
1.  Introduction
The circulation and hydrography of estuaries is largely determined by turbulent mixing. This has been 
impressively demonstrated by the laboratory experiments conducted by Linden and Simpson (1986), gener-
ating lock exchange flows under the impact of air bubble-induced turbulence. They could show that strong 
turbulence slowed down the exchange flow driven by gravitational forces and used this as an explanation 
for the tidal modulation of estuarine circulation (Linden & Simpson, 1988). Earlier, using a simple analyti-
cal model, Hansen and Rattray (1965) quantified how the intensity of estuarine exchange flow is inversely 
proportional to specified constant vertical eddy viscosity and diffusivity. In an idealized numerical model 
study, Hetland and Geyer (2004) showed how the length of an estuary, that is, the longitudinal extent of the 
brackish water zone, depends on a prescribed eddy viscosity and diffusivity: high eddy coefficients result 
in short estuaries and vice versa. Observations and model results for many estuaries reflect this process: 
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During phases of high turbulence (spring tides), mixing reduces vertical stratification and generates more 
upright isohaline surfaces, resulting in shorter estuaries and vice versa during low turbulence (neap tide), 
see for example, Warner et al. (2005) for the Hudson River Estuary and Li et al. (2018) for the Changjiang 
River Estuary.

In contrast to local and instantaneous diffusivities as parameterized in ocean models by turbulence closures 
(e.g., Large et al., 1994; Umlauf & Burchard, 2005), effective diffusivities are often calculated to analyze 
diffusive transport in water bodies of different characteristics. The latter are generally calculated as the 
(negative) ratio of turbulent flux and tracer gradient, both individually averaged over a surface (e.g., an 
isopycnal) and over time, such that they result as weighted integral averages of the local and instantaneous 
diffusivities. Different ways in calculating mean gradients result in different definitions of effective diffu-
sivities. The physically unique and well-defined turbulent properties related to salinity transformation are 
the diahaline turbulent salinity flux and the salinity mixing (i.e., the turbulent salinity variance dissipation) 
defined below. However, for comparison with local and instantaneous diffusivities, the effective diffusivity 
is a useful quantity across a large range of salinity-gradient scales. The substantially inhomogeneous distri-
bution of eddy diffusivity (low in the interior, high at sloping bottoms) has the consequence that effective 
diffusivities in various types of basins are easily an order of magnitude larger than the local ones observed 
in the interior, such as found, for example, for the world ocean (Waterhouse et al., 2014), the Baltic Sea 
(Holtermann et al., 2012) or lakes (Goudsmit et al., 1997).

In ocean models, diffusivities are typically contaminated by numerical spurious mixing by tracer advection 
schemes, such that water mass transformations parameterized by carefully calibrated turbulence closure 
models might be overridden by numerical diffusion. Various methods have been proposed to estimate ef-
fective diffusivities in ocean models, either based on the increase of background potential energy (Griffies 
et al., 2000; Ilıcak et al., 2012), on numerical tracer releases (Getzlaff et al., 2010, 2012) or on water mass 
transformation analysis evaluating overturning stream functions (Lee et al., 2002; Megann, 2018). All these 
methods share the drawback that the analysis averages effective diffusivities over large regions. Methods for 
locally analyzing physical and numerical mixing based on the decay of tracer variance have been proposed 
by Burchard and Rennau (2008) and Klingbeil et al. (2014). These methods, however, do not yet allow com-
puting effective diapycnal diffusivities.

In estuaries, effective longitudinal diffusivities, that is, the ratio of longitudinal turbulent salinity fluxes 
and salinity gradients individually averaged over vertical transects, are several orders of magnitude larger 
than vertical diffusivities (Fischer, 1976). This is mainly due to the process of shear dispersion (Taylor, 1954; 
Young & Jones, 1991), a combination of vertical diffusion and vertical shear. In order to reproduce salt 
intrusion, vertically or cross-sectionally integrated estuarine models which do not resolve tidal shear disper-
sion do therefore need to parameterize this process through large values of longitudinal diffusivity (Ralston 
et al., 2008; Uncles & Stephens, 1990).

In early coastal ocean models, horizontal diffusivity was applied to suppress numerically induced oscilla-
tions (Blumberg & Mellor, 1987). Recent models use monotone advection schemes including implicit nu-
merical diffusion, such that explicit horizontal diffusion is not needed (e.g., Hofmeister et al., 2011; Ralston 
et al., 2017). The numerical mixing caused by these advection schemes as well as the physical mixing due to 
the turbulence closure model can be quantified as local and instantaneous dissipation of salinity variance 
(Burchard & Rennau, 2008; Klingbeil et al., 2014). In some estuarine model simulations, the numerical 
mixing can account for a substantial part of the total mixing, such that a re-tuning of the turbulence closure 
is required to obtain satisfactory salinity distributions (Ralston et al., 2017).

In estuaries, density is largely determined by salinity, although for low-inflow estuaries, specifically in 
summer, also temperature might contribute to density stratification (Largier et al.,  1996). Therefore, for 
typical strong-inflow estuaries, temperature variations are often neglected when analyzing the dynamics, 
with the consequence that isohaline and isopycnal surfaces are assumed to be identical. In recent years, 
one focus of estuarine physical studies has been the analysis of salinity mixing, defined as the decay of 
salinity variance (Burchard & Rennau,  2008; Burchard et  al.,  2009). Based on the Total Exchange Flow 
(TEF) analysis framework introduced by MacCready (2011), the relation between the exchange flow and 
integrated estuarine salinity mixing of riverine fresh water and oceanic salt water was studied by several au-
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thors (Burchard et al., 2019; MacCready et al., 2018; Wang et al., 2017). To 
better understand estuarine dynamics, analysis of water mass transfor-
mations on isohaline surfaces (Hetland, 2005; MacCready & Geyer, 2001; 
MacCready et al., 2002; Walin, 1977) is often advantageous over the anal-
ysis in geographical coordinates, since it is not contaminated by adiabatic 
(advective) processes such as tidal oscillations. Using the definition of 
mixing per salinity class (Wang et al.,  2017), that is, mixing integrated 
over infinitesimal isohaline volumes, Burchard (2020) were able to show 
that for long time integrations it converges toward twice the product of 
the respective salinity times the freshwater run-off. By using the analysis 
of physical and numerical mixing introduced by Klingbeil et al. (2014), 
the total mixing per salinity class could be decomposed into physical and 
numerical contributions, where the latter could become negative at times 
when antidiffusive advection schemes are applied.

Due to the pivotal role of eddy diffusivity in estuaries, the present study 
aims to estimate diahaline turbulent salinity fluxes and diffusivities in 
an estuarine numerical model simulation. This will be achieved by ex-
ploiting the recent concept of mixing on isohaline surfaces. The method 
presented here resembles in parts the calculation of eddy diffusivity as 
the product of scalar flux averaged over isoscalar surfaces and the inverse 
of the diascalar gradient for the vertical coordinate z* of the sorted scalar 
field, as proposed by Winters and D'Asaro (1996).

2.  Mathematical Derivation
This section aims to review and further derive the isohaline framework 
within which the diahaline turbulent transport and the effective dia-
haline diffusivities are defined. The basic definitions of instantaneous 
mixing, fluxes, and diffusivities are given in Section  2.1. The isohaline 
geometry including isohaline surfaces and volumes is introduced in Sec-
tion 2.2. Based on this, diahaline mixing, transport, and diffusivities are 
defined in Section 2.3. Finally, in Section 2.4, diahaline mixing relations 
and effective diahaline diffusivities for long-term averaged estuarine 
states are discussed in the light of these new results. Note that a list of 
variables including their meanings and units is given in Table 1.

2.1.  Salinity Mixing and Diahaline Diffusivity

The basic physical equations from which the present theory is derived are 
the continuity equation (volume conservation, assuming incompressibil-
ity of sea water),

0,u  
 � (1)

and the salinity equation (salinity conservation),

  diff 0,s
ts us       

 
� (2)

where u
 is the velocity vector, s is absolute salinity, and

diff ( , , )s
h x h y v zK s K s K s      


� (3)
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Symbol Meaning Unit

a TEF-based isohaline area m2

A Instantaneous isohaline surface m2

Ar River transect area m2

b TEF-based isohaline thickness m (g/kg)−1

bloc Local thickness per salinity class m (g/kg)−1

Bloc Accumulated local thickness m
f s Diahaline salinity flux ms−1 (g/kg)

f sadv
Advective diahaline salinity flux ms−1 (g/kg)

diff
sf Diffusive diahaline salinity flux ms−1 (g/kg)

F s Diahaline salinity transport m3s−1 (g/kg)

adv
sF Advective diahaline salinity transport m3s−1 (g/kg)

diff
sF Diffusive diahaline salinity transport m3s−1 (g/kg)

diff
s


 Diffusive salinity flux vector ms−1 (g/kg)

Kh Horizontal eddy diffusivity m2s−1

Kn Diahaline eddy diffusivity m2s−1

nK Effective total diahaline diffusivity m2s−1

num
nK

Effective numerical diahaline diffusivity m2s−1

phy
nK

Effective physical diahaline diffusivity m2s−1

Kv Vertical eddy diffusivity m2s−1

m Mixing per salinity class m3s−1 (g/kg)
mnum Numerical mixing per salinity class m3s−1 (g/kg)
mphy Physical mixing per salinity class m3s−1 (g/kg)
M Volume-integrated mixing m3s−1 (g/kg)2

u
 Velocity vector ms−1

su
 Velocity of point on isohaline surface ms−1

s Absolute salinity gkg−1

v Volume per salinity class m3 (g/kg)−1

V Accumulated estuarine volume m3

wdia Diahaline volume transport per unit area ms−1

χ Salinity mixing per unit volume s−1 (g/kg)2

zTEF TEF-based isohaline position m

Table 1 
List of Variables Including Their Meanings and Units
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is the turbulent (diffusive) salinity flux vector in Cartesian coordinates, 
where Kh and Kv are horizontal and vertical eddy diffusivities, respectively.

The salinity mixing per unit volume, χ, is defined as the local loss of sa-
linity variance (Burchard & Rennau, 2008),

2 2 2
diff2 2 ( ) 2 ( ) 2 ( ) .s

h x h y v zs K s K s K s          
 
� (4)

It should be noted that the single components of the turbulent salinity 
flux vector are downgradient, but due to the nonisotropic eddy diffusivity 
(Kh ≫ Kv) the flux vector is not orthogonal to the isohaline surface, see 
Figure 1 and the discussion below.

In ocean models, the horizontal turbulent fluxes are typically aligned 
with the vertical model coordinate, for example, with constant z-levels 
for geopotential models, constant σ-levels for models with terrain and 
surface following σ-coordinates (with σ = (z − η)/(H + η), the sea surface 
height z = η and the bottom coordinate z = −H) or constant density for 
isopycnal models. Thus, for nongeopotential models, vertical turbulent 
fluxes are nonorthogonal to the lateral fluxes. In nonisopycnal models, 
the rotation of horizontal turbulent fluxes into isopycnal direction causes 
numerical problems (Beckers et al., 1998; Griffies et al., 17) and is there-
fore sometimes avoided.

Let su  denote the velocity of a point moving with an isohaline surface with

0.s
t s u s    

� (5)

Then,

dia ( ) ,sw u u n  
  � (6)

(with the normal vector /n s s  
  , pointing toward higher salinity) is the diahaline volume transport per 

unit area at that point, and
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Figure 1.  Sketch explaining the projection of the turbulent diffusive flux 
vector diff

s

  to the diahaline direction. The unit normal vector n


 is pointing 

outside the domain toward higher salinity.

Figure 2.  Sketch illustrating the estuarine volume V(S) (blue), bounded by the isohaline of salinity S with area A(S) 
(red), the surface (marked by blue lines), the bottom (marked by yellow lines), and the river transect (facing to the 
right) with area Ar. Across the river transects, riverine water of salinity s = 0 and a rate of Qr is entering the volume. 
The salinity transport across the isohaline is denoted as Fs(S). As indicated, the vertical scale H is much smaller than 
the horizontal scale L, such that the isohaline surface is virtually flat.
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dia
adv diff

s s s
n nf f f w s K s    � (7)

is the total (advective plus diffusive) diahaline salinity flux, see Section 
6.7 of Griffies (2004), Figure 3 of Groeskamp et al. (2014), and Section 
7.1 of Groeskamp et al. (2019) for a full derivation. In 7, the salinity gra-
dient normal to the isohaline surface is defined as ns s n   

 
 and Kn is 

the diahaline diffusivity. Note that the diahaline turbulent salinity flux, 
diff diff
s sf n 

 
 , is the orthogonal projection of the turbulent salinity 

flux vector to the isohaline surface, see Figure 1 for an illustration. The 
definition 4 of the mixing per unit volume and the definition 7 of the 
diahaline turbulent salinity flux both imply the following expression for 
the diahaline diffusivity,

   

2 2 2
diff

2 2

1
( ) ( ) ( ) 2 ,

s
h x h y v z

n
n n n

f K s K s K s
K

s s s

    
   

  
� (8)

which means that the diahaline diffusivity is a weighted average of 
the horizontal and vertical eddy diffusivities depending on the salinity 

gradients. A consequence of this is that the diascalar diffusivities are different for each scalar tracer al-
though the horizontal and vertical diffusivities are not.

2.2.  Isohaline Volumes

We consider here a time-averaged estuarine volume V(S) bounded in seaward direction by an isohaline of 
arbitrary salinity S with area A(S), that is, the volume contains estuarine water masses with a salinity s with 
s ≤ S. The volume is further bounded by the air-sea interface at z = η, the river boundary area Ar located 
at zero salinity and zero salinity gradient, and the impermeable sea bottom at z = −H (Figure 2). Similar 
definitions have been used by Hetland (2005), see his conceptual Figure 2. The time-averaging operator is 
introduced for any function X(t) as

/2
/2

1( ) ( )d ,t T
t TX t X t t

T

    � (9)

where T is the averaging interval. Note that for the limit of T → 0, the nonaveraged, instantaneous value 
( ) ( )X t X t  is obtained. In the following, we generally drop the argument t for time-averaged quantities. 

With this, V(S) is formally defined as

( )max( ) [ ( , , , )] d ,V SV S S s x y z t V  � (10)

with the Heaviside function

0 for 0,
[ ]

1 for 0.
x

x
x


  
� (11)

The isohaline volume had been defined by Walin (1977) as the infinitesimal volume per salinity class, for 
which different formulations can be used:

v S V S v S S s AS S
S

A S n( ) ( ) ( ) ,( )� � � � � � � � � �� �� � �
0

1
d d� (12)

where   1
ns

  is the local and instantaneous infinitesimal thickness of the isohaline. Figure 3 illustrates 
the definitions of volume per salinity class and thickness per salinity class by means of a finite salinity  
increment ΔS.
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Figure 3.  Sketch explaining the isohaline volume and thickness by means 
of a finite salinity increment ΔS. The gray area indicates the finite volume 
ΔV between the isohaline surfaces A(S + ΔS/2) and A(S − ΔS/2). For the 
limit of ΔS → 0, ΔV/ΔS → ∂SV = v, that is, the infinitesimal volume per 
salinity class is obtained. The local thickness of the finite volume ΔV is 
denoted as Δn, that for ΔS → 0 the infinitesimal local thickness per salinity 
class, 1Δ / Δ ( )nn S s    is obtained.
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It should be noted that the isohaline volumes defined here depend on 
salinity S only. To retrieve information how these properties are distrib-
uted in horizontal space, the local thickness per salinity class, b loc, and 
the accumulated local thickness with salinities ≤S, Bloc, can be defined as

b S x y B S x y B S x y

S s x y z t

S
loc loc loc

with, , , , , ,

, , ,

� � � � � � � �
� � � ��� �� ddzH x y

x y t
� � �
� �

� ,

, ,
.

�
� (13)

We define the TEF-based mean isohaline surface height as

     TEF loc, , , , , ,z S x y x y B S x y   � (14)

which for a monotonically stable salinity stratification is the average verti-
cal position of the isohaline. This is motivated by the TEF analysis frame-
work proposed by MacCready (2011) which is comparable to the TRM-II 
theory proposed by McDougall and McIntosh (2001). Equation 14 indi-
cates an isohaline position inside the water column for all locations (x, y) 
where the salinity S has occurred during the averaging period for a finite 
period of time (Figure 4). The isohaline surface height zTEF resembles the 

isoscalar coordinate z* defined by Winters and D'Asaro (1996), with the difference that zTEF is defined for 
each water column individually, whereas z* is a one-dimensional coordinate representing an entire volume, 
see also equivalent approaches by McDougall and McIntosh (2001) and Nurser and Lee (2004).The surface 
area of the TEF-based isohaline height is denoted as a(S). With 12,

( ) ( ) / ( )b S v S a S� (15)

is the area-averaged infinitesimal thicknesses per salinity class of the TEF-based salinity distribution. The 
area-averaged salinity gradients are then estimated as b−1. In comparison to directly averaging the diahaline 
salinity gradient ∂ns over the isohaline surface of a specific salinity class (a task that is numerically de-
manding in a discrete model), this method is biased toward lower values of gradients and therefore toward 
higher values of effective diffusivities. On the other hand, the method is easy to implement in this isohaline 
framework, see also Section 3. As a method to estimate mean diapycnal density gradients in ocean mixing 
studies, the density field may be resorted adiabatically into a state of minimum available potential energy 
with flat isopycnals (Griffies et al., 2000; Winters & D'Asaro, 1996), resulting in a single profile of effective 
diffusivity as function of density only. This method, however, is computationally demanding in situations 
with variable bottom topography.

It should be noted that the calculations of the isohaline areas and the derived isohaline thicknesses are cor-
rect for the projections of the isohalines to geopotential surfaces. Increased areas and decreased thicknesses 
due to sloping isohalines are not taken into consideration. However, these errors are assumed to be small 
due to the small aspect ratio between vertical and horizontal scales in estuaries and the resulting small 
slopes of the isohalines. Additionally, isohalines are TEF-based time-averaged surfaces such that steeper 
isohaline slopes due to transient dynamics such as submesoscale or frontal dynamics are smoothed. In nu-
merical models, it is possible to correct for these errors, but for simplicity we refrain here to do so.

2.3.  Diahaline Transport

The transports of salinity through the isohaline surface are denoted as

F S f A F S f A F S fs
A S

s s
A S

s s
A S( ) , ( ) , ( )( ) ( ) ( )� � � � � �d dadv adv diff diff

ss Ad ,� (16)

with the total salinity transport being denoted as adv diff
s s sF F F   and the diahaline salinity fluxes defined 

in 7.
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Figure 4.  Sketch explaining the local thickness per salinity class, bloc, the 
accumulated local thickness with salinities ≤S, Bloc, and the TEF-based 
mean isohaline surface height, zTEF, in a discrete way with a finite salinity 
increment ΔS. In the limit of ΔS → 0, the discrete local thickness per 
salinity class converges toward the (infinitesimal) thickness per salinity 
class: b S B S S B S S S b SS   loc loc loc loc/           / /2 2 .
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According to Burchard (3), the mixing per salinity class m(S) is defined as

m S M S M S m S S VS
S

V S( ) ( ) ( ) ,( )� � � � � � � �� �with d d0 �� (17)

with the volume-integrated salinity mixing M(S). Note that 17 has already been formulated by Wang 
et al. (2017) for the vertical component of mixing, see their Equation 4.3. Applying a generalized form of 
the Leibniz theorem (see the equation above Equation 3.5 of Marshall et al., 1999), m(S) can also be formu-
lated as

m S s AA S n( ) ,( )� � �� ��1 �d� (18)

which is a type of transformation between surface integrals and volume integrals that serves as the founda-
tion for many applications of water mass transformations (Groeskamp et al., 2019). Equation 18 is equiva-
lent to the definition of the volume per salinity class given in 12, see Figure 3, with χ included.

Combining 7, 8, 16, and 18, the mixing per salinity class can also be formulated as

m s A

s K s A

K s A

A S n

A S n n n

A S n n

� � �� �

� � �� � �� �

� � �

� �

�

�

( )

( )

( )

1

1 2
2

2

2

�d

d

d

FF sdiff .

� (19)

With this, the mixing per salinity class is twice the (negative) diahaline turbulent salinity transport. This 
also means that the mixing integrated over the volume V(S) can be expressed by means of integrating the 
diahaline turbulent salinity transport through all isohalines with salinities smaller than or equal to S:

� ���2
0

F S M Ss
S

diff d ( ),
� (20)

see Equation 4.4 by Wang et al. (2017). Equation 19 allows for easy calculation of diahaline turbulent trans-
port and effective diahaline diffusivities including their decomposition into physically and numerically in-
duced components (see below). This formulation does also allow formulating the recently proposed univer-
sal law of estuarine mixing (Burchard, 2020) without using a budget equation for the salinity variance or the 
integrated salinity square, see Section 2.4.

Following Klingbeil et al. (2014), the mixing per unit volume χ can be exactly decomposed into physi-
cal and numerical contributions, such that consequently also the mixing per isohaline volume can be 
decomposed:

phy num.m m m � (21)

Motivated by the relations in 8, an effective total diahaline diffusivity, nK , can be calculated by dividing 

the negative mean diahaline turbulent flux averaged over the isohaline surface, diff
1/ /
2

sF a m a  , by the 

mean diahaline salinity gradient, b−1 = a/v:

diff
1 2
/ 1 ,

2

s

n
F a mvK
b a


 

� (22)

which is the key result of the present study. When formulated as

diff ,
s

n
F vK
a a

  � (23)
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22 resembles Equation 12 by Winters and D'Asaro (1996) for calculating the turbulent eddy diffusivity by 
means of the average diascalar flux times the inverse of the scalar gradient with respect to their z* coordi-
nate. The formulation 22 has the advantage that the three properties m, v, and a can be calculated in an easy 
way in numerical models. Moreover, using 21, the effective diahaline diffusivity can be split into physical 
and numerical parts:

phy num
phy num

2 2
1 1, .
2 2n n
m v m vK K
a a

 � (24)

Details of the discretization of 24 are given in Section 3.

2.4.  Diahaline Mixing Relations

As shown in Burchard (2020) for tidally periodic estuaries averaged over a tidal period or general estuaries 
averaged over a long period, the downestuarine advective salinity transport through an isohaline of salinity 
S is adv

s
rF SQ , where Qr is the time-averaged river run-off. Under these equilibrium conditions, the down-

estuarine advective salinity transport must be exactly balanced by an opposing upestuarine diffusive salinity 
transport diff adv

s sF F  . Using 19, we obtain diff adv2 2 2s s
rm F F SQ    , stating that under equilibrium 

conditions the mixing per salinity class is twice the product of the river run-off times the salinity of the 
respective isohaline. This has been recently formulated by Burchard (2020) as the universal law of estuarine 
mixing, derived in a more complicated way by combining volume-integrated budget equations for volume, 
salinity, and salinity-squared. A similar relation has already been derived by Zika et al. (2015) for the fresh 
water cycle of the global ocean.

3.  Discretization
The numerical model calculates for each time step n and for each grid box i, k discrete values for the 
time-variable layer thickness, ,

n
i kh , the salinity, ,

n
i ks , the physical mixing per unit volume, phy,

,
n

i k  (due to dif-
fusion with eddy diffusivity calculated by the turbulence closure scheme), and the numerical mixing per 
unit volume, num,

,
n

i k  (due to truncation errors of the salinity advection scheme). We calculated the latter 
two quantities utilizing the method proposed by Klingbeil et al. (2014) as local discrete variance decay due 
to diffusion and advection, respectively. Furthermore, the horizontal grid cell area is kept constant in time 
and is denoted as Ai. The index i is here the counter for the two-dimensional horizontal grid which may be 
structured or unstructured, and k is the vertical counter of layers.

For the binning into salinity classes, the salinity range smin ≤ s ≤ smax is discretized into J equidistant salinity 
intervals Δs = (smax − smin)/J. The time-averaged volume per salinity class, vj, is then calculated for each 
water column i as
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where sj = smin + jΔs and ⌈x⌉ is the ceiling function to any nonnegative real number x, j with 1 ≤ j ≤ J is 
the counter for the salinity class and N is the number of time steps. With 25, a vector of salinity classes j is 
defined for each water column i which is then subsequently filled in a binning process with subvolumes 

,
n

i i kA h  and averaged by the number of time steps N. Division by Δs is necessary in 25, because vi,j is volume 
per salinity class.

The physical and numerical mixing per salinity class, phy
,i jm  and num

,i jm , are calculated accordingly as

phy phy, num num,
, , ,, , ,

, ,

{ } { }1 1, ,

, .
Δ Δ

n n n ni i
i k i j i ki j i k i k

k n k n
n ns s s s s sj j j ji k i k

A Am h m h
N s N s

 

    

  
� (26)
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Let A = ∑i∈IAi be a specifically defined subarea (e.g., an estuarine segment or the entire estuary) composed 
of all areas Ai with the index i included in the set I. Then, following 24, with 25 and 26, the physical and 
numerical effective diahaline diffusivities representative for A(S = sj) are calculated as

   

phy num
,, , ,phy num

2 2
, ,

, ,
2 2

i ji j i j i ji I i I i I i I
jj

i j i ji I i I

m v m v
K K

a a
   

 

    

 
� (27)

with the isohaline area

,
,

, if 0
0, else.
i i j

i j
A v

a


 


� (28)

With 28, a water column with an empty salinity class j is associated with zero isohaline area. We speculate 
that it will happen, when a salinity class is outside the range of salinities occurring in a water column (such 
as ocean salinity in permanently brackish water). This may also happen for high numbers of salinity classes 
and low numbers of salinity values (due to low vertical and temporal resolution or short averaging periods). 
In both cases, such empty salinity classes pose no problem. If a salinity class does not occur in any water 
column of the chosen subarea, the effective diahaline diffusivities for that salinity class are not defined. It 
should be mentioned here, that the isohaline area A(S = sj) is calculated for simplicity as the projection of 
the isohaline surface to geopotential surfaces, an error that is small due to the small aspect ratio of estuaries 
(see Figure 2 and also the results of Section 4) and it is identical for the calculation of both, the effective 
physical and numerical diahaline diffusivity. In regions where this approximation is not sufficiently accu-
rate, a more exact reconstruction of the isohaline area could be made.

4.  Idealized Model Experiments
To demonstrate the calculation of effective diahaline diffusivities and other mixing-related properties, we 
simulate an idealized estuary, exponentially widening toward the open ocean (Figure 5). We placed the estu-
ary at a latitude of 53.5°N and prescribed a length of 100 km, a central navigational channel of 15 m depth, 
and lateral shoals with an average depth of 3 m. At the mouth, the estuary is 81 km wide to allow for the 
development of a river plume, and decreases in width exponentially in landward direction. The minimum 
width of the estuarine channel is set to 1 km. The model is forced at the open boundary with a mono-chro-
matic semidiurnal tide of 2.0 m amplitude and a constant ocean salinity of 35 g/kg. At the river end of the 
estuary, a constant freshwater run-off of Qr = 700 m3s−1 is prescribed. There is no wind forcing applied.

For the simulations, the General Estuarine Transport Model (GETM, www.getm.eu, Burchard & Bold-
ing,  2002) has been applied, a primitive equation coastal ocean model model using general vertical co-
ordinates and explicit mode splitting (Klingbeil et al., 2018). The discretization in GETM is based on the 
finite-volume principle such that volume and salt are exactly conserved. GETM is coupled to the turbulence 
module of the General Ocean Turbulence Model (GOTM, www.gotm.net, Burchard & Bolding, 2001; Um-
lauf & Burchard, 2005), using the k-ɛ two-equation turbulence closure model with an algebraic second-mo-
ment closure by Cheng et al. (2002). Explicit horizontal diffusion is not applied.

We constructed a curvilinear grid with 200 cells in longitudinal direction and 30 cells across the estuary. 
In the vertical, 30 terrain and surface following σ-layers are used with some grid refinement toward the 
bottom. For the temporal discretization, each semidiurnal tidal cycle is resolved with 5,000 baroclinic time 
steps, each of them split into 10 barotropic time steps. The advection terms in the momentum, salinity, 
and turbulence budgets are discretized employing the TVD-SPL-max-1/3 scheme (Waterson & Decon-
inck, 2007), known for its minimum numerical mixing (Mohammadi-Aragh et al., 2015), combined with 
Strang splitting (Pietrzak, 1998). The isohaline analysis is carried out for a discrete salinity increment of 
ΔS = 0.1 g/kg, and it was found that the results do only weakly depend on ΔS. However, for a too small ΔS 
and too short averaging intervals, results may become noisy, since the number of discrete values per salinity 
class may be too low. A similar problem has been discussed by Lorenz et al. (2019) for TEF analysis across a 
fixed transect. In contrast, for too large ΔS, results will have a too low resolution in salinity space.
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The simulation is started from rest (zero surface elevation, zero velocity, constant salinity s = 15 g/kg) until 
a quasiperiodic state is reached, still including nontidal oscillations such as internal waves of frequencies 
not matching the tidal frequency. Ten tidal periods of this quasiperiodic state are analyzed to calculate rep-
resentative tidally averaged properties.

A snapshot of the salinity distribution at high water is shown in Figure 5. A salt wedge is reaching up to 
70 km of the estuary with a strong near-surface stratification downstream of it. A river plume veering to the 
north (positive y-direction) due to Earth rotation is visible in the outer estuary. The lateral salinity structure 
is complex due to lateral circulation (which is not shown).

The salinity field from the TEF-based averaging is shown in Figure 6 for the center line of the estuary (y = 0). 
For each water column, the TEF-based average salinity is located at zTEF(S) defined in 14. With this, the low-
est salinity occurring in that water column is located at the time-averaged surface, and the highest salinity is 
located at the bottom. Here, it can also be seen how small the error of approximating the TEF-based time-av-
eraged isohaline area by its projection to geopotential coordinates is: for the example of the 25-g/kg-iso-
haline based on TEF (Figure 6), the relative error of the isohaline area is 2 2 1/2 71 / ( ) 2.5 10L H L     , 
with the length of the projected isohaline of L = 30 km and the centerline depth of H = 15 m, when assum-
ing a flat bottom and a planar approximation of the isohaline.

Since the physical lateral diffusivity is set to zero in the model experiment, it is expected according to 8 and 

22 that the effective physical diahaline diffusivities, phy
nK , are a weighted average of the vertical diffusivities, 

Kv, occurring in a specific salinity class. This should also be the case for the effective total diahaline diffusiv-
ities, nK , when physical mixing is dominating over numerical mixing. It is therefore instructive to inspect 
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Figure 5.  Idealized convergent estuary model: salinity distribution during high water as gauged at x = 0. The upper left panel shows surface salinity, the 
lower left panel shows a longitudinal transect (at y = 0 km), and the right panels show a cross-sectional transect at three different locations (note the different 
horizontal scales).
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the distributions of Kv for different situations. This is shown in Figure 7 as snapshots during full flood and 
full ebb for the centerline of the estuary. During flood, due to a destabilization of the lower half of the wa-
ter column in the salt wedge vertical diffusivity is enhanced in this region with values of around Kv = 10−2 
m2s−1. During ebb, marginal shear instability is dominating in parts of the salt wedge (with salinities above 
12 g/kg) such that vertical diffusivities are still elevated, but when strong stratification occurs too close to 
the bed, the eddy diffusivity in the water column above drops to values of below 10−5 m2s−1. In the strongly 
stratified regions with the salt wedge, diffusivities drop down to the background value of about 10−6 m2s−1 
given by the turbulence closure. In the well-mixed regions upstream (near s = 0 g/kg) and downstream 
(near s = 35 g/kg) of the salt wedge, diffusivities resemble parabolic profiles and reach high values of up to 
10−1 m2s−1 in about mid water column.

The analysis of mixing per salinity class shows that the universal law of estuarine mixing proposed by Bur-
chard (2020) is closely approximated by averaging over 10 tidal periods in a quasiperiodic state (Figure 8a). 
For salinities below 22 g/kg (the maximum salinity that is not reaching the open boundary) physical mixing 
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Figure 6.  Idealized convergent estuary model: averaged salinity distribution and isohaline positions at the centerline 
of the estuary (y = 0) resulting from TEF-based averaging. Isohalines are shown in steps of ΔS = 1 g/kg. The red line 
represents the position of the isohaline with S = 25 g/kg.

Figure 7.  Idealized convergent estuary model: eddy diffusivity Kv (color code) and salinity s (isolines) during (a) full flood and (b) full ebb at the centerline of 
the estuary (y = 0).
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is dominating the total mixing with numerical mixing only contributing by about 30% at most. Only in the 
coarse resolution region of the river plume at salinities larger than 30 g/kg does numerical mixing dominate 
(Figure 8a). As further input to the calculation of effective diahaline diffusivity, volume per salinity class, 
and isohaline area (Figure 8b), and the mean salinity gradient of each salinity class, b−1 (Figure 8c) are 
shown. Maximum values of b−1 of more than 10 (g/kg) m−1 are reached between salinities 16 and 23 g/kg. 
This means that for those salinity classes the isohalines are so much stretched out in the longitudinal direc-
tion that the thickness per salinity class decreases below 0.1 m (g/kg)−1, see also Figure 6. With m, v, and a 
(Figures 8a and 8b), all parameters determining the effective diahaline diffusivities are present. The result-
ing diffusivities are shown in Figure 8d. nK  increases about linearly from 1 · 10−5 m2s−1 at a salinity of 1 g/kg 
to a maximum of 6 · 10−5 m2s−1 at 7 g/kg and then decreases to 1 · 10−5 m2s−1 at 23 g/kg. A peak in effective 
diahaline diffusivity is generated by a combination of the mixing per salinity class and the isohaline area 
increasing with salinity and the volume per salinity class substantially dropping down above a salinity of 
7 g/kg. For salinities larger than 23 g/kg, the effective diahaline diffusivity reaches a relatively high level of 
≥2 · 10−5 m2s−1, with a peak of 1 · 10−4 m2s−1 at 24 g/kg, due to a high isohaline volume per salinity class and 
a consequently small diahaline gradient. As for the mixing per salinity class, also for the effective diahaline 
diffusivity, the numerical contribution is relatively high for these high salinity classes. Generally, effective 
diahaline diffusivities are substantially lower than the relative high instantaneous values of Kv > 10−2 m2s−1 
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Figure 8.  Idealized convergent estuary model averaged over 10 tidal periods during a quasiperiodic state: properties defining effective diahaline diffusivities as 
function of salinity. (a) Physical, numerical, and total mixing per salinity class in comparison to the universal law m(S) = 2SQr; (b) area of isohaline S, a(S), and 
volume per salinity class, v(S); (c) resulting averaged salinity gradient, b−1; (d) effective physical, numerical, and total diahaline diffusivity. The vertical hatched 
line indicates the minimum salinity which reaches the open boundary.
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shown in Figure 7 for the well-mixed regions in the freshwater range, the bottom boundary layer and the 
well-mixed region near the mouth. This can be explained by the fact that the mixing per unit volume, χ, is 
generally low in these regions, which has an impact on the mixing per salinity class, m.

To analyze the spatial distribution of total mixing per salinity class, an integration along the transverse co-
ordinate is carried out, such that total mixing per salinity class per longitudinal distance is calculated, see 
Figure 9. As a result, elevated mixing occurs over a large range of distance and salinity classes. Integration 
of the total mixing per salinity class and meter with respect to x results in total mixing per salinity class ap-
proximating the universal law (left graph). When integrating with respect to salinity, total mixing per meter 
is obtained, see the upper graph in Figure 9, showing maximum values in the range −90 km ≤ x ≤ −80 km. 
However, this distribution does not follow a specific law. Together with the volume per salinity class per 
longitudinal distance (Figure 10a), the effective total diahaline diffusivity can be calculated (Figure 10b). 
There is a broad region in salinity and longitudinal distance where the effective total diahaline diffusivity is 
of the order of 10−4 m2s−1. At some distinct locations (−80 km ≤ x ≤ −70 km, S ≤ 15 g/kg), elevated values of 
up to 5 · 10−4 m2s−1 occur due to a combination of localized high mixing and high volume.

Using the information on mixing per salinity class and volume per salinity class for every water column, it is 
possible to calculate maps of the effective diahaline diffusivity, as shown in Figures 11a–11c for the example 
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Figure 9.  Idealized convergent estuary model averaged over 10 tidal periods during a quasiperiodic state: (a) mixing per salinity class and longitudinal 
distance, ∂xm(S), (b) mixing per salinity class, m(S) = ∂SM(S) (integrated along the estuary), and (c) mixing per longitudinal distance, ∂xM(S) (integrated over 
salinity).
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of S = 25 g/kg. In the well-resolved channelized region of the estuary (x ≥ −90 km), diffusivities are 
dominated by physical values. They are highest in the deeper parts of the channel and reach values 
of several 10−4 m2s−1. Over the shoals, the diffusivities are about 1 order of magnitude smaller. In the 
region of the outer estuary (x ≤ −90 km), where the river plume veers to the right in downstream 
direction due to Earth rotation, the horizontal resolution becomes coarse, such that numerical mix-
ing is comparable to physical mixing (Figures 11b and 11c). With this, the maps of Figures 11a–11c 
represent the spatial distribution of the effective diahaline total, physical, and numerical diffusivities 
that are accumulated to one value for each salinity in Figure 8d. As an example, the effective physical 

diahaline diffusivity is K Sn
phy

g/kg m s�� � � � �
25 2 10

5 2 1
·  (Figure 8d), which can be interpreted as a 

weighted integral average of the spatial distribution of K S x yn
phy g/kg 25 , ,  over all water columns 

x and y where the salinity of 25 g/kg is occurring at least once during the averaging interval.

5.  Discussion
The major goal of this study is to develop a method to calculate effective diahaline turbulent 
fluxes and diffusivities, including a decomposition into physical and numerical contributions. 
The resulting method is based on the calculation of mixing per salinity class from which di-
ahaline transports can directly be derived, see 19, as well as on the calculation of volume per 
salinity class, a concept which had already been proposed by Walin (1977). The method is ro-
bust in the sense that no interpolations to isohaline surfaces in numerical models are needed 
and that the resulting effective turbulent diahaline transport is always negative (i.e., downgra-
dient) and effective diahaline diffusivities are positive definite, except for unlikely situations 
when negative mixing by antidiffusive advection schemes dominate the effective total diahaline 
diffusivity. The only inaccuracy in the calculation of the effective diahaline diffusivities is the 
determination of the isohaline surface for which we use the projection to geopotential surfaces. 
However, as visible in Figure  6a, even in estuaries isohaline surfaces time-averaged by TEF 
analysis are relatively flat, such that the error associated with their slope should be negligible.
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Figure 10.  Idealized convergent estuary model averaged over 10 tidal periods during a quasiperiodic state: (a) volume per salinity class and longitudinal 
distance, ∂xv(S), and (b) effective total diahaline diffusivity as function of salinity class and longitudinal distance, nK .
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The main product of the present study are maps of the effective diahaline diffusivities, as shown in Fig-
ure 11 for the isohaline of S = 25 g/kg. Such maps could be shown for all salinity classes and give a clear pic-
ture about the mixing hotspots and physical and numerical contributions. Effective diahaline diffusivities as 
statistical diagnostics for estuarine models are distinct from instantaneous diffusivities which in well-mixed 
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Figure 11.  Idealized convergent estuary model averaged over 10 tidal periods during a quasiperiodic state: (a) total, (b) physical, and (c) numerical effective 
diahaline diffusivity across the 25-g/kg-isohaline as function of x and y. Note that the x and the y axes have different scalings.
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regions can be orders of magnitude larger. The calculation of effective diahaline diffusivities can be viewed 
as a complex weighted spatial and temporal averaging process, where high instantaneous diffusivities in 
well-mixed regions have small weights due to their small contribution to mixing.

Although diffusivities are defined as the (negative) ratio between a turbulent flux and the associated gradi-
ent of the transported property and as such their unweighted average in time and space is not a useful prop-
erty, they are key quantities for diagnosing mixing processes in the ocean. Using the Osborn and Cox (1972) 
and Osborn  (1980) methods based on equilibrium versions of the tracer variance and turbulent kinetic 
energy budgets respectively, diapycnal eddy diffusivities can be calculated which in turn can be used to 
calculate diapycnal tracer fluxes.

In ocean models, complex and computationally demanding turbulence closure schemes are used to com-
pute eddy diffusivities (e.g., Large et al., 1994; Umlauf & Burchard, 2005). Except for situations of double 
diffusion (Canuto et al., 2002) eddy diffusivities are assumed to be same for all tracers, a concept that un-
derlines their relevance. However, considering arbitrary scalar tracers in ocean models, when explicit hori-
zontal diffusivity is not aligned with the diascalar surface, instantaneous diascalar turbulent diffusivities are 
different for each scalar tracer, as seen from 8. Also, numerical mixing (and therefore numerical diffusivity) 
depends strongly on the tracer gradients and is thus different for all tracers (Burchard & Rennau, 2008). 
Moreover, effective diascalar diffusivities as calculated from 22 depend on the scalar tracer under consid-
eration. On the other hand, a field and modeling study in the deep water of the Central Baltic Sea showed 
that the diagnosed profile of effective diapycnal diffusivity could explain the evolution of salinity, tempera-
ture, and an injected tracer over several years (Holtermann et al., 2012, 2014). The method developed here 
can only calculate the effective tracer diffusivities orthogonal to isosurfaces of the respective tracer. Still, 
as shown in Figure 11, it is a useful diagnostics for estuarine mixing processes and their representation in 
numerical models.

Whereas the salinity mixing per salinity class as well as the diahaline salinity transport averaged over a long 
time converge toward theoretical limits (Burchard, 2020), no such theories exist for isohaline volumes or 
effective diahaline diffusivities. Those depend on the individual dynamics of the estuary which in turn is 
mainly triggered by the bathymetry and the freshwater and tidal forcing.

This method should be applicable to all regions of the ocean. In estuarine systems, where density is dom-
inated by the salinity contribution, the effective diahaline diffusivity is a good estimate for the effective 
diapycnal diffusivity. The method would require modifications in the case of salinity inversions that 
occur, for example, in the Baltic Sea in the surface mixed layer during summer (Burchard et al., 2017) 
or warm and salty inflows overlaying denser but less salty waters (Umlauf et al.,  2018). The multiple 
isohaline surfaces that appear in such situations need to be identified and accounted for. In such situa-
tions, and also for larger scale applications, the extension of the present method toward effective diapy-
cnal density transport and diffusivity would be beneficial, a challenging task, since contributions from 
mixing of temperature and salinity need to be considered. Since in most ocean models density is directly 
transported neither by advection nor by diffusion, physical and numerical mixing of density cannot be 
calculated directly. Instead, in order to diagnose diapycnal turbulent density fluxes and effective density 
diffusivities in ocean models, physical and numerical mixing of temperature and salinity need to be com-
bined in a suitable way. Such a diagnostics would allow adding spatial resolution to the bulk estimates of 
diapycnal diffusivities proposed by various authors (Getzlaff et al., 2010, 2012; Griffies et al., 2000; Ilıcak 
et al., 2012; Lee et al., 2002; Megann, 2018).

6.  Conclusions
A method has been developed to diagnose effective diahaline diffusivities in numerical models of estuaries. It 
is based on the calculation of volume per salinity class and mixing per salinity class, the former having been 
proposed already by Walin (1977) whereas the latter has only recently been developed by Wang et al. (2017) 
and Burchard (2020). In numerical models, effective diahaline diffusivities consist of physical (from turbu-
lence parameterizations) and numerical (from discretization errors of advection schemes) contributions and 
add exactly up to the effective total diahaline diffusivity. The calculation, therefore, requires the analysis of 
physical and numerical mixing as introduced by Burchard and Rennau (2008) and Klingbeil et al. (2014).
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The method computes generally positive values for effective physical and numerical diahaline diffusivities 
for each salinity class and each water column (unless antidiffusive advection schemes are used), whenever 
the respective salinity has occurred in the water column during the averaging period. Based on this water 
column information, effective diahaline diffusivities can be aggregated in various dimensions, either as 
horizontal maps of diffusivity for a specified salinity class, as a function of salinity and longitudinal dis-
tance, or as a function of salinity only, always showing physical and numerical values as well as the sum of 
both.

These diagnostics help to understand where mixing is strong in an estuary and indicate where numerical 
mixing is high. The latter helps to plan measures for reducing numerical artifacts by choosing a higher 
model resolution, better advection schemes or, as the ultimate measure, to reduce physical mixing in order 
to limit effective total diahaline mixing to realistic levels (Ralston et al., 2017). In the idealized simulations 
carried out in the present study, numerical diffusivities were on acceptable levels in the inner estuary, but 
due to the coarse resolution of the outer estuary, they dominated the dynamics in the region.

Data Availability Statement
The tidally averaged model data for 10 tidal periods as well as the python script for the TEF data analysis 
can be found at https://www.io-warnemuende.de/BurchardJAMES2021.html. The model simulations have 
been carried out with the General Estuarine Transport Model (GETM) that is freely available at https://
www.getm.eu.
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