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1  | INTRODUC TION

Ultra-high-pressure (UHP) metamorphism records deep burial of 
crustal material during subduction and collision. UHP rocks have 
been identified in many Phanerozoic orogens, including the Rhodope 
Metamorphic Complex (RMC) in Bulgaria and Greece (Figure 1). 
In the Eastern, Central and Western Rhodopes, the UHP meta-
morphism is Mesozoic (Bauer et al., 2007; Liati et al., 2011; Petrík 
et al., 2016). However, Variscan UHP metamorphism has been sug-
gested for structurally high tectonic units in the westernmost part of 
the RMC (Kostopoulos et al., 2000; Peytcheva et al., 2015; Zidarov 
et al., 1995) implying that Variscan and Early Alpine UHP metamor-
phism can be found in closely associated geological units. To clar-
ify the existence of Variscan UHP metamorphism in the RMC, we 

studied eclogites from the Ograzhden Unit in western Bulgaria using 
metamorphic petrology and Lu–Hf geochronology.

1.1 | Regional geological setting

The RMC is part of the Alpine-Mediterranean mountain belt in 
Southeast Europe, characterized by thrust sheets of metamorphic 
rocks, mostly gneisses and pierced by granitoid intrusions. As de-
fined by Ricou et al. (1998), the RMC comprises the Eastern, Central 
and Western Rhodope Mountains, the Rila and Pirin Mountains and 
the southern part of the Serbo-Macedonian Massif (Figure 1). The 
RMC is subdivided into the Lower, Middle, Upper and Uppermost 
Allochthon (Janák et al., 2011). Although the allochthons were 
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Abstract
The Rhodope Metamorphic Complex (RMC) in Bulgaria has been established as a 
Mesozoic ultra-high-pressure metamorphic province by findings of microdiamond 
in gneisses. Additionally, Variscan ultra-high-pressure metamorphism has been pro-
posed for the Ograzhden/Vertiskos Unit in the Upper Allochthon of the RMC, based 
on findings of coesite, graphite pseudomorphs after diamond and indirect age con-
straints. We confirm ultra-high-pressure metamorphism of eclogites in this unit using 
thermobarometry, phase-equilibrium modelling and the Variscan age of metamor-
phism using Lu–Hf garnet–whole-rock dating. In Belica (southern Rila Mountains), 
kyanite- and phengite-bearing eclogite enclosed in high-grade gneisses records P-T 
conditions of 3.0–3.5 GPa and 700–750°C. Lu–Hf dating of eclogite samples from 
Belica and Gega (Ograzhden Mountain), where coesite was found, yielded ages 
of 334.1 ± 1.8 and 334.0 ± 2.2 Ma, respectively, interpreted as the age of garnet 
growth during post-collisional subduction of continental crust after closure of the 
Rheic Ocean.
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originally stacked by thrusting, most of their present tectonic con-
tacts are Eocene to Miocene extensional detachment faults (e.g. 
Brun & Sokoutis, 2018). Findings of microdiamond in metamorphic 
rocks established the RMC as an UHP metamorphic terrane (Collings 
et al., 2016; Mposkos & Kostopoulos, 2001; Perraki et al., 2006; 
Petrík et al., 2016; Schmidt et al., 2010). Evidence for UHP meta-
morphism was found in the Eastern, Central and Western Rhodopes 
(Figure 1) and is probably Jurassic, between 200 and 150 Ma (Bauer 
et al., 2007; Liati et al., 2011; Nagel et al., 2011; Petrík et al., 2016). 
It either reflects subduction of the European margin under an is-
land arc (Bonev et al., 2015) or closure of the Palaeotethys (Petrík 
et al., 2016).

This study deals with the Ograzhden Unit, the structurally high-
est thrust sheet of the Upper Allochthon in the Bulgarian part of 
the western RMC, equivalent to the Vertiskos Unit in Greece. It 
comprises orthogneiss and to a minor extent paragneisses, marble 
and metamafic rocks. U-Pb zircon dating of orthogneisses yielded 

Ordovician (~462–452 Ma) and Silurian protolith ages (~443–
426 Ma; Himmerkus et al., 2009a; Macheva et al., 2006). Syn- to 
post-tectonic granite intrusions, which crosscut the main foliation 

Statement of Significance

The article for the first time demonstrates the existence 
of Variscan ultra-high-pressure metamorphism in south-
east Europe by phase-equilibrium modelling and Lu–Hf 
garnet dating of eclogites. The dating yielded identical, 
highly precise results for two localities of 334.0 ± 2.2 and 
334.1 ± 1.8 Ma. This is evidence for post-collisional sub-
duction of continental crust south of the Rheic ocean su-
ture. This result is highly significant for the reconstruction 
of Carboniferous tectonics in Europe.

F I G U R E  1   Tectonic map of the Rhodope Metamorphic Complex modified after Bonev et al. (2006), Burg et al. (1996), Dixon and 
Dimitriadis (1984), Janák et al. (2011), and Ricou et al. (1998) with localities of the investigated eclogites from Belica and Gega and early 
alpine UHP localities (*Liati et al., 2011; Petrík et al., 2016)
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but are affected by late shear zones, yielded Triassic ages of ~249–
222 Ma (Himmerkus et al., 2009b; Peytcheva, et al., 2009; Zidarov 
et al., 2007).

An outlier of the Ograzhden Unit occurs at Obidim on the east-
ern slopes of the Pirin Mountains (Figure 1). Zircons from two meta-
granites in this area yielded Ordovician protolith ages of 456.1 ± 1.8 
and 452 ± 14 Ma and zircons from a metagabbro 454.1 ± 8.3 Ma 
(Peytcheva et al., 2009). Another Ograzhden outlier occurs near 
Belica (Figure 1) at the northern end of the Mesta Graben, on the 
southern slopes of the Rila Mountains.

Eclogites and other HP/UHP rocks occur at several localities in 
the Vertiskos/Ograzhden and related units. At Gega (Ograzhden; 
Figure 1), Zidarov et al. (1995) described a kyanite-eclogite contain-
ing coesite. Metamorphic zircon rims with ages around 330 Ma, in 
amphibolite-facies country rocks of the eclogite, suggest a Variscan 
age for metamorphism (Peytcheva et al., 2015). Thermobarometry 
of a kyanite eclogite from Obidim (Pirin Mountains) yielded UHP 
conditions of ~3 GPa/700–750°C (Janák et al., 2011). The nearby 
occurrence of a 321 ± 19 Ma migmatite (Peytcheva, et al., 2009) 
again suggests a Variscan age. Scattered relics of eclogite have also 
been described from the Vertiskos Unit in Greece (e.g. Dimitriadis 

& Godelitsas, 1991). Kydonakis et al. (2015) studied garnet-kyanite 
mica schists from the Vertiskos Unit and demonstrated eclogite-fa-
cies conditions. They suggested the schists to originally represent 
the Mesozoic cover of the Vertiskos basement and that therefore 
the eclogite-facies metamorphism is Mesozoic in age. Kostopoulos 
et al. (2000) described graphite pseudomorphs after diamond in an 
amphibolite xenolith within the Triassic Arnea granite intruding the 
Vertiskos Unit (Figure 1) and argued that the diamond-forming UHP 
metamorphism must have been pre-Triassic, probably Carboniferous.

In summary, the age of HP/UHP metamorphism in the Vertiskos/
Ograzhden basement and related units is still unclear: In the Bulgarian 
part, a Variscan age appears more likely; in Greece, both Alpine and 
Variscan ages have been suggested. In order to clarify the age of 
this HP/UHP metamorphism, we determined age and metamorphic 
conditions of eclogites from the Ograzhden Unit, with two samples 
from Belica (BEL-1 used for thermobarometry and BEL-2 for geo-
chronology) and one sample from Gega (NF17-5 for geochronology).

F I G U R E  2   Eclogite texture (BSE) 
and compositional profile across a 
garnet grain in sample BEL-1. (a, b) 
Garnet porphyroblasts with inclusions 
of omphacite (Omp), phengite (Ph) 
and kyanite (Ky), symplectitic texture 
of diopside (Di) + plagioclase (Pl), and 
amphibole (Amp) in the matrix. (c) Garnet 
partly replaced by orthopyroxene (Opx) 
and plagioclase. (d) Kyanite mantled by 
sapphirine (Spr), spinel (Spl), corundum 
(Crn) and anorthite-rich plagioclase (Pl). 
(e) Garnet with line of analysed profile. 
(f) Compositional profile of garnet 
with variations in mole fractions (find 
microprobe data in Table S1).

(a) (b)

(c) (d)

(e) (f)
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2  | METHODS

The methods are specified in Supplementary Information (Methods 
S1).

2.1 | Eclogite texture and P-T conditions

The investigated eclogites come from Belica (southern Rila 
Mountains, 1 km NW of Belica town, 41.9575 °N/ 23.5436 °E) 
and Gega (southern Ograzhden Mountains, SE periphery of Gega 
village, 41.4481°N/23.0067°E). The samples from Belica (BEL-1, 
BEL-2) were taken from the same outcrop, less than a metre apart 
and could also be treated as one sample. We consider it unlikely 
that these samples experienced different P-T-t histories. The rea-
son for taking different pieces was that different laboratories col-
laborated, Bonn/Cologne doing the dating and Bratislava doing the 
petrology.

Both sampled eclogite bodies are hosted by high-grade base-
ment rocks within the Ograzhden Unit. The eclogites are com-
posed of garnet, omphacite, kyanite and phengite, considered 
to be the primary eclogite-facies minerals, which are variably 
overprinted by lower-pressure assemblages (Figure 2). Garnet 
porphyroblasts (Figure 2a,b) contain numerous inclusions of om-
phacite, phengite, kyanite, quartz, pargasitic amphibole, zoisite 
and rutile. Omphacite with jadeite content of up to 42–45 mol% 
occurs as inclusions in garnet. Matrix omphacite is partly re-
placed by symplectites of diopside + plagioclase. Kyanite is pres-
ent as subhedral porphyroblasts in the matrix and as inclusions 
of 10–20 µm size in garnet. Matrix kyanite contains inclusions of 
omphacite and quartz, and is mostly mantled by sapphirine, Al-
spinel, corundum and plagioclase (Figure 2d). Inclusions of quartz 
in garnet and kyanite rarely show a polycrystalline texture with 
undulose extinction and radial cracks indicating breakdown of 
coesite, however, no remnants of coesite were found by Raman 
spectroscopy. The lack of mineralogical evidence for UHP condi-
tions is hard to explain but could be related to HP overprinting. 
Phengite with up to 3.5 atoms per formula unit (a.p.f.u.) Si occurs 
as inclusions in garnet. Poikiloblastic garnet is partly replaced by 
orthopyroxene, plagioclase and amphibole forming a kelyphitic 
texture. Matrix amphibole forms dark-green to brown-green por-
phyroblasts. The garnet in sample BEL-1 is zoned with increas-
ing Mg (XPrp = 0.31–0.37) and decreasing Ca (XGrs = 0.23–0.18) 
and Mn (XSps = 0.03 – 0.01) from the core to the rim (Figure 2). 
Further descriptions of the garnets of the samples Bel-2 and 
NF17-5 follow below.

Peak metamorphic P-T conditions have been calculated for sam-
ple BEL-1 using thermodynamic modelling, and “conventional” geo-
thermobarometry. We used the Perple_X thermodynamic software 
(Connolly, 2005: version 6.8.6) with the internally consistent ther-
modynamic database of Holland and Powell (2011). Solid-solution 
models for garnet, white mica (White et al., 2014), omphacite (Green 
et al., 2007), plagioclase (Holland & Powell, 2003) and amphibole 

(Dale et al., 2005) were used, as available from the Perple_X data-
file (solution_model.dat). The bulk rock composition was determined 
from whole-rock analysis.

The calculated phase diagram (Figure 3) shows that composi-
tional isopleths of garnet (XGrt

Mg
), omphacite (XOmp

Na
) and phengite (Si 

a.p.f.u.) matching the measured compositions (Table 1) intersect in 
the stability field of garnet + phengite + omphacite + kyanite + ru-
tile + coesite, i.e. the peak-pressure metamorphic assemblage, con-
straining P-T conditions of 3.0–3.5 GPa and 700–750°C. At these 
conditions, amphibole and zoisite are not stable which suggests that 
inclusions of amphibole and zoisite in garnet are remnants from a 
prograde, lower P-T stage. The P-T results obtained by conventional 
geothermobarometry (Ravna & Terry, 2004) from the garnet with the 
highest grossular content, omphacite with the highest jadeite content 
and phengite with the highest Si content (Table 1) yield pressure val-
ues of 2.7–3.2 GPa at a temperature of 648–724°C. The uncertainty 
limits of this thermobarometer are ±65°C and ±0.32 GPa (Ravna & 
Terry, 2004). The oxidation state of iron can be the main problem 
concerning the calculated temperature. Therefore, we additionally 
used zirconium-in-rutile geothermometer (Tomkins et al., 2007) for 
calculating the temperature from Zr contents in rutile inclusions in 
garnet. The measured Zr concentration (259–311 ppm; 276 average) 
yields temperatures of 725–736°C at 3–3.5 GPa. These results are 
in line with those obtained from thermodynamic modelling and are 
interpreted to be representative of peak equilibration conditions for 
the investigated eclogite.

F I G U R E  3   P-T section for the kyanite eclogite (sample BEL-
1) from Belica, the same locality as the dated sample (BEL-2), in 
the system NCKFMASH (Na2O = 2.79, CaO = 14.14, K2O = 0.19, 
FeO = 5.93, MgO = 12.84, Al2O3 = 11.34, SiO2 = 52.25, 
H2O = saturated phase) with compositional isopleths of garnet 
(XMgGrt = Mg/(Mg + Ca + Fe)), omphacite (XNaOmp = Na/
(Na + Ca)), and phengite (SiPh a.p.f.u.).

http://www.perplex.ethz.ch/perplex/datafiles/solut_07.dat
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2.2 | Major-element and Lu distribution in 
garnet of the dated samples BEL-2 and NF17-5

For the two dated samples, major element chemistry and the Lu 
distribution in garnets were analysed because of its importance 
for the interpretation of dating results. XRF whole-rock analyses of 
major elements are given in table 2. The major-element composi-
tion of garnet is Alm45-48-Prp25-30-Grs20-27-Sps0.9-1.4 in sample BEL-2, 
and Alm40-50-Prp26-37-Grs18-26-Sps0.5-1.2 in sample NF17-5 (Figures 4 
and 5). In both samples, the partly irregular outlines of the garnet 
crystals indicate some resorption. Both samples show slight, local 
enrichments in Fe and Mn content directly at the rims, indicating 
back-diffusion during resorption.

The Mn distribution map from sample BEL-2 (Figure 4b) shows the 
highest Mn content directly at the rim of the resorbed garnet. The 
Lu line profiles through this garnet grain (Figure 4b), however, show 
maxima close to but not directly at the rim of the garnet, and not co-
inciding with the Mn increase. One of the garnet grains from sample 

TA B L E  1   Representative compositions of garnet, omphacite and phengite from sample BEL-1 measured by WDS (wavelength-dispersive 
spectrometer) analysis used for P-T calculations.

Mineral Grt core Grt rim Omp Omp Omp Omp Ph Ph Ph Ph

SiO2 39.68 39.48 55.81 54.25 55.00 55.00 53.50 50.61 53.88 50.27

TiO2 0.12 0.01 0.16 0.27 0.19 0.15 0.02 0.15 0.02 0.27

Al2O3 22.19 22.31 11.08 11.49 10.90 11.78 26.18 28.18 25.62 29.54

FeOt 20.33 19.58 4.59 4.15 3.81 3.69 3.97 3.37 4.18 2.21

MnO 0.99 0.7 0.09 0.07 0.05 0.03 0.08 0.07 0.01 0.04

MgO 8.83 9.68 9.19 8.68 10.05 9.86 4.24 3.66 4.26 2.68

CaO 8.45 7.47 14.61 14.07 15.67 14.64 0.35 0.26 0.52 0.31

Na2O 6.23 6.04 5.46 5.79 0.13 0.15 0.17 0.05

K2O 8.91 9.29 8.85 9.44

Total 100.59 99.23 101.76 99.02 101.13 100.93 97.48 95.74 97.50 94.80

O 12 12 6 6 6 6 11 11 11 11

Si 3.00 3.00 1.96 1.95 1.94 1.94 3.48 3.35 3.50 3.34

Ti 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.00

Al 1.98 2.00 0.46 0.49 0.45 0.49 2.01 2.20 1.96 2.31

Fe 1.28 1.24 0.13 0.12 0.11 0.11 0.22 0.19 0.23 0.12

Mn 0.06 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Mg 0.99 1.10 0.48 0.47 0.53 0.52 0.41 0.36 0.41 0.27

Ca 0.68 0.61 0.55 0.54 0.59 0.55 0.02 0.02 0.04 0.02

Na 0.42 0.42 0.37 0.40 0.02 0.02 0.02 0.01

K 0.74 0.79 0.73 0.80

Total 8.01 8.00 4.00 4.01 4.01 4.01 6.90 6.94 6.90 6.88

XAlm 0.42 0.42

XSps 0.02 0.02

XPrp 0.33 0.37

XGrs 0.23 0.20

XNa 0.43 0.44 0.39 0.42

TA B L E  2   X-Ray Fluorescence (XRF) whole-rock analyses of 
major elements of dated eclogite samples BEL-2 and NF17-5 
(bdl = below detection limit).

BEL-2
NF17-
5

SiO2 (%) 49.8 50.7

TiO2 (%) 0.65 0.37

Al2O3 (%) 17.6 18.5

Fe2O3 (%) 7.66 7.99

MnO (%) 0.14 0.17

MgO (%) 8.49 7.76

CaO (%) 10.4 10.5

Na2O (%) 3.42 3.04

K2O (%) 0.17 0.06

P2O5 (%) bdl bdl

LOI (%) 0.42 0.06

Total sum (%) 98.9 99.0
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NF 17–5 has been disintegrated into three pieces by fracturing and 
resorption (Figure 5). Abundance of Mn in this garnet is rather uniform 
but shows a slight increase at the resorbed rims of disrupted garnet 
fragments. Lutetium increases towards the rims of the original grain 
and does not correspond to the Mn distribution. There is almost no 
increase in Lu at the rims between the garnet fragments.

2.3 | Lu–Hf geochronology

The Lu–Hf isotopic compositions of the mineral separates and whole 
rock powders are shown in Table 3. In sample NF17-5, absolute Hf 
contents in the whole rock vary between 0.526 and 0.556 ppm and 
176Lu/177Hf ratios between 0.05993 and 0.07443. In the garnet 

F I G U R E  4   Major element and Lu 
distribution in garnet grains from sample 
BEL-2 (Belica). (a) Mn concentration map 
and major-element profile of the garnet 
composition (find microprobe data in 
Table S2). (b) Mn concentration map 
with laser spots and Lu concentration 
profile.

F I G U R E  5   Major element and Lu 
distribution in garnet grains from sample 
NF17-5 (Gega). (a) Mn concentration 
map and major-element profile of the 
garnet composition (find microprobe data 
in Table S3). (b) Mn concentration map 
with laser spots and Lu concentration 
profile.
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separates of sample NF17-5, the absolute Hf contents range be-
tween 0.156 and 0.159 ppm and the 176Lu/177Hf ratios between 
1.493 and 1.567.

In sample BEL-2, absolute Hf contents in the whole rock vary 
between 0.508 and 0.790 ppm and 176Lu/177Hf ratios between 
0.03378 and 0.05226. In the garnet separates of sample BEL-2, the 
absolute Hf contents range between 0.168 and 0.176 ppm and the 
176Lu/177Hf ratios between 0.7956 and 0.8450.

The isochrons (Figure 6) yield identical ages of 334.0 ± 2.2 Ma 
(Mean Square Weighted Deviation (MSWD) 0.36, n = 7) for Gega 
(NF17-5) and 334.1 ± 1.8 Ma (MSWD 0.63, n = 7) for Belica (BEL-2).

3  | DISCUSSION AND CONCLUSIONS

3.1 | Garnet composition patterns and age 
interpretation

Major-element maps and profiles of BEL-2 and NF17-5 show homo-
geneous distribution, reflecting diffusional re-equilibration. A slight 
increase in Mn at resorbed garnet rims can be explained by back-
diffusion during resorption (Figures 4 and 5).

Distribution of Lu in the dated samples does not show the typ-
ical bell-shaped concentration profiles with a central peak as often 

TA B L E  3   Lu–Hf isotopic compositions of the whole rocks (WR; b = bombed digestion, tt = tabletop) and garnet separates (Grt) of the 
sample NF17-5 and BEL-2.

Sample Type Lu (ppm) Hf (ppm) 176Lu/177Hf Error 176Hf/177Hf Error

NF17-5 Grt 1 0.526 0.0503 1.493 0.003 0.292294 0.000078

NF17-5 Grt 2 0.556 0.0511 1.548 0.003 0.292587 0.000090

NF17-5 Grt 3 0.550 0.0499 1.567 0.003 0.292812 0.000020

NF17-5 WR b 1 0.157 0.378 0.05993 0.00012 0.283316 0.000023

NF17-5 WR tt 1 0.156 0.301 0.07443 0.00015 0.283396 0.000032

NF17-5 WR b 2 0.159 0.366 0.06052 0.00012 0.283341 0.000088

NF17-5 WR tt 2 0.156 0.298 0.07428 0.00015 0.283404 0.000034

BEL-2 Grt 1 1.05 0.176 0.8450 0.0017 0.288076 0.000027

BEL-2 Grt 2 0.975 0.174 0.7956 0.0016 0.287721 0.000057

BEL-2 Grt 3 0.981 0.168 0.8281 0.0017 0.287975 0.000103

BEL-2 WR b 1 0.191 0.756 0.03591 0.00007 0.283003 0.000012

BEL-2 WR tt 1 0.187 0.524 0.05083 0.00011 0.283101 0.000039

BEL-2 WR b 2 0.188 0.790 0.03378 0.00007 0.282995 0.000025

BEL-2 WR tt 2 0.188 0.508 0.05226 0.00011 0.283123 0.000028

F I G U R E  6   Lu–Hf isochrons for the two eclogite samples BEL-2 and NF17-5. Uncertainties are 2σ. The decay constant 
λ176Lu = 1.865 × 10−11 a−1was used (Scherer et al., 2001). WR b = bomb-digested whole rock, WR tt = tabletop-digested whole rock, 
Grt = garnet separate



8  |     TRAPP eT Al.

observed and interpreted to result from Lu fractionation into garnet 
(e.g. Otamendi et al., 2002; Skora et al., 2006). Instead, the profile 
of BEL-2 (Figure 4) is saddle-shaped with peaks in the outer parts of 
the garnet crystals. We interpret the marginal peaks as not being due 
to resorption and back-diffusion (which could lead to a “younging” 
of the ages; Kelly, Carlson, & Connelly 2011) because (a) they are 
not directly at the rims but inside the garnet; and (b) they do not 
correspond with the most resorbed rims. Such secondary peaks are 
explained by an increase in diffusion rate during garnet crystalliza-
tion when the temperature increases (Skora et al., 2006). In NF17-5, 
the Lu contents increases from core to rim with the highest values 
in the outermost measured spots. Nevertheless, we interpret these 
profiles as showing growth zoning with rim peaks, where the outer-
most points were not measured close enough to the rim to see if the 
Lu content decreases again (Figure 5). Remnants of a central Lu peak, 
if they exist, may have been missed by the sections.

3.2 | Variscan UHP metamorphism

Ultra-high-pressure metamorphism of eclogite in the Ograzhden 
Unit has now been demonstrated at three localities, Gega (Zidarov 
et al., 1995; coesite), Obidim (~3 GPa/700–750°C; Janák et al., 2011) 
and Belica (3.0–3.5 GPa/700–750°C; this study). The Variscan 
Orogeny in the Balkan Peninsula comprised the northward subduc-
tion of the Rheic Ocean, separating the Sredna Gora Terrane (of 
which the Ograzhden unit was a part, see Gorinova et al., 2019) from 
the Balkan Terrane (Figure 1; Carrigan et al., 2005; Haydoutov, 1989; 
Haydoutov & Yanev, 1997; Plissart et al., 2017).

Sm-Nd ages of 409 ± 38 Ma for oceanic crust formation of the 
Balkan-Carpathian Ophiolites along the suture between Balkan 
and Sredna Gora terranes (Plissart et al., 2017), as well as ages of 
~336 Ma for high-grade metamorphism in the Sredna Gora Zone 
(Carrigan et al., 2006) and 340–350 Ma for HP metamorphism of 
structurally equivalent units in the Southern Carpathians (Medaris 
et al., 2003) fit such a scenario. An older (~400 Ma) 40Ar/39Ar age 
for retrogression of eclogite in the Sredna Gora Zone (Gaggero 
et al., 2009) may be related to an earlier metamorphic cycle or result 
from excess Ar.

The terranes collided at 350 to 340 Ma, with Sredna Gora form-
ing the lower plate in the collision (Plissart et al., 2017). UHP meta-
morphism in the Ograzhden Unit at ~334 Ma could be explained by 
continuing, post-collisional subduction of continental crust.

The RMC, therefore, experienced UHP metamorphism twice, 
during the Variscan and Early Alpine Orogeny. This reflects the 
tendency of continents to break apart and re-collide along earlier 
collisional orogenic belts, a process known as the Wilson cycle 
(Wilson, 1966).
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