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Fig 1: Correlation of power spectral density curves and hourly windspeed 
measurements for the vertical channel of station BAVN. Arrows indicate 
frequency peaks caused by surrounding wind turbines.
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Fig. 2: Data flow of denoising (adapted from Zhu et al., 2019). First, the 
input data (a) are transformed into time-frequncy (TF) domain (b) either by 
short-time Fourier transform (STFT) or continous wavelet transform (CWT). 
The real and imaginary part are fed into a denoising autoencoder (DAE) 
which produces two masks for signal and noise (c). The masking functions 
are applied to the noisy TF coefficients to get TF coefficients for signal (d.1) 
and noise (d.2). Finally, both modified TF coefficients are transformed back 
into time domain to get signal (e.1) and noise (e.2).

Installation of Wind Turbines (WTs) close to a seismological 
station leads to worsening in station qualtity (Fig. 1)

WT noise and earthquake signals have overlapping frequency 
bands, thus spectral filtering suppresses both signal and noise  

We applied nonlinear thresholding (Fig. 3c; Langston & Mousavi, 
2019) and used a denoising autoencoder (DAE, Fig. 2) with two 
different time-frequency transformations to separate noise and 
signal 

Fig. 3: Comparison of denoising techniques on real data (vertical 
component). Red and blue lines represent P- and S-arrival estimated 
from onsets at other stations. Numbers in waveform plots are the signal to 
noise ratio. DAE with CWT as time-frequency transform performs best.

DAE learns a sparse representation of the input data and 
produces two individual masks for signal and noise (Fig. 2c)

To train the DAE, we used high signal to noise ratio events and 
added natural noise from a seismological station surrounded by 
WTs 

DAE separates signal and noise, even if both share a common 
frequency band 

DAE is limited to recover signals larger than input noisy data 
because mask functions have values between [0, 1]  

Threshold function results in spiky recovered signal 

sparse 
representation


