillations in the solar diurnal range of the horizontal component of earth's magnetic field, H, and in the midday value of the critical frequency of the F_2 region of the ionosphere, f_0F_2 , at the low latitude stations operating in Peru during IGY and IGC. During any of the seasons, the amplitude of L_2 oscillations in the range of H as well as in f_0F_2 show a maximum over the magnetic equator similar to that of the range of H itself. At any of the stations, L_2 oscillation in the two parameters are almost opposite in phase.

The results of L_2 oscillations in the range of H at Huancayo (BARTELS and JOHNSTON (1940)) for the period 1922—1938 are compared with the results of similar analysis of midday value of f_0F_2 at Huancayo for the period 1938—1960. The seasonal variations of the amplitude of L_2 oscillation in either of the parameters are very similar to each other with the maximum during January and the minimum during June/July. The phase of L_2 oscillation in the two parameters varies sympathetically with the month of the year, maintaining almost anti-phase relationship. With increasing solar activity the amplitudes of L_2 oscillations in both parameters seem to increase but the phase remains constant.

¹) Dr. R. G. RASTOGI, Physical Research Laboratory, Ahmedabad, 9 (India).

Comparing the L_2 oscillations in H and f_0F_2 for individual hours of the solar day, the amplitudes are found to be strong during the daylight hours with a maximum near noon. Again for any time of the day, L_2 oscillations in H and f_0F_2 are opposite in phase.

It is concluded that near the magnetic equator the lunar tidal oscillations in the F_2 region of the ionosphere are closely associated with the lunar variation in the strength of the equatorial electrojet.

Introduction

Abnormally large amplitudes of solar diurnal variation in the horizontal component of the earths magnetic field, *H*, are known to occur at stations close to the magnetic equator (McNish, 1937; THIRUVEGADATHAN, 1954; ONWUMECHILLI and ALEXANDER, 1959 b; GETTMY, 1962). McNish (1937) suggested that it is due to an eastward electric current flowing in the upper atmosphere along the magnetic equator, to this the name "Equatorial Electrojet" has been given by CHAPMAN (1951). An enhancement of the solar daily range of *H* has been found to occur within a narrow belt over the magnetic equator (EGEDAL, 1947, 1948, 1951; PRAMANIK et al, 1953; ONWUMECHILLI, 1959 a; FORBUSH and CASAVERDE, 1961). Recently, RASTOGI (1962 a) has shown the existence of a longitude effect in the strength of the electrojet, being strongest in the American zone and weakest in the Indian zone.

It has also been found that an abnormally large amplitude of lunar semi-diurnal oscillations L_2 , in *H* occurs at the equatorial stations (BARTELS, 1936; ONWUMECHILLI and ALEXANDER, 1959 c; RAJA RAO and SIVARAMAN, 1958). These large lunar effects have been suggested as being due to an augmentation of the electrojet (ONWUMECHILLI and ALEXANDER, 1959 c; FORBUSH and CASAVERDE, 1961).

BARTELS and JOHNSTON (1940) have demonstrated the existence of large lunar tidal effects in the solar diurnal range of H at Huancayo. RASTOGI (1963 a) has shown that this occurs within the same narrow belt over the magnetic equator very similar to the latitudinal variation of the solar daily range itself. Corresponding to longitude effect

	Geog.		Magn.	Annual Average				December	
Station	Long.	Lat.	dip.	Avg. f_0F_2	Ampl. P ₂	Phase v	Avg. f_0F_2	Ampl. P ₂	Prob. error <i>q</i>
	°W	°S	°S °N	Mc	Mc	Lunar hr.	Mc	Mc	Мс
Huancayo	75.3	12.3	1.9	12.59	0.503	8.1	13.13	0.680	0.089
Chimbote	78.6	9.1	6.3	12.67	0.510	8.1	13.49	0.695	0.075
Chiclayo	79.8	6.8	9.7	12.98	0.415	8.1	13.89	0.601	0.073
Talara	8 1.3	4.6	12.5	13.37	0.285	8.8	14.42	0.509	0.057

Table 1: Coefficients of lunar semi-monthly wave in the midday value

in the electrojet, similar effects have been shown to exist in the lunar tidal amplitude of the daily range of H (RASTOGI, 1963 b, 1964). This has confirmed the suggestion that the lunar geomagnetic tide near the magnetic equator is greatly affected by the electrojet.

Lunar tidal analyses of the critical frequencies of the F_2 layer of the ionosphere, f_0F_2 , by MARTYN (1947 b), MCNISH and GAUTIER (1949), BURKARD (1951), BROWN (1956) and others have shown the existence of large lunar tides in this region of the ionosphere. Using the data of a large number of low latitude ionospheric stations, RASTOGI (1961, 1962 b) showed that the amplitude of lunar tide in the midday value of f_0F_2 is abnormally large within a narrow belt over the magnetic equator, also apparently associated with the electrojet. Longitudinal variation in the amplitude of $L_2(f_0F_2)$ oscillation has also been demonstrated similar to that in the electrojet strength. Thus, there are great similarities in the lunar oscillations of f_0F_2 and H. Further interrelations between the two parameters are studied in the present article.

Latitudinal variation in the magnitude of L_2 oscillation in f_0F_2 and range of H in different seasons

RASTOGI (1963 a) has described the lunar oscillations in the solar daily range of H at the Peruvian magnetic observatories, viz., Huancayo, Yauca, Chimbote, Chiclayo and Talara operating during IGY and IGC. Ionospheric observations were also taken during the same period at all these observatories except Yauca. Lunar tidal (L_2) oscillations in midday (11 to 13 hr mean) f_0F_2 at these stations have been computed according to the method described earlier. The coefficients of $L_2(f_0F_2)$ oscillations are given in Table 1. The lunar phase is defined by the age of the moon, v, reckoned at Greenwich noon. The phase t_2 of lunar semi-monthly oscillation denotes the lunar age v when its maximum positive deviation occurs. The Table also contains the probable error of each determination. The ratio of the amplitude P_2 to its probable error lies between 7.6 to 9.3 and thus these results are statistically significant.

1		Seas	onal A	verage					-		
sols	stice		Equ	inoxes	8		1	June	e solstic	e	
Ratio P ₂ /q	Phase v	Avg. f_0F_2	Ampl. I P_2 e	Prob. rror q	Ratio P_2/q	Phase v	Avg. f_0F_2	Ampl. P ₂	Prob. error q	Ratio P_2/q	Phase v
	Lunar hr.	Мс	Mc	Mc		Lunar hr.	Мс	Мс	Mc		Lunar hr.
7.6	9.0	13.63	0.626	0.096	6.5	7.4	11.00	0.342	0.068	5.0	7.5
9.3	8.9	13.66	0.616	0.083	7.4	7.3	10.86	0.253	0.053	4.8	7.6
8.2	9.1	14.11	0.445	0.072	6.2	7.5	10.95	0.231	0.060	3.9	8.0
8.9	9.3	14.41	0.279	0.069	4.0	7.5	11.29	0.188	0.057	3.3	9.2

(11–13 hour mean) of f_0F_2 at Peruvian ionospheric stations during IGY, IGC

Fig. 1: Lunar semi-monthly oscillations in midday value of f_0F_2 and solar daily range of H at the equatorial stations in Peru averaged for all the seasons of IGY and IGC.

In Fig. 1 are drawn the annual average L_2 oscillations in f_0F_2 and in the range of H at these observatories. The thick lines denote the lunar semi-monthly wave derived by Fourier analysis. It is seen that the amplitudes of L_2 oscillation in f_0F_2 and in the range of H decrease progressively from Huancayo to Talara indicating an equatorial enhancement in the lunar tidal effects in both the parameters. Further, at each station, the oscillations in f_0F_2 and in the range of H are almost opposite in phase.

In Fig. 2 are shown the L_2 oscillations in f_0F_2 and in the range of H at Huancayo averaged for different seasons of the IGY and IGC years. The amplitude of L_2 in each

Fig. 2: Lunar semi-monthly oscillations in the midday value of f_0F_2 and solar daily range of H at Huancayo for different seasons of IGY and IGC.

Lunar Tidal Oscillations

parameter is largest in the December solstice and smallest in the June solstice. The maximum phase of the oscillation in either of the parameters occurs progressively earlier as we go from December solstice, through Equinox to June solstice, but the approximately opposite phase relationship between the oscillations in f_0F_2 and H is maintained in each of the seasons.

In Fig. 3 are drawn the harmonic dial representations of the coefficients of L_2 oscillations in the midday value of f_0F_2 and in the range of H at all the four observatories Huancayo (HU), Chimbote (CM), Chiclayo (CL) and Talara (TL) in each season of the year.

The phases t_2 of the annual average lunar semi-monthly oscillation lie between v = 8.1 to 8.9 lunar hour for f_0F_2 and between v = 3.3 and 3.4 lunar hour for the

Fig. 3: Harmonic dials showing the coefficients of lunar semi-monthly oscillations in midday values of f_0F_2 and the solar daily range of H at equatorial stations in Peru for different seasons of IGY and IGC.

range of H. The phase difference between the L_2 oscillations in the two parameters at the same stations is 4.6 to 5.3 lunar hour or about 140 to 160°. In the December solstice the phases of L_2 in both the parameters is delayed from the annual means by one hour, being at v = 9 lunar hour for f_0F_2 and v = 4 lunar hour for the range of H. In the June solstice, the phase of L_2 does not remain constant at all stations, but progressively increases from Huancayo to Talara by about 2 lunar hour. Thus the L_2 amplitudes in f_0F_2 and in the range of H vary synchronously with latitude in each of the seasons, maintaining an almost antiphase relationship between the oscillations in the two parameters at each stations.

Fig. 4: Latitudinal variations of the solar daily range of H, of the amplitudes of lunar semimonthly oscillations in the range of H and in midday value of f_0F_2 at equatorial stations in Peru during different seasons of the IGY and IGC.

In Fig. 4 a comparison is made of the latitudinal variations of (1) the range of H, (2) the L_2 amplitude in range of H and (3) the L_2 amplitude in f_0F_2 . The amplitudes

	-			· ····································
1			Orig	inal Values
Months	Average f_0F_2	Amplitude P_2	Probable error q	$\frac{\text{Amp. } P_2}{\text{Probable error } q}$
	Mc/s	Mc/s	Mc/s	
January	9.55	0.669	0.039	16.9
February	10.17	0.629	0.048	13.1
March	10.15	0.571	0.040	14.3
April	10.13	0.356	0.035	10.3
May	8.94	0.220	0.031	7.1
June	8.13	0.166	0.024	6.9
July	7.97	0.103	0.027	3.8
August	8.45	0.183	0.030	6.1
September	9.63	0.360	0.036	10.0
October	10.53	0.580	0.039	14.9
November	11.27	0.606	0.048	12.6
December	10.45	0.593	0.048	12.4

Table 2: Coefficients of lunar semi diurnal variation in the midday (11-13 hour mean)

of L_2 in range of H or in f_0F_2 have broadly similar maxima over the magnetic equator similar to that of range of H itself. The L_2 amplitude in f_0F_2 at any of the stations in the present group is maximum during December and minimum during June solstices. Similar variation is found in L_2 amplitude in range of H at stations very close to the magnetic equator viz. at Huancayo and Chimbote; but at higher latitude stations the largest amplitude is found during Equinoxes although the lowest value still occurs during June solstices. The equatorial maximum of L_2 amplitude is rather broad for f_0F_2 than for the range of H. The amplitudes of L_2 in f_0F_2 at Huancayo and Chimbote are almost equal during December solstice and Equinoxes whereas the L_2 amplitude in range of H is always larger at Huancayo than at Chimbote.

Seasonal variation in the lunar tidal oscillations in f_0F_2 and in the range of H at Huancayo

BARTELS and JOHNSTON (1940) have computed the coefficients of L_2 in the range of H at Huancayo for individual months averaged over 1922 to 1939. Similar analyses have now been made by the author for the midday (11 to 13 hour mean) values of f_0F_2 at Huancayo over the period 1938—1946, 1951—1960. In order to reduce the scatter smoothed monthly groups have been formed after BARTELS and JOHNSTON (1940) for example January means (December $+ 2 \times \text{January} + \text{February})/4$ etc. The original and smoothed coefficients of L_2 together with the probable errors are given in Table 2. The smoothed coefficients of $L_2(f_0F_2)$ oscillations are plotted as harmonic dial in Fig. 5 (siehe S. 34) together with similar results for the range in H derived by BARTELS and JOHNSTON (1940).

			Smoothed values	
Ampl. P_2 Average f_0F_2	Phase t_2	Ampl. P ₂	Probable error q	Phase t_2 v
%	Lunar hr.	Mc/s	Mc/s	Lunar hr.
6.9	9.5	.620	.025	9.1
6.2	8.5	.593	.025	8.6
5.6	7.8	.523	.024	8.0
3.5	7.7	.377	.020	7.7
2.5	7.6	.240	.017	7.5
2.0	6.9	.160	.015	7.1
1.3	6.5	.137	.016	6.8
2.2	7.1	.203	.018	7.2
3.7	7.5	.327	.020	7.2
5.5	7.6	.530	.023	7.7
5.4	8.0	.583	.026	8.1
5.7	8.7	.590	.026	8.8

value of f_0F_2 at Huancayo during different months of the years (1938–1946, 1951–1960)

Fig. 5: Harmonic dials showing the coefficients of lunar semi-monthly oscillations in the midday values of f_0F_2 and in the solar daily range of H at Huancayo during each individual months of the year.

BARTELS and JOHNSTON (1940) had shown that the amplitude of L_2 in range of H attained its highest value in January and the lowest in June/July. In the months March to June or June to November, the amplitudes varied between about 6 and 16 γ whereas in the months November to January or January to March the amplitude changed only between about 16 and 22 γ . The phase of oscillation in the range of H varied from $\nu = 01$ lunar hour in June to about $\nu = 04$ lunar hour in January.

The amplitude of $L_2(f_0F_2)$ attained a maximum value of 0.66 Mc/s in January and a minimum of 0.10 Mc/s in July. Between April to July and July to October the phase of oscillation changed within about one lunar hour although the amplitude varied between 0.1 Mc/s to about 0.5 Mc/s. During the period October to January and January to March the amplitude varied within about 0.1 Mc/s but the phase varied over $1^{1}/_{2}$ hour. The variations in lunar tide in f_0F_2 are very similar to those in range of *H* with about 180° phase difference. The month to month changes in the lunar oscillation of the range of *H* are faithfully reproduced in the oscillation of f_0F_2 over the magnetic equator.

		December solstice							
Group	Sunspot Number	Average f_0F_2	Ampl. P_2	Phase v	Sunspot Number	Average f_0F_2			
		Mc/s	Mc/s	Lunar hr.		Mc/s			
Ι	12.8	8.02	0.508±0.035	8.8	12.5	7.58			
II	39.0	9.54	$0.577 {\pm} 0.048$	8.6	36.0	8.80			
III	73.3	11.12	0.631±0.049	8.5	91.3	11.43			
IV	169.3	13.08	$0.642 {\pm} 0.053$	8.7	183.1	13.00			

Table 3: Coefficients of lunar semi-monthly wave in the midday

Fig. 6: Harmonic dials showing the coefficients of lunar semi-monthly oscillations in the midday value of f_0F_2 and in the solar daily range of H at Huancayo during each seasons of the year with different mean sunspot number.

Effect of sunspot number on the lunar tides in f_0F_2 and in the range of H in different seasons

To investigate the solar cycle variation on the lunar tides in the f_0F_2 values at Huancayo, the seasonal groups of data covering the period 1938—1946, 1951—1960, were further divided into fours groups according to the average zurich sunspot number (*R*). The coefficients of L_2 were computed for each *R* group for each season separately and are given in Table 3. The results are further plotted as harmonic dials in Fig. 6 which contains also the corresponding points for the ranges of *H* derived by BARTELS and JOHNSTON (1940). It is found that the phase of lunar tide in f_0F_2 for any particular season remains almost constant with the change in solar activity just as the phase of the tides in range of *H*.

BARTELS and JOHNSTON (1940) found that in December solstice and in the equinoxes, the amplitude, of lunar tide in the range of H increased systematically with increasing sunspots, but during the June solstice there was a probable decrease of the amplitude with increasing sunspots. Regarding f_0F_2 it is found that the ampli-

Ampl. P_2	Phase v	Sunspot Number	Average f_0F_2	Ampl. P_2	Phase v
Mc/s	Lunar hr.		Mc/s	Mc/s	Lunar hr.
0.387±0.032	8.1	11.9	6.24	0.095±0.019	7.3
$0.372 {\pm} 0.032$	8.0	53.2	7.67	0.183 ± 0.024	7.2
$0.542 {\pm} 0.036$	7.5	122.9	10.01	$0.202 {\pm} 0.037$	7.4
0.606+0.066	7.6	178.2	11.02	0.335±0.040	7.4

(11—13 hour mean) value of f_0F_2 at Huancayo for different sunspot periods

tude of L_2 oscillation increased systematically with increasing sunspots in each of the seasons.

It may thus be concluded that with increasing amplitude of L_2 oscillation in range of H due to an increase of solar activity, there is found a corresponding increase of solar activity, there is found a corresponding increase in the lunar tides in f_0F_2 .

Lunar tides in f_0F_2 and H at Huancayo for different solar hours

It is clear from preceeding paragraphs that there is a close relationship, between the lunar oscillations in the midday value of f_0F_2 and in the range of H at equatorial stations. It has been known (CHAPMAN and BARTELS (1940)) that there is a strong contrast in the lunar variation of H at Huancayo between periods of sunlight and darkness. The major portion of the lunar oscillations in H occurs during daylight hours. BURKARD (1951) found that f_0F_2 at Huancayo showed large luni-solar daily variation such that the semi-diurnal lunar oscillation was procounced during daylight hours only.

CHAPMAN and BARTELS (1940) have given curves of lunar daily inequalities in H at Huancayo at twelve different phases of the moon for the December solstice for a

SHADED PORTIONS INDICATE NIGHTTIME

Fig. 7: The contour diagram showing the luni daily variations in f_0F_2 and H at Huancayo during different phases of the moon during the December solsticial months of minimum sunspots years.

period of zero sunspot number. RASTOGI and ALURKAR (1963) have analysed the lunar oscillations in f_0F_2 at Huancayo for each solar hour separately using the data of different seasons in a period of minimum solar activity (1951—1955). Using the results of the analysis of f_0F_2 by RASTOGI and ALURKAR and the curves given by CHAPMAN and BARTELS for H, contour diagrams are drawn in Fig. 7 showing the luni-solar variations in f_0F_2 and H at Huancayo for different phases of the moon. The shaded portions in the diagram indicate night time. The contour lines in each of the diagrams are much more concentrated in the unshaded portions indicating that the lunar oscillations in f_0F_2 and in H are prominant mainly during the daylight hours. It is further seen that the centres of the loops in the two diagrams occur very close to the midday hours indicating that the maximum effect of lunar tide in f_0F_2 or in H occurs at hours close to solar noon. The occurrence of a HIGH loop in f_0F_2 corresponds to the occurrence at the same time of LOW loop in H and vice versa. This indicates almost opposite phase relationship in the lunar oscillations of f_0F_2 and H.

The coefficients of L_2 in H for different solar hours are derived from the curves given by CHAPMAN and BARTELS and are compared with the similar results for f_0F_2 by RASTOGI and ALURKAR. In Fig. 8 the solar daily variations of f_0F_2 and H are compared with the corresponding variations in the amplitude of L_2 oscillation in f_0F_2 and H respectively.

Referring to the solar daily variations in H and the amplitude of L_2 in H, one finds great similarities between the two curves. Both H and amplitude of $L_2(H)$ are lowest

Fig. 8: Solar daily variations of the average value of f_0F_2 and H compared with the same of the amplitudes of lunar semi-monthly oscillation in the same parameter during December solstical months of the minimum sunspots years.

during the night hours; both the quantities start rising with the beginning of the daylight, and reach their maximum values near noon. This clearly indicates that large amplitudes of lunar oscillation in H at Huancayo are closely associated with the electrojet.

The daily variation of f_0F_2 at Huancayo shows a well-known bite-out effect during midday hours (BERKNER and Wells (1934)). With the rising of the sun, the f_0F_2 starts increasing till about 08 hour when the increase is stopped and still later f_0F_2 starts decreasing and reaches a minimum value at about noon hour. This phenomenon has been explained by MARTYN (1947 a) in terms of electrodynamical vertical drift in the F_2 region. The daily variation in the amplitude of L_2 in f_0F_2 is very similar to that of f_0F_2 itself; both the quantities are larger during daytime hours and are minimum at about 06 hour L.M.T. The value of f_0F_2 starts increasing since the sunrise at about 05 hours continues to do so till about 08 hour when the vertical uplifting of the F_2 region becomes predominant. The amplitude of $L_2(f_0F_2)$ is found to start increasing only after about 08 hour the time of starting of biteout in f_0F_2 , and the amplitude reaches its maximum value when the midday bite out in f_0F_2 is maximum. Thus the lunar tide in f_0F_2 manifests itself by altering the vertical uplifting of the F_2 region in accordance with the phase of the moon. The vertical uplifting of the F_2 region is associated with the electrojet current over the magnetic equator, thus the amplitude of tidal oscillations in the F_2 region are indirectly controlled by the electrojet.

RAJA RAO (1959) had indicated that the lunar tidal variations in f_0F_2 and H in the geomagnetic equatorial regions were nearly in the same phase and even suggested that the seat of L current system causing the geomagnetic tides might be situated in the F_2 region. His suggestion was based on MARTYN's (1947 b) analysis of L_2 variations in f_0F_2 at Huancayo averaged over all the months of the years 1942—1944 and of L_2 variations in H at Kodaikanal for the northern winter months of 1950—1954 by RAJA RAO and SIVARAMAN (1958) thus comparing the results of data taken at stations in different longitudes and for different seasons. In Fig. 9 are shown the lunar variations at Huancayo in f_0F_2 for the period 1942—1944 by MARTYN (1947 b), in f_0F_2 for the period 1938—1946 by BURKARD (1951), and in H for December solstice extrapoleted for zero sunspot number by CHAPMAN and BARTELS (1940). It is seen that the

Fig. 9: Comparisons of the lunar oscillations in H and in f_0F_2 at Huancayo.

maxima in the lunar variations in f_0F_2 occur at about 04 lunar hour while the maximum in *H* occurs at about 08 lunar hour. The $L_2(f_0F_2)$ and $L_2(H)$ are not in the same phase. BURKARD (1951) has shown that in the December solstice, the maximum deviation in f_0F_2 occurs at 2.5 lunar hour, whereas the maximum in the lunar variation of *H* according to CHAPMAN and BARTELS (1940) is at 08 lunar hour, the phase difference between the two oscillations at Huancayo for the same local summer season of a low sunspot year is equal to 5.5 lunar hour indicating an almost opposite phase relationship and not the same phase relationship as suggested by RAJA RAO (1959).

Acknowledgements

The author is very thankful to Dr. A. A. GIESECKE director of the Huancayo Observatory and to World Data Centre A for Airglow and the Ionosphere at Boulder, U.S.A., for providing the ionospheric and magnetic data of Huancayo. The author acknowledges with thanks the valuable discussions he has had with his colleagues in the Physical Research Laboratory and especially with Professor K. R. RAMANATHAN.

References

- BARTELS, J.: Aufschlüsse über die Ionosphäre aus der Analyse sonnen- und mondentägiger erdmagnetischer Schwankungen. Z. Geophysik 12, 368–378 (1936).
- BARTELS, J., and H. F. JOHNSTON: Geomagnetic tides in horizontal intensity at Huancayo. Terres. Magn. Atmos. Electr. 45, 269–308 (1940).
- BERKNER, L.V., and H.W. WELLS: F region ionosphere-investigations at low latitudes. Terr. Magn. Atmos. Electr. 39, 215-230 (1934).
- BROWN, R. A.: Lunar variations of the F_2 layer at Ibadan. J. Atmosph. Terres. Phys. 9, 144–154 (1956).
- BURKARD, O.: Studie zum ionosphärischen Gezeiteneffekt. J. Atmosph. Terres. Phys. 1, 349-352 (1951).
- CHAPMAN, S., and J. BARTELS: Geomagnetism, Oxford Press. P. 267 (1940).
- CHAPMAN, S.: The equatorial electrojet as deduced from the abnormal electric current distribution above Huancayo and elsewhere. Archiv. Meteo. Geophys. u. Bioklimatol. A 4, 368–390 (1951).
- EGEDAL, J.: The magnetic diurnal variation of the horizontal force near the magnetic equator Terres. Magn. Atmosph. Electr. 52, 449-451 (1947).
- -, Daily variation of the horizontal magnetic force at the magnetic equator. Nature (Lond) 161, 443-444 (1948).
- -, Report to the Brussels meeting of I.A.T.M.E. of the committee to promote observations of daily variations of the horizontal magnetic force between and near the geographic and magnetic equators 1948—1951, pp. 286—291 (1952).

- FORBUSH, S. E., and M. CASAVERDE: Equatorial electrojet in Peru. Carnegie Inst. Washington Publ. 620, 140 pp., Washington D.C. (1961).
- GETTMY, J. W.: Magnetic daily variations at Koror. Geophys. Res. 67, 1885-1888 (1962).
- McNISH, A. G.: Trans. Edinburg meeting of I.A.T.M.E. Bull. 10, 271 (1937).
- MCNISH, A. G., and T. N. GAUTIER: Lunar variations at low latitude stations. J. Geophys. Res. 54, 303–304 (1949).
- MARTYN, D. F.: Atmospheric tides in the ionosphere I, Solar tides in the F_2 region. Proc. Roy. Soc. A 189, 246–260 (1947 a).
- --, Atmospheric tides in the ionosphere II, Lunar tidal variations in the F region near the magnetic equator. Proc. Roy. Soc. A 190, 273–288 (1947 b).
- ONWUMECHILLI, C. A.: A study of the equatorial study J. Atmosph. Terres. Phys. 13, 222–234 (1959 a).
- ONWUMECHILLI, C. A., and N. S. ALEXANDER: Variations in the geomagnetic field at Ibadan. I Solar variations. J. Atmosph. Terres. Phys. 16, 106–114 (1959 b).
- —, Variation in the geomagnetic field at Ibadan Nigeria II Lunar and Luni-solar variations in *H* and Z. J. Atmosph. Terres. Phys. 16, 115—123 (1959 c).
- PRAMANIK, S. K., and P. S. HARIHARAN: Diurnal magnetic variations near the magnetic equator. Ind. J. Meteor. Geophys. 4, 353–358 (1953).
- RAJA RAO, K. S., and K. R. SIVARAMAN: Lunar geomagnetic tides at Kodaikanal. J. Geophys. Res. 63, 727–730 (1958).
- RAJA RAO, K. S.: On seat of the L currents causing Geomagnetic tides. J. Geophys. Res. 64, 384–385 (1959).
- **RASTOGI, R. G.:** The morphology of lunar semi diurnal variation in f_0F_2 near solar noon. J. Atmosph. Terres. Phys. 22, 290–297 (1961).
- ---, Longitudinal variation in the equatorial electrojet. J. Atmosph. Terres. Phys. 27, 1031 to 1040 (1962 a).
- —, Enhancement of the lunar tide in the noon critical frequency of the F_2 layer over the magnetic equator. J. Res. N.B.S. 66 D 601—606 (1962 b).
- -, Lunar tidal variations in the equatorial electrojet current. J. Geophys. Res. 68, 2445–2451 J. Geophys. Res. 69, 1020–1024 (1964).
- , Longitudinal inequalities in the lunar tide and sudden commencement in the horizontal component of earths magnetic field near the magnetic equator. J. Atmosph. Terres. Phys. 25, 393–397 (1963 b).
- -, Lunar tides in the range of H at equatorial magnetic observatories during IGY-IGC (1963 c).
- **RASTOGI, R. G., and S. K. ALURKAR:** Lunar tidal oscillations in f_0F_2 along 75° W meridian zone I over the magnetic equator, Huancayo (1963, unpublished).
- THIRIVENGADATHAN, A.: Diurnal Variation of Horizontal Magnetic force at Kodaikanal. Ind. J. Meteor. Geophys. 5, 267–269 (1954).

Seismische Messungen in den Alpen. — Die Beobachtungen auf dem NE-Profil Lago Lagorai 1962 und ihre vorläufige Auswertung¹)

Von E. PETERSCHMITT, Strasbourg, H. MENZEL, Hamburg, und K. FUCHS, Clausthal²)

Eingegangen am 13. August 1964

Zusammenfassung: Anläßlich der Sprengungen im Lago Lagorai im Jahre 1962 wurden von je zwei Stationen des Straßburger und des Clausthaler geophysikalischen Institutes seismische Messungen auf einem NE-Profil ausgeführt. Dieses Profil hat eine Gesamtlänge von 220 km, es durchquert die Dolomiten und endet in den Niederen Tauern.

Einsätze mit den folgenden Scheingeschwindigkeiten konnten korreliert werden: 5,8, 6,2, 6,35, 6,9, 8,2 km/s. Die ersten beiden Geschwindigkeit von 5,9 km/s zugeordnet. Es bildet einen Trog, der mit triassischen Sedimenten gefüllt ist, denen eine Geschwindigkeit von 5,0 km/s zugeschrieben wurde. Der Trog hat eine maximale Tiefe von 3,0 km. Die Tiefe der 6,35-Diskontinuität wurde zu etwa 17 km berechnet. 8,2 km/s ist die Geschwindigkeit unterhalb der MOHOROVIČIĆ-Diskontinuität, deren Tiefe ungefähr 47 km beträgt. Die Deutung der 6,9 km/s Geschwindigkeit ist schwierig. Vernachlässigt man jedoch diese Schicht, so ändert sich die Tiefe der M-Diskontinuität nur unwesentlich.

Summary: At the 1962 explosions in the lake Lago Lagorai seismic refraction observations have been executed by 2 stations of the Strasbourg and 2 stations of the Clausthal geophysical institute. The profile extended over a total length of 220 km, passing the Dolomites and ending in the Niederen Tauern.

Arrivals with the following apparent velocities could be correlated: 5.8, 6.2, 6.35, 6.9, 8.2 km/s. The first two velocities have been attributed to a downdip and an up-dip of the surface of the crystalline with a true velocity which has been assumed by us to be 5.0 km/s. The through has a maximum depth of about 3.0 km. The depth of the 6.35-discontinuity has been calculated to about 17 km. The 8.2 km/s is the velocity beneath the MOHOROVICIC discontinuity, the depth of which is 47 km approximately. The interpretation of the 6.9 km/s velocity is rather difficult. The omission of this layer does not change the depth of the M-discontinuity.

Dr. KARL FUCHS, Institut für Geophysik der Bergakademie, Technische Hochschule, 3392 Clausthal-Zellerfeld, Adolf-Römer-Straße 2a.

¹) Beitrag Nr. 35 zum DFG-Schwerpunktprogramm "Erforschung des tieferen Untergrundes von Mitteleuropa".

²) Ing. ELIE PETERSCHMITT, Institut de Physique du Globe, Université de Strasbourg; 38, Boulevard d'Anvers, Strasbourg, France.

Professor Dr. HEINZ MENZEL, Institut für die Physik des Erdkörpers der Universität Hamburg, 2 Hamburg 13, Binderstraße 22.

1. Einführung

Im Jahre 1962 wurden im Lago Lagorai in den Dolomiten in der Zeit vom 20. bis 31. August Sprengungen ausgeführt, die auf verschiedenen Profilen seismisch beobachtet wurden. Je zwei Stationen der geophysikalischen Institute aus Straßburg und aus Clausthal beobachteten diese Sprengungen auf einem NE-Profil. Die Lage dieses Profils und der anderen Profile ist aus Abb. 1 zu entnehmen. Über die Beobachtungen auf den übrigen Profilen wurde bereits von BEHNKE et al [1], BEHNKE, CHOUDHURY [2], GIESE, VISITINI [3] und PRODEHL [5] berichtet.

An diesen Messungen beteiligten sich aus Straßburg die Herren G. BALL, J. GOSTOLI, R. JOCHEM, E. PETERSCHMITT und aus Clausthal Frl. M. HAMANN und die Herren K. FUCHS, M. KARAMANI, M. KOENIG, I. PETÖFALVI.

Das NE-Profil verläßt nach 20 km den anstehenden Bozener Quarz-Porphyr. Es durchquert bis in eine Entfernung von 100 km die alpine Trias. Die Station Liesing (Nr. 9; 108 km) liegt in altpaläozoischen Schiefern, die Station Oberdrauburg (Nr. 10; 122,74 km) befindet sich im Gailtal-Dolomit. Von 130 km ab tritt das Profil in die metamorphe Zone der Ostalpen ein, die es bis zu seinem Ende bei 218,08 km nicht mehr verläßt. Die Stationen befanden sich in diesem Teil sämtlich auf anstehenden kristallinen Schiefern, die sich geschwindigkeitsmäßig kaum unterscheiden dürften.

Tabelle 1 ist die Liste der Stationen auf dem NE-Profil. Sie enthält neben den Stationsnummern und -namen die Schußzeiten, die Stationskoordinaten, die Entfernungen der Stationen vom Schußpunkt und das jeweils beobachtende Institut.

Es wurden zwei Arten von Instrumenten verwendet. Straßburg benutzte eine verstärkerlose Kombination von Willmore-Geophonen mit tiefabgestimmten Galvanometern. Die Frequenzcharakteristik ist aus der Vergrößerungskurve in Abb. 2a zu erkennen.

Abb. 1: Lageplan der Profile Lago Lagorai 1961/62. Die numerierten Stationen liegen auf dem NE-Profil.

Stations-Nr. Name	Datum, Schußzeit	Stationskoordinaten	Entfernung (km)	Institut
4 E Passo Rolle	20. 8. 62 9h01m	$\lambda = 11^{\circ} 47',01$ $\varphi = 46^{\circ} 17',61$	21,15	Strasbourg
1 Rocca Pietore	21. 8. 62 9h01m	$\lambda = 11^{\circ} 57',98$ $\varphi = 46^{\circ} 25',68$	40,05	Strasbourg
2 Passo Giau	21. 8. 62 9h01m	$\lambda = 12^{\circ} 01',99 \ \varphi = 46^{\circ} 28',67$	47,39	Strasbourg
3 Cortina d'Ampezzo	23. 8. 62 10h01m	$\lambda = 12^{\circ} 06', 10 \ \varphi = 46^{\circ} 33', 02$	56,42	Strasbourg
4 Passo Tre Croci	25. 8. 62 10h01m	$\lambda = 12^{\circ} 13',\!82 \ arphi = 46^{\circ} 33',\!49$	64,93	Strasbourg
5 Auronzo	23. 8. 62 10h01m	$\lambda = 12^{\circ} 24',33$ $\varphi = 46^{\circ} 32',70$	75,84	Clausthal
6 Passo Mt. Croce	25. 8. 62 14h01m	$\lambda = 12^{\circ} 26',20$ $m = 46^{\circ} 39',14$	83,89	Strasbourg
7 Alpe Melin	21. 8. 62 9h01m	$\lambda = 12^{\circ} 32',91$ $m = 46^{\circ} 38',74$	90,50	Clausthal
8 Sappada	25. 8. 62 14h01m	$\lambda = 12^{\circ} 43',54$ $\omega = 46^{\circ} 34',80$	99,81	Strasbourg
9 Liesing	25. 8. 62 10h01m	$\lambda = 12^{\circ} 47', 23$ $\omega = 46^{\circ} 39', 94$	108,00	Clausthal
10 Oberdrauburg	25. 8. 62 10h01m	$\lambda = 12^{\circ} 57',65$ $\omega = 46^{\circ} 43',01$	122,74	Clausthal
11 Dellach	28. 8. 62 14h01m	$\lambda = 13^{\circ} 05',43$ $\varphi = 46^{\circ} 45',85$	133,64	Clausthal
12 Alpenheim Teuchl	28. 8. 62 14h01m	$\lambda = 13^{\circ} 10',39$ $\varphi = 46^{\circ} 50',87$	143,46	Strasbourg
13 Kolbnitz Oberalpensee	28. 8. 62 14h01m	$\lambda = 13^{\circ} 20',39$ $\varphi = 46^{\circ} 56',75$	159,83	Strasbourg
14 Gmünd	28. 8. 62 14h01m	$\lambda = 13^{\circ} 27',33$ $\varphi = 46^{\circ} 55',47$	166,49	Clausthal
15 St. Peter	31. 8. 62 10h01m	$\lambda = 13^{\circ} 35',00$ $\varphi = 47^{\circ} 01',86$	180,62	Clausthal
16 St. Michael	31. 8. 62 10h01m	$\lambda = 13^{\circ} 43',10$ $m = 47^{\circ} 03',52$	191,10	Strasbourg
17 Tamsweg	31. 8. 62 10h01m	$\lambda = 13^{\circ} 51',50$ $\omega = 47^{\circ} 11',07$	207,18	Strasbourg
18 St. Ruprecht	31. 8. 62 10h01m	$\lambda = 14^{\circ} \ 03',33$ $\varphi = 47^{\circ} \ 08',45$	218,08	Clausthal

Tabelle 1: Liste der Stationen auf dem NE-Profil.

der Instrumente des Straßburger und des Clausthaler geophysikalischen Institutes.

Das Clausthaler Institut setzte Apparaturen mit Transistorverstärkern ein. An Hand der entsprechenden Vergrößerungskurve in Abb. 2b ist zu ersehen, daß sich die Frequenzgänge der beiden Apparaturen nicht allzu sehr voneinander unterscheiden. Sieht man von dem störenden Transistorrauschen bei den Clausthaler Stationen ab, so sind in vielen Fällen die Registrierungen beider Institute kaum voneinander zu unterscheiden. Das ist besonders deutlich auf den Stationen 13 und 14 bzw. 17 und 18 (vgl. Abb. 3).

2. Die Korrelation

Die Korrelation wurde an Hand von normierten Seismogrammen vorgenommen. Dazu wurden sämtliche Seismogramme am Straßburger Institut von Herrn BALL unter der Aufsicht von Herrn E. PETERSCHMITT auf eine einheitliche Papiergeschwindigkeit von 2 cm/s gebracht. Seismogramme mit zu großen Amplituden wurden reduziert. Die entsprechenden Reduktionsverhältnisse finden sich in Abb. 3.

Eine Höhenkorrektur wurde im folgenden nicht angebracht. Sie bleibt auf dem gesamten Profil kleiner als 0,1 s. Bringt man diese Korrektur versuchsweise an, so stellt sich heraus, daß die so korrigierten Laufzeiten viel stärker streuen als die unkorrigierten. Das deutet darauf hin, daß der Einfluß der unbekannten Oberflächengeologie viel stärker sein muß als der der bekannten Höhenunterschiede.

Tabelle 2: NE-Profil Lago Lagorai 1962 (Laufzeittabelle)

T = Laufzeit in sec. $t_r =$ reduzierte Laufzeit $t_r = T - \Delta/6$ in sec.

Eine Höhenkorrektur wurde nicht angebracht. Klassifikation nach BERCKHEMER ([4], S. 2-91).

km(sec)(sec)km(sec)(sec)km(sec)(sec)(sec)(sec)(sec)(sec)(sec)(sec)(sec)4 E3,890,374614,520,5411224,210,3021,154,500,98483,8914,620,644143,4625,461,554,701,18215,121,14227,193,286,302,78316,452,47427,914,006,703,18317,323,34228,344,4318,554,5721326,950,3140,057,610,94590,5016,311,23228,241,608,001,33419,084,00331,094,4511,664,99419,084,00331,094,4511,845,173817,160,5221428,240,4911,845,1739,8117,300,6621428,240,49247,399,131,23220,123,48229,031,289,601,70220,123,48229,9121,9111,063,16222,105,46230,8130,6111,063,16222,105,46230,8130,8130,8114,05 <th></th>	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\overline{2}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5
	4
	2
2 10.12 0.72 5 108,00 18,65 0,65 1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2
56,42 10,80 1,40 2 19,68 1,68 2 180,62 31,77 1,67	2
11,15 $1,75$ 3 $22,42$ $4,42$ 2 $32,50$ $2,40$	2
$\begin{bmatrix} 11,05 & 2,25 & 2 \\ 12,00 & 2,20 & 2 \end{bmatrix}$ $\begin{bmatrix} 23,52 & 5,52 & 2 \\ 33,21 & 3,11 \end{bmatrix}$	4
	4
19,04 $10,24$ 3 $122,74$ $20,98$ $0,52$ 2 16 $32,56$ $0,71$ $0,02$	
	2
4 11 56 0 74 5 21,79 1,33 5 33,46 1,01	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2
	4
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2
21.40 10.58 5 133,64 (23,07 0,80) 1 207,18 35.55 1.02	5
	2
(24,27 2,00) 3	
5 13,29 0,65 2 (26,27 4,07) 4 18 36,66 0,31	1
75,84 14,14 1,50 2 (26,67 4,40) 4 218,08 36,86 0,51	3
14,64 2,00 5 (27,07 4,80) 5 37,66 1,31	4
15,15 2,51 3 (27,64 5,37) 5 38,48 2,13	3
17,45 4,81 3 (28,72 6,45) 3 39,56 3,21	4

Tabelle 2 enthält die Einsätze, die in den einzelnen Seismogrammen ermittelt worden sind. Die Tabelle enthält neben der Laufzeit T auch die reduzierte Laufzeit t_r , die sich aus T und der Entfernung Δ ergibt zu:

$$t_r = T - \Delta/6$$
.

Die einzelnen Einsätze sind bestimmten Klassen nach BERCKHEMER zugeordnet worden ([4], S. 2-91).

Die endgültige Korrelation erfolgte jedoch nicht an Hand der Laufzeittabelle, sondern direkt an der Montage der normierten Seismogramme in Abb. 3. Hier konnten die folgenden Wellen korreliert werden, die in Tabelle 3 zusammengestellt sind:

Welle	Entfernungsbereich (km)	Stations-Nr.	Interceptzeit (sec)	Scheingeschwindigkeit (km/sec)
А	20— 70	4 E, 1—4	0,2	5,8
В	70	4-13	1,1	6,2
С	90210	7, 10, 11, 14, 17	2,3	6,35
D	90—220	7, 9—18	10,1	8,2
E	155—220	13-18	6,5	6,9

Tabelle 3: Korrelation auf dem NE-Profil.

Zu der Korrelation ist im einzelnen folgendes zu vermerken. Zwischen den Stationen 3 und 5 tritt in der Scheingeschwindigkeit der Ersteinsätze ein merklicher Knick auf. Die Welle A mit der Scheingeschwindigkeit von 5,8 km/s ist über diesen Knick hinaus nicht mehr zu verlängern. Die Ersteinsätze sind bis zur Station 13 zu verfolgen.

Die Welle C mit einer Scheingeschwindigkeit von 6,35 km/s ist durch Erst- und spätere Einsätze belegt. Sie ist besonders gut auf den Stationen 10, 11, 14, 15 und 17 zu erkennen.

Die Welle D mit der Scheingeschwindigkeit von 8,2 km/s ist ausschließlich durch spätere Einsätze belegt. Gut begründet ist die Korrelation auf den Stationen 16 bis 18. Sie läßt sich rückwärts verlängern durch deutliche Gruppen bei den Stationen 9 bis 12.

Dagegen ist der Verlauf der Welle E wegen starker Interferenzen nicht so gut festzulegen; ihre Existenz scheint uns jedoch sicher zu sein. Bei Stationen 13 bis 14 sind die sehr starken Wellengruppen bei etwa 3 s reduzierter Zeit sowohl zur Welle D als auch E zuzuordnen. Endlich ist zu bemerken, daß auf den Stationen 14 bis 18 zwei Ersteinsätze nicht mit anderen Wellen korrelierbar sind.

3. Berechnung der Modelle

Die Geschwindigkeit v_0 im Deckgebirge konnte auf diesem Profil nicht beobachtet werden. Rechnet man einmal mit einer Geschwindigkeit von 4,7 km/s, die auf dem E-Profil beobachtet wurde, und zum anderen mit 5,0 km/s, die auf dem W- und auf

dem N-Profil verwendet wurde, so ergeben sich für die Oberkante des darunterliegenden Refraktors mit v = 5.8 km/s in beiden Fällen praktisch die gleiche Tiefe. Bei den folgenden Modellen wurde einheitlich mit einer Deckgeschwindigkeit $v_0 = 5.0$ km/s gerechnet.

Als nächstes ist die Natur der Refraktoren zu diskutieren, die den Scheingeschwindigkeiten von 5,8 und 6,2 km/s zuzuordnen sind. Gegen die Annahme, daß es sich hierbei um zwei selbständige Refraktoren mit den wahren Geschwindigkeiten von 5,8 bzw. 6,2 km/s handelt, finden sich zwei wesentliche Argumente:

1. Die Geschwindigkeit von 6,35 km/s ist bereits ab 90 km zu beobachten. Bei einem Modell mit den beiden wahren Geschwindigkeiten 5,8 und 6,2 km/s ergibt sich als kritische Entfernung für den 6,35-km/s-Refraktor eine Entfernung von 175 km.

2. Die Geschwindigkeit von 5,8 km/s wird nicht über die Station 4 bei etwa 70 km hinaus beobachtet.

Diese beiden Gegenargumente sprechen dafür, beide Geschwindigkeiten ein und demselben Refraktor zuzuordnen. Dieser Refraktor soll im folgenden als das Liegende des triassischen Sedimenttroges aufgefaßt werden. Nach der Oberflächengeologie ist zu vermuten, daß dieser Trog in etwa 130 km Entfernung vom Schußpunkt aufhört. Damit kann aus der Bedingung des Ausbeißens des Trog-Liegenden die wahre Geschwindigkeit dieses Refraktors ermittelt werden. Sie ergibt sich zu etwa 5,9 km/s.

Diese Vorstellung wird durch ein weiteres Argument gestützt. Bei einem solchen Modell ergibt sich für die kritische Entfernung des 6,35-km/s-Refraktors eine Entfernung von 80 km. Bei Station 7 in 90,5 km Entfernung treten besonders starke Amplituden für den 6,35-km/s-Einsatz auf. Dies wird als Hinweis dafür angesehen, daß die kritische Entfernung dieses Refraktors in dieser Gegend zu suchen ist.

Mangels weiterer Informationen nehmen wir an, daß 6,35 km/s die wahre Geschwindigkeit ist, der Refraktor also söhlig lagert. Als Tiefe ergeben sich 17 km.

Die Geschwindigkeit von 8,2 km/s wird der MOHOROVIČIĆ-Diskontinuität zugeordnet. Auch sie wird mangels eines Gegenschusses als wahre Geschwindigkeit angesehen. Hierfür spricht, daß auch auf dem E-Profil die gleiche Geschwindigkeit beobachtet wurde. Für die Tiefe der M-Diskontinuität ergeben sich mit oder ohne Berücksichtigung des 6,9-km/s-Refraktors 47 km.

Die Natur des Refraktors mit einer Geschwindigkeit von 6,9 km/s ist ungeklärt. 6,9 km/s ist eine obere Grenze für die wahre Geschwindigkeit; denn für höhere wahre Geschwindigkeiten ergeben sich negative Mächtigkeiten. Mit 6,9 km/s als wahre Geschwindigkeit ergibt sich für die betreffende Schicht eine Mächtigkeit von 3 km. Bei Wellenlängen von 1 bis 2 km liegt damit die Mächtigkeit bereits in der Größenordnung der Wellenlänge. Daher kann es sich bei der beobachteten Geschwindigkeit von 6,9 km/s nicht um die wahre Refraktorgeschwindigkeit handeln. Mit Sicherheit läßt sich über diesen Refraktor also nur aussagen, daß es sich um eine dünne Schicht handeln muß, in der die wahre Geschwindigkeit der Kompressionswellen größer ist als 6,9 km/s.

Tiefenauswertung Lago Lagorai 1962 NE-Profil

Abb. 4: Krustenmodell auf dem NE-Profil.

Abb. 4 stellt das so berechnete Krustenmodell auf dem NE-Profil dar. Die Refraktoren wurden dabei nur so weit gezeichnet, wie sie durch Einsätze in den Seismogrammen belegt sind.

4. Schlußbemerkung

Die vorliegende Auswertung ist als vorläufig anzusehen. Endgültigere Aussagen lassen sich erst machen, sobald dieses Profil mit den beiden benachbarten N- und E-Profilen zusammen interpretiert werden. Dabei sollten auch die Ergebnisse der diesjährigen Messungen am Lago Bianco herangezogen werden.

Literatur

- BEHNKE, CL., P. GIESE, CL. PRODEHL und G. DE VISINTINI: Seismic Refraction Investigations in the Dolomites for the Exploration of the Earth's Crust in the Eastern Alpine Area 1961. Bollet. di Geofis. teor. ed appl. Vol. 4 (1962), 14, S. 110–132.
- [2] BEHNKE, CL., und M. A. CHOUDHURY: Das Westprofil Lago Lagorai. 2. Stuttgarter DFG-Kolloquium, 23 V 17 (1963), 6 S.
- [3] GIESE, P., und G. DE VISINTINI: Vorläufige Auswertung des Lago-Lagorai-Ost-Profils. 2. Stuttgarter DFG-Kolloquium, 23 V 16 (1963), 6 S.
- [4] Groupe d'ETUDES DES EXPLOSIONS ALPINES: Recherches séismologiques dans les Alpes occidentales au moyen de grandes explosions en 1956, 1958 et 1960. Mémoire Collectif, Année Géophysique Internationale, C.N.R.S. Sér. XII, Fasc. 2 (1963), 243 S.
- [5] PRODEHL, C.: Ein Alpenquerprofil (Gegenschuß Eschenlohe-Lago Lagorai). 2. Stuttgarter DFG-Kolloquium, 23 V 14 (1963), 5 S.

49

Kurzmitteilung

Sprengungen in über 4000 m Tiefe

Von J. F. ROTH, Troisdorf¹)

Eingegangen am 27. August 1964

In einer der Société Nationale des Pétrôles d'Aquitaine, Pau, gehörenden Bohrung nördlich der Pyrenäen wurden in den ersten Tagen des Juni 1964 in 4000 bis 4200 m Tiefe bei 130 °C von der Pan Geo Atlas Corporation-Sahara, Paris, mehrere Sprengungen mit Ladungen bis zu 120 kg Sprengstoff für seismophysikalische Messungen erfolgreich durchgeführt. Den Sprengstoff und die Sprengzünder lieferte die Dynamit Nobel AG, Troisdorf, die auch durch Einsatz von Fachkräften mitarbeitete. Das Einbringen der Ladungen erfolgte durch die "Atlas", Deutsch-Amerikanischer Ölfelddienst, Kiel, mit einem einpoligen Kabel.

¹) J. F. ROTH, Dynamit Nobel AG, Werk Schlebusch.

Erdöl-Prospektion

ALGERIEN	SOCIÉTÉ NORD AFRICAINE DE GÉOPHYSIQUE 6, Boulevard Mohamed Y - ALGIER
AUSTRALIEN	PRAKLA (AUSTRALIA) PTY LTD Box 320 E, G P O ~ BRISBANE'QUEENSLAND
BRASILIEN	PRAKLA S.A. Av. Franklin Roosevelt 23 12° andar - RIO DE JANEIRO
FRANKREICH	COMPAGNIE POUR L'APPLICATION DES TECHNIQUES GÉOPHYSIQUES "C'A.T.G." 79, Champs Elysées – PARIS – VIII e
LIBYEN	PRAKLA LIBYA P.O. Box 679 - TRIPOLIS
MAROKKO	PRAKLA MAROC 2, Rue Lavoisier - RABAT
NIEDERLAND	E PRAKLA / SEISMOS - NEDERLAND Roemer Visscherstroot 42 AMSTERDAM
OSTERREICH	PRAKLA: GMBH WIEN 19 - Kreindl-Gasse 15/10
SPANIEN	PRAKLA-SEISMOS ESPAÑOLA S L. Calle Nervion 4 - MADRID (2)
TURKEI	PRAKLA ANKARA P.K. 41 - CANKAYA-ANKARA

HANNOVER HAARSTRASSE 5 RUF: 80721 FERNSCHREIBER: 0922847 DRAHT: PRAKLA

FLACHWASSERSEISMIK

jetzt schon weitgehend saison-unabhängig

von 0,3 m Tiefe an mit Streamer-Kabel

3 HANNOVER · Wilhelm-Busch-Str. 4 · Tel.: 71 08 31 · Fernschr.: 09 22419 · Telegr.-Adresse: Seismos Hannover