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Code Verification

▲ Fig. 1: Illustration of the equations and laws used to derive the wave equa-
tion that describes wave propagation in porous media. In this work, a macro-
scopic approach is used. The background image is a schematic close-up of a 
porous medium that is saturated by two fluids on the left side, where the wet-
ting fluid is denoted by gray areas and the non-wetting fluid is denoted by light 
blue areas, and saturated by one fluid (light blue) on the right side. The sketch 
shows the ingredients of the seismic wave equation as well as the final wave 
equation, where the vector Q contains the state variables, i.e. the particle veloc-
ities of the solid and both fluids, the effective stress, and the partial pressures of 
the fluids. The vector s is a point force. A, B, C, E and R are matrices that 
consist of material properties (Boxberg, 2019).
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▲ Fig. 3: Reference simulation

► Fig. 4: Results for 19.09° ro-
tation. a) wavefield in the fluid 
particle velocity at t = 0.029 s; b), 
d) and f) show the RMS deviation 
and c), e), and g) show the nor-
malized RMS deviation of the 
solid particle velocity v

S
, the fluid 

particle velocity v
F
 and the fluid 

pressure p (Boxberg, 2019).
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◄ Fig. 2: Results for a symme-
try test with an a priori symmetric 
solution and absorbing boundary 
conditions. The material in the 
inner circle has smaller P1- and 
S-wave velocities, but a larger P2- 
velocity as the material in the 
outer ring. a) Wavefield in the flu-
id particle velocity at t = 0.604 s; 
b), d) and f) show the root-mean-
square deviation and c), e), and g) 
show the normalized root-mean-
square deviation of the solid par-
ticle velocity v

S
, the fluid particle 

velocity v
F
 and the fluid pressure 

p (Boxberg, 2019).

◄ Fig. 5: Frequency 
domains for poroelastic 
media: Domains with a 
white background are 
covered by the pre-
sented theory whereas 
those with grey back-
ground are not (Box-
berg, 2019).

Software verification and validation is a very important step in the software life 
cycle. Boehm (1979) gives an intuitive informal definition of verification and 
validation. Verification is answering the question 'Am I building the product 
right?' and validation is answering to 'Am I building the right product?'. Apply-
ing these questions to this work means to ask 'Am I solving the equations right?' 
and 'Am I solving the right equations?'.

Here, two symmetry tests are shown as part of the verification: an a priori sym-
metric solution and a rotation test (Boxberg, 2019). 
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Theory

Carbon Capture and Storage – An Example

Introduction
Modeling seismic waves in porous media is a challenging task. The additional 
slow P-wave leads to small elements in the computational domain and, hence, 
larger computational costs. However, this detail is sometimes necessary as it is 
demonstrated in the following CCS example. Before, the basis for the theory is 
described and the verification and validation of the code is demonstrated.

▲ Fig. 6: Comparison of measured and calculated velocity for ten different 
sandstone samples: Bentheim (GBS), Berea (BS-11a), Fonteinbleau (FS), 
Pfälzer (PS) and Wilkeson (WS) sandstone. The bars do not denote errors but 
show the upper and lower Hashin-Shtrikman-Walpole limits for all saturated 
samples. Measurement errors are not shown since they are small compared to 
the scale of the figure (Boxberg, 2019).
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Code Validation

▲ Fig. 8: Comparison of a) Ivanova et al. (2012) and b) Huang et al. (2018) 
with c) this work. The difference between a repeated survey after injection and 
a baseline survey is plotted. The post-injection survey in c) was simulated with 
50% saturation of carbon dioxide. The red line marks the top of the Weser Fm 
that is characterized by a ca. 20 m thick anhydrite layer (not modeled explicitly 
here). The black vertical line in b) denotes the position of the injection well. 
The black line in c) marks the top of the Stuttgart Fm (Boxberg, 2019).

▲ Fig. 7: 2D model of the Ketzin anticline that was used in the Ketzin CCS pi-
lot project (Bergmann et al., 2015). The gray vertical line marks the injection 
well and the black stars indicate the positions of the shot positions of the syn-
thetic seismic survey. The dashed lines indicate hypothetical contact lines mim-
icking the distribution of carbon dioxide in the Stuttgart Fm at about 630 m 
depth and of a hypothetical leakage in the Exter Fm (Boxberg, 2019).
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