
1.  Introduction
In the first part of the 20th century, Proudman and Doodson (1924) demonstrated how the fundamental dy-
namical equations of the tides may be used to obtain knowledge of the distribution of the surface elevation 
over the entire North Sea from observational data. They showed that the cotidal and corange lines can be 
easily determined, provided the elevation in some coastal stations and limited amount of open sea locations 
is known, and some local current observations exist. Additionally, they used some hypotheses about the 
frictional forces. In the present study, approximately 100 years later, we encounter the same issue from a 
different perspective.

Many important developments in the physical oceanography of the North Sea have followed the study of 
Proudman and Doodson (1924). Numerical modeling of tides and storm surges initiated by Hansen (1956) 
and Heaps  (1969) has become a fundamental tool in surge prediction (Flather & Proctor,  1983; Peeck 
et  al.,  1983; Soetje & Brockmann,  1983). A dense network of tidal stations has been developed around 
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the North Sea coasts, which operates over long periods and provides 
high-quality records (Wahl et al., 2013). A comparison between numeri-
cal simulations and satellite observations (Andersen, 1999) revealed good 
agreement between the two data sources. The low-frequency variability 
in altimeter and tide gauge data over the North Sea shows a reasonably 
good correlation (Cipollini et  al.,  2017). A recent important develop-
ment in predicting the sea level in the North Sea is achieved within the 
framework of the North-West European Shelf forecasting system (Tonani 
et al., 2019).

The North Sea (Figure 1) is a shallow sea located at the European con-
tinental shelf with an average depth of ∼90  m (Becker et  al.,  1992; 
Huthnance, 1991; Otto et al., 1990). The sea-level dynamics in this basin 
can be considered as a response to different forcings, such as barotrop-
ic and baroclinic tides (Haigh et al., 2019), wind and atmospheric pres-
sure, air-sea heat and water exchanges, as well as forcing from the open 
boundaries and rivers. The processes that dominate the dynamics are, in 
most cases, coupled; that is, one cannot easily consider the response to 
individual drivers in isolation. Thus, there is a need to use analysis meth-
ods tailored to detect and reproduce nonlinear dynamics. Deep learning, 
which has much in common with neural networks, is well suited to re-
solve such processes. Our first objective in the present study is to explore 
the performance of deep learning techniques when reconstructing the 
basin-wide sea level in the North Sea using data from coastal stations. 
In our specific application, we will use generative adversarial networks 
(GANs; Goodfellow et al., 2014). This technique learns how to generate 
datasets with the same statistics as the training set. Unlike some previous 

studies (e.g., Cipollini et al., 2017), we will focus both on the shorter- and longer-term variability ranging 
from intratidal to monthly time scales. Under “exploring the performance of deep learning techniques,” we 
also identify the application limits. This will be illustrated by setting up several experiments with different 
reconstruction potentials.

Our second objective is to compare the goodness of reconstructions based on adversarial networks against 
other known reconstruction methods. One such method, which uses a Kalman filter approach, was pro-
posed by Schulz-Stellenfleth and Stanev (2010) as an instrument to reconstruct sea level in the German 
Bight using a small number of observations (tide gauges, satellite altimeters, and high-frequency radar). 
The same method was applied by Grayek et al. (2011) to extrapolate one-dimensional FerryBox data ac-
quired along the ferry routes to larger two-dimensional areas. This (second) objective of the present re-
search is in line with the recent study of Barth et al. (2020), who compared the performance of convo-
lutional neural networks to reconstruct sea surface temperature satellite observations with the method 
known as Data INterpolating Empirical Orthogonal Functions (Alvera-Azcárate et al., 2005; Beckers & 
Rixen, 2003).

We are not aware of any applications of deep learning to sea-level analysis and reconstruction, particularly 
in the region of the North Sea. This justifies our third objective, which is to present our results in a way 
that they ensure reproducibility by interested scientists and motivate potential oceanographic applications 
using similar or different data sets. Therefore, we will analyze many individual steps that led to the final 
application of the method to the entire North Sea area. The major focus is on what GANs can reconstruct 
successfully and what they cannot. The analysis of the results demonstrates the power of reconstructions 
based on GANs. The study is structured as follows. In Section 2, we present the methods used. Section 3 
presents the experiments; Section 4 presents the results, followed by the discussion in Section 5 and the 
conclusions.
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Figure 1.  Topography of the North Sea, the positions of the TG stations 
(red squares), and the subsampled region (grid of 32 × 32 points) shown 
by the large red rectangle. Ab, Aberdeen; Br, Brouwershavensegat 8; Cr, 
Cromer; Do, Dover; Hu, Huibertgat; Ij, IJgeulstroompaal 1; Le, Lerwick; 
Li, List; Lo, Lowestoft; Ma, Maloy; No, Hoek van Holland; No, Norderne; 
Oo, Oostende; Sh, Sheerness; St, Stavanger; Te, Terschelling Noordzee; Tr, 
Tregde; VL, Vlakte van de Raan; Wh, Whitby.
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2.  Methods
2.1.  Data

2.1.1.  Data From the Operational Model for the North-West European Shelf

The reconstruction of the basin-wide sea level using data from coastal stations necessitates high-quality 
data from observations over the entire North Sea. Data with such coverage are available only from satellites. 
However, they cannot perfectly resolve the spatial and temporal variability, particularly at scales shorter 
than the time of the repeat cycle. Furthermore, close to the coast, these data are not quite accurate (Cipollini 
et al., 2017). Data from numerical models, although not absolutely correct, provide spatial and temporal 
coverage over the entire basin. Therefore, when developing and testing our method, we will use data from 
numerical simulations to represent the “true” sea level. In this research, the data set was obtained from the 
operational numerical Forecasting Ocean Assimilation Model with 7 km horizontal resolution, known as 
Atlantic Margin Model-7 (AMM7) (O'Dea et al., 2012), for 2016 and 2017. For brevity, we will refer to these 
data as to the AMM7 data below.

For the objective of the present research, sea-level data over 1 year are sufficient to cover some of the most 
important periodic variations. Therefore, we chose 1-year sea surface height (SSH) data, which are from 
approximately 8,640 hourly SSH maps, as the training data set. In addition, it is important to note that the 
training SSH map (in 2016) is independent from the validation data set. Our validation data set (from 2017) 
covers a total of 3 months (2,158 hourly SSH maps). This choice limits the analyses to processes with periods 
ranging from intratidal to monthly. In our study area and for the time ranges defined above, there are two 
basic processes that explain most of the variability. These are the short-periodic tides (daily and shorter pe-
riods) and atmospherically induced motions (e.g., due to synoptic variability in the atmosphere). As shown 
by Jacob and Stanev (2017), both types of motions are nonlinearly coupled, and their separation is not a 
trivial problem. To quantify the potential of deep learning techniques when analyzing and reconstructing 
SSH, we filtered signals with periods less than 48 h by using the Butterworth filter; thus, we will process 
two data sets: one data set containing all frequencies (briefly called AF) and the low-passed filtered data set 
(briefly called LF).

Example variability patterns of the AMM7 data are shown in Figure  2. The first two panels show the 
phase lines of the semidiurnal principal lunar (M2) tide (Figure 2a) and its amplitude (Figure 2b). They 
describe the known pattern of the dominant tidal oscillations consisting of three amphidromic are-
as; the Kelvin wave propagates counterclockwise (Proudman & Doodson, 1924). The standard deviation 
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AMM7 and its mean x  for the period from January 01, 2016 to December 31, 2016 is shown in Figure 2c. In 
the above equation, n is the number of data maps. This panel quantifies the magnitude of low-frequency 
variability, which is largest in the coastal area, particularly in the German Bight. Notably, the spatial dis-
tribution of amplitudes caused by tides and wind is different. In the German Bight, the magnitude of the 
low-frequency signal is approximately two times lower than that of the signal associated with the M2 tide. 
Along the coasts of the British Isles, this ratio is larger than 5.

2.1.2.  Data From the Geesthacht COAstal model SysTem for the North-West European Shelf

For the experiments discussed later in this study, we will need the output of another (independent) model. 
To this aim, we chose the numerical simulations performed in the Helmholtz-Zentrum Geesthacht based 
on the Nucleus for European Modelling of the Ocean (NEMO v3.6; Madec, 2016) with 3.5 km horizontal 
resolution, which is two times finer than in the AMM7. The respective model setup is part of the Geesthacht 
COAstal model SysTem (GCOAST), which is a coupled modeling framework that includes atmospheric, 
oceanic, wind wave, biogeochemical, and hydrological parts (Ho-Hagemann et al., 2020). For the purposes 
of the present study, we use only the ocean circulation part. The model area covers the Baltic Sea, the Dan-
ish Straits, the North Sea, and part of the Northeast Atlantic. The data used in the present study cover only 
the region shown in Figure 1. The vertical discretization uses 50 hybrid s-z* levels with partial cells. The 
model forcing for the momentum and heat fluxes is computed using bulk aerodynamic formulas and hourly 
data from atmospheric reanalyzes of the European Centre for Medium Range Weather Forecasts (ERA5 
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ECMWF with a horizontal resolution of 0.25°). The tidal potential is also included in the model forcing 
(Egbert & Erofeeva, 2002). The daily climatology for the river runoff is based on river discharge datasets 
from the German Federal Maritime and Hydrographic Agency (Bundesamt für Seeschifffahrt und Hydrog-
raphie), the Swedish Meteorological and Hydrological Institute, and the United Kingdom Meteorological 
Office. The boundary conditions at the open boundaries use input from the AMM7 (O'Dea et al., 2012) 
distributed by the Copernicus Marine Environment and Monitoring Service. The output is stored hourly for 
2016 and 2017. Data assimilation is not used.

Figures 2d and 2e show the root mean square (RMS) differences between the simulations produced by the 
AMM7 and GCOAST models over 1 year for the AF and LF datasets, respectively. Regarding the tidal sig-
nal, the differences between the two models are far below the level of variability (compare Figure 2d with 
Figure 2b). The largest deviations between the two models are located in the English Channel, in front of 
the mouth of the Elbe and around the Wash. Over most of the model area, the difference between the LF 
sea level in the two models is approximately two times lower than the standard deviation of the signal in 
each of them. This quantitative similarity between the GCOAST and AMM7 data is explained by the similar 
model setups, forcing, and boundary conditions. The major difference between the two models, which is 
that the horizontal resolution in GCOAST is two times finer than in AMM7, explains most of the differences 
between the two data sets.

2.1.3.  Tidal Gauge Data

Observational data along the North Sea coast have been obtained from the Copernicus Marine Environment 
Monitoring Service (http://marine.copernicus.eu/). Altogether, 19 gauge stations with hourly resolution are 
used. Their positions are shown in Figure 1. The magnitudes of the M2 tide and the respective RMS varia-
bility of the observed sea level are superimposed with circular symbols in Figures 2b and 2c to illustrate the 
differences between the model and observational data. Obviously, these differences, which are quantified 
in Table 1, are one order of magnitude smaller than the magnitude of the respective signals (Figure 2). 
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Figure 2.  Phase lines of the M2 tide for the period computed from the AMM7 data using UTide (a). (b) is the amplitude corresponding to (a). The white 
isolines in (b) are lines of equal amplitude of 3, 4, and 5 m, respectively. (c) is the RMS of the LF variability of SSH. The respective values of the magnitudes of 
the M2 tide and the RMS variability from the TG sea level are superimposed with circles in (b) and (c). (d) and (e) are the RMS differences between the AMM7 
and GCOAST models (AF, [d] and LF, [e]) shown in the AMM7 grids. AF, all frequencies (full data set); AMM7, Atlantic Margin Model-7; GCOAST, Geesthacht 
COAstal model SysTem; LF, low frequencies (low-pass filtered data set); RMS, root mean square; SSH, sea surface height; TG, tidal gauge.

http://marine.copernicus.eu/
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In this table, we show the RMS deviation    2RMS , / ,
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where Pi and Oi are the SSHs from the two datasets (the observed and the 

modeled SSH, respectively, or the model-1 and model-2 SSHs, respective-
ly) at the positions of tidal gauges (TGs). In the above equation, n is the 
number of observations (the index is i).

The time versus the along-coast distance diagrams (Figures 3a and 3c) 
give a clear illustration of the propagation characteristics of the tidal 
waves. Starting from Lerwick and traveling up to Whitby, the coastal 
wave propagates with the coast on its right (Figure 2a), and the slope of 
the contours gives a measure of the wave propagation speed, ranging be-
tween several to several tenths of ms−1 depending on the local conditions 
(the average depth of the North Sea of ∼90 m would result in a propaga-
tion speed of ∼30 ms−1). At around the Wash, the propagation pattern 
changes dramatically because, to the south, the small amphydrome in 
the Southern Bight (Figure  2a) wedges into the large amphydrome in 
the southern North Sea. This is the reason the contours undergo a rapid 
transition until the Terschelling Noordzee station. If we omit the data 
between Cromer and Terschelling Noordzee (and just linearly interpo-
late the data between them), the contours would present much smoother 
patterns. The tidal amplitudes decrease strongly around the Tregde sta-
tion (see Figure 1 for its position) when passing from the southern to the 
northern amphidromic area. Figure 3c is the same as Figure 3a; however, 
the data come from AMM7. Visually, the model and observations agree 
quite well, and the quantitative comparison between them can be better 
estimated from Table 1.

The LF signal (the panels on the right, Figures 3b and 3d) shows tem-
poral variability dominated by synoptic time scales (in the atmosphere). 
Because of the much longer time axis compared with the panels on the 
left-hand side of the figure, the slope of the contours looks rather small. 
Along the eastern and western coasts, the propagation direction is from 

north to south; the change in the slope of contours occurs in the Southern Bight. Again, the consistency 
between the data from the TGs and the AMM7 seems quite good; all major low and high sea-level events in 
the observation data set have their counterparts in the numerical simulations. The simulated amplitudes 
are slightly lower than the observed amplitudes, which is explained by the quality of the atmospheric forc-
ing. The above comparison between observations and simulations (Table 1 and Figure 3) shows that both 
datasets are similar but far from identical. The difference between the two model datasets (AMM7 and 
GCOAST) is comparable to the difference between each of them and the observations (see Table 1). As we 
will show in the next sections, these comparisons are important to understand the results from the experi-
ments using machine learning (ML).

2.2.  Generative Adversarial Network

2.2.1.  Brief Introduction

LeCun et al. (2015) defined deep learning as a method allowing “computational models that are composed 
of multiple processing layers to learn representations of data with multiple levels of abstraction.” In many 
applications, deep learning uses feedforward neural networks, which learn to map an input data set (in 
many examples, an image is used as input) to an output (e.g., more abstract information such as the prob-
ability of belonging to a certain category). Artificial neural networks are inspired by biological neural net-
works, which learn by considering examples. Their structure consists of connected units (nodes) called 
artificial neurons, which receive and transmit a signal to other neurons. In deep learning, multiple levels of 
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Tidal station
RMS (TG, 

AMM7) (m)
RMS (TG, 

GCOAST) (m)
RMS (AMM7, 
GCOAST) (m)

Lerwick 0.16 0.24 0.23

Aberdeen 0.17 0.20 0.23

Whitby 0.23 0.23 0.29

Cromer 0.33 0.24 0.26

Lowestoft 0.22 0.20 0.19

Sheerness 0.49 0.45 0.48

Dover 0.48 0.33 0.33

Oostende 0.22 0.22 0.31

Vlakte van de Raan 0.25 0.22 0.22

Brouwershavensegat 8 0.18 0.17 0.18

Hoek van Holland 0.15 0.15 0.14

IJgeulstroompaal 1 0.31 0.29 0.16

Terschelling Noordzee 0.25 0.22 0.17

Huibertgat 0.28 0.20 0.19

Norderney 0.22 0.26 0.23

List 0.25 0.27 0.26

Tregde 0.17 0.13 0.23

Stavanger 0.15 0.13 0.20

Maloy 0.18 0.12 0.24

Abbreviations: AMM7, Atlantic Margin Model-7; GCOAST, Geesthacht 
COAstal model SysTem; RMS, root mean square; TG, tidal gauge.

Table 1 
Quantification of Differences and Agreements Between Datasets in Coastal 
Stations
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information transformation from the previous layer to a higher layer (more abstract information) are used. 
Filters are applied to the input images to create feature maps that summarize the presence of those features 
in the input. The filter (e.g., a 3 × 3 matrix) is moved across the image. This movement, which is usually 
symmetrical in the x and y directions, is referred to as the stride. The default stride is (1, 1). A stride of (2, 2) 
would mean moving the filter two pixels in the horizontal and vertical directions. Thus, the neurons com-
bine the input in such a way that the output is presented as a nonlinear combination of its inputs. A series 
of weights determine how the inputs are fed to the outputs. In many applications, the weight vectors are 
adjusted following the stochastic gradient descent algorithm.

Goodfellow et al. (2014) introduce a framework for estimating generative models via an adversarial process 
by training two models. The first model is a generative model. This model captures the data distribution. 
The second model is a discriminative model, and its role is to estimate the probability that a sample comes 
from the training data rather than the generative model. As a result, the generative model recovers the 
training data distribution.

Normally, the structure of a convolutional neural network consists of convolutional layers followed by pool-
ing layers. The role of the latter is to reduce the amount of redundant information. The most commonly 
used method is the max-pooling method, which keeps only the most active neurons (out of every 2 × 2 
square of neurons in the convolutional layers, the “max”). Experience shows that this pooling step does not 
reduce the performance of the network. In the U-Net architecture (Ronneberger et al., 2015), the pooling 
operations are replaced by upsampling operators. An expansive path is developed, which is more or less 
symmetric to the contracting part and yields a U-shaped network architecture (Figure 4). In the expansive 
path, in every other layer, the resolution of the output is increased. Thus, in the upsampling part of the 
network, information is propagated to higher-resolution layers. Two distinct models, a generator and a dis-
criminator, constitute the GAN. The generator is trained adversarially by optimizing a minimax objective 
together with a discriminator. In the following, the specific application of the U-Net architecture to analyz-
ing sea-level maps is described.
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Figure 3.  Time versus the along-coast distance (starting from the Lerwick station) diagram of the sea level from TGs (a) and AMM7 (c). The panels on 
the right, (b) and (d), show the same as (a) and (c) but for the LF signal and for longer periods. AMM7, Atlantic Margin Model-7; LF, low frequencies 
(low-pass filtered data set); TGs, tidal gauges.
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2.2.2.  GAN for Tidal Reconstructions

2.2.2.1.  Generator

The U-Net structure of the generator part of our deep neural network model for tidal reconstruction (Fig-
ure 4) is illustrated in the following using the 32 × 32 SSH hourly maps (rectangle in Figure 1) for 2016 from 
the AMM7. In the example considered here to train the model, we use only the SSH records along the sides 
of the rectangle as an input data set. This data set is named in Figure 4 as the “Input map.” The target data 
set is the full AMM7 data set (see, e.g., “Output map” in Figure 4). The task of the generator is to provide a 
model of high-quality reconstructed SSH maps (as close as possible to the AMM7 maps) by using only the 
information at the boundary.

The U-Net convolutional neural network (Figure 4) consists of two parts: an encoder (on the left) and a de-
coder (on the right). The encoder transforms an image (map) into a compact latent feature representation. 
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Figure 4.  Schematic presentation of the generator part of the deep neural network model for sea surface height map 
reconstruction.
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The decoder uses that representation to produce the missing image content. Thus, the encoding-decoding 
process learns the image features and generates full maps.

The encoder-decoder pipeline works as follows. The encoder takes an input image with missing data and 
produces a latent feature representation of that image. The decoder takes this feature representation and 
produces the missing image content. The encoder process consists of the repeated application of 3 × 3 con-
volutions with a stride of 2 for downsampling, each followed by a batch normalization layer (Ioffe & Sze-
gedy, 2015) and Leaky logarithmic rectified linear unit (Leaky-L_ReLU, Maas et al., 2013) activation.

In the example shown in Figure 4, the first convolution layer is a 32 × 32 × 1 (width × length × depth) 
map. In each subsequent convolution calculation, we obtain more latent feature maps with a larger depth 
index and narrower width and length. The feature map represents higher-dimensional data distribution 
characteristics from the image. The bottleneck layer (Figure 4) represents the image fully compressed into 
a feature map with a depth of 1,024.

Decoding is the opposite of encoding; we call this process deconvolution. It consists of repeated applications 
of 3 × 3 convolutions with a stride of 2 using a transposed operator (also called a transposed convolution or 
fractionally strided convolution); that is, it performs a deconvolution. The upsampling layers in the original 
U-Net structure (Zador, 2019) are replaced with fractionally strided convolutional layers in our U-Net-like 
structure.

In image completion problems, corrupted images and output images share a certain amount of low-level 
features, such as prominent information from the noncorrupted regions, luminance, and resolution. How-
ever, deep network-based methods with bottleneck layers may lose details of images when propagating fea-
ture maps in the training stage. Moreover, these methods may suffer from the vanishing gradient problem 
as the network deepens. To shuttle the image information through the networks and reduce the training 
burden, we apply the skip connections strategy (Mao et al., 2016).

2.2.2.2.  Discriminator

The discriminator (Figure 5) is used to determine the possibility that the prediction map comes from the 
training set (i.e., whether it is a real training image) or the prediction set (i.e., whether it is a fake image 
from the generator). During training, better fake images are generated, and the role of the discriminator 
is to correctly classify the real and fake images. When the generated prediction map is consistent with the 
ground truth of the image content (we will call this the target for short) and the GAN discriminator cannot 
determine whether the prediction map is from the training set or the prediction set, then the network model 
parameters are considered to have reached the optimal state.

The discriminator can be understood as the inverse of the generator with five 3 × 3 convolutions with a 
stride of two layers, where the last convolutional layer is fed into a single sigmoid activation function. The 
L_ReLU activation function is used for all the layers in the discriminator except for the output. Following 
GAN technology, the generator is trained adversarially against a discriminator, which is simultaneously 
trained with the generator.
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Figure 5.  The discriminator part of the reconstruction model.
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2.2.2.3.  Technical Details

We use 8,640 SSH maps with a size of 32 × 32 to train the GAN model. This data set is too large to be passed 
to the computer at once; therefore, we divide the data into smaller sizes. Two hyperparameters are defined: 
the number of training epochs (how many times we train the model) and the batch size (the number of 
samples used to train the model in one epoch). During the training stage, mini-batch learning is introduced 
(Cotter et al., 2011). This method divides the data into several small batches and updates the parameters in 
batches. Thus, a set of data in a batch determines the direction of the gradient, which is more stable and 
converges faster. In the present tidal application, 12 is selected as the batch size, which corresponds to the 
period of the M2 tide in the studied region (see also Riley, 2019). The generator model uses only the obser-
vations in tidal gauge locations to generate the entire 2D SSH maps. This generated SSH map is fed into the 
discriminator together with the SSH map from the numerical model (true data set) to check whether the 
generated SSH resembles the true SSH (see Annex 1).

The model epoch parameter, which is a number optimizing the gradient decent (to avoid overfitting or un-
derfitting), is set to 60. The initial learning rate of the Adam optimizer of the GAN model is set to 0.00003. 
The learning rate determines the step size of gradient descent (i.e., how fast the model converges). Too large 
a rate may cause the parameters to move back and forth on both sides of the optimal value. Too small a rate 
will greatly reduce the optimization speed. To solve this problem, we introduce an exponential decay meth-
od from the TensorFlow framework (Loshchilov & Hutter, 2019). The learning rate was gradually reduced 
to make the model more stable in the later stages of training. The number of convolution levels is set to 9 
(later in the text, we explain why this number must be changed in other experiments).

In this model, the discriminator loss is the same as the basic deep convolutional GAN (DCGAN) model 
(Radford et al., 2015), while for the generator loss, we introduce (on the basis of original generative loss) 
the least square errors (known as the L2 loss function) as the consistency loss into the generative loss func-
tion. The basic loss function of the GAN model meets the Nash equilibrium condition as much as possible 
(Osborne & Rubinstein, 1994). The principle behind this equilibrium is based on game theory and aims at 
continuously optimizing the generator and discriminator so that the generated data approach the real data 
(Dong & Yang, 2019). In this way, the GAN makes the samples generated by the generator approach the 
real sample in terms of both authenticity and diversity. To adapt the technology to our specific study and 
obtain more accurate results, we also established a new loss function combination for our pixel-wise GAN 
model by adding the pixel-wise reconstruction loss generation part based on the basic loss function (Zhao 
et al., 2017). The equations describing the loss functions of the generator and discriminator are given in 
Annex 1.

After 60 training epochs, we obtain a suitable generator structure that remembers the SSH high-dimension-
al features of the selected ocean region. To validate the generator model, the discriminator part is dismissed 
since the generator part is the main structure for reconstructing the completed SSH maps. Now, the valida-
tion data set (2,158 hourly, incomplete SSH maps) is fed into the generator part of the neural network model 
to generate feasible SSH maps.

2.2.3.  GAN for LF SSH Reconstruction

As shown in Section 2.1.1, the amplitude of the remaining signal is lower than that of the dominant partial 
tides. Furthermore, the variability is less regular because meteorological drivers such as wind, storms, or 
atmospheric pressure have a certain level of randomness. Therefore, we introduce some changes in the 
GAN model described in Section 2.2.2 for the sake of obtaining more accurate reconstruction results (see 
Zador, 2019).

Our new model for LF SSH reconstruction consists of two steps: coarse and fine reconstruction (Fig-
ure 6). This architecture helps to stabilize training and enlarge the receptive fields, as mentioned by Yu 
et al. (2018). Figure 6 represents a 32 × 32 × 1 map with real data only at the boundary, and Oc represents 
the coarse-reconstructed SSH map. The refinement step takes the Oc and In maps together as input pairs 
to output the final result Out. Thus, Oc conditioned on In is selected as the input of the refined network 
that reconstructs the complete SSH map called Out. This type of input stacks information of the known 
areas to urge the network to capture valid features faster (Liu et al., 2019), which is critical for rebuilding 
the content of missing regions. Our refined structure also consists of an encoder and decoder, where a skip 
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connection is adopted, similar to a coarse network. In the encoder, each of the layers is composed of a 3 × 3 
convolution, while in the decoder, a fractional stride convolutional layer with stride of 2 is adopted together 
with a 3 × 3 convolution. Finally, the discriminator has the same structure as the discriminator in our tidal 
reconstruction model.

The training step and reconstruction process are the same as in the tidal reconstruction model. However, 
the training sample batch size is set to 336 (2 weeks of hourly data). The number of training epochs is set 
to 5,000 since more uncertainty and greater magnitudes of the variations lead to training difficulties, which 
will require more training epochs to obtain a stable and desirable model. The initial learning rate of the 
Adam optimizer in this GAN model is set to 0.00007 to adapt to these model parameter changes.

2.3.  Kalman Filter Approach

Schulz-Stellenfleth and Stanev (2010) proposed an optimal linear estimator to reconstruct ocean state pa-
rameters from observations knowing the prior distribution of the state and measurement errors. The meth-
od is similar to the approach of Frolov et al. (2008) and uses standard concepts of estimation theory. It will 
be very briefly presented below; for more detail, the interested reader is referred to Schulz-Stellenfleth and 
Stanev (2010) and Grayek et al. (2011). The method uses the background covariance matrix derived from 
the AMM7 data as a priori information. We will denote the global state vector of dimension m by x. The data 
from 19 tidal gauges represent the measurement vector y of dimension n. The global state vector x contains 
SSH from AMM7 data at the individual position of the model area. The task is to find a reconstruction ma-
trix A such that

J A x t Ay t
j

q

j j� � � � � � � �
�
�
1

2

�

is minimum, where q is the number of SSH maps (hourly maps in 1 year). This would ensure that the re-
construction error is as small as possible. Assume that the observations can be derived from the global states 
according to

Hy x�

where H is the linear measurement operator. Schulz-Stellenfleth and Stanev  (2010) showed that J(A) is 
minimum if A is the Kalman gain matrix
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Figure 6.  Generator structure for residual sea surface height map reconstruction.
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where P is the background covariance matrix for the state x and R is the observation error.

It was demonstrated in the same study that if the dynamics of the state variables can be described by only a 
few empirical othogonal functions (EOFs), the dimension of the reconstruction problem can be significant-
ly reduced. For the AMM7 SSH data set, only three EOFs describe more than 95% of the variance. Therefore, 
in the analyses addressed in the following, we used three EOFs only. R is taken as a diagonal matrix, with a 
constant error value of 1 cm.

3.  Experiments
3.1.  Experiments in Reduced Area

The first group of experiments presented below aims to analyze how appropriate the GAN is to reconstruct 
the sea level in a relatively small area (only 32 × 32 grids) in the interior of the North Sea. In the exper-
iments’ nomenclature (Table 2), we use the abbreviations AF and LF. In the AF experiments, we use the 
1-h data, as they are produced by the AMM7 model. In the LF experiments, we also use 1-h data, but the 
variability with periods higher than 2 days is removed by low-pass filtering as explained above. Therefore, in 
the LF experiments, the sea level can be considered mainly driven by the atmosphere and by low-frequency 
tides (e.g., spring-neap variability). The training phase uses 8,642 hourly maps, which corresponds to 1 year. 
In the first type of experiment, for which there is a column called “Training” in Table 2, we use data from 
the same source in the training and validation steps. In this way, the data at the two steps are consistent 
with each other.

In AF1–3, we determine the quality of reconstruction if some input data are missing. In AF1, we randomly 
generate locations in the 32 × 32 matrix, where we assume that there are no available data (there are no “ob-
servations” in half of the locations in the original grid). Thus, we feed the GAN model with data only from 
the locations where there are “observations.” These locations differ in the different experiments presented 
in Table 1. The input from the remaining grid points belonging to the model area is specified as zero. We 
use the data from all the locations as a target data set. At the validation step, we use the “observations” in 
only half of the locations of the original grid to reconstruct the 32 × 32 field (all locations) over a period of 
3 months. A comparison between the AMM7 data and the reconstructed data will be analyzed in Section 4.

In AF2, we select a square area in the middle of the 32 × 32 matrix (i = 5,…, 25 and j = 5,…, 25), which is con-
sidered a no-data area. The basic difference from AF1 is that this no-data area is compact. In AF3, we extend 
the no-data area up to the boundary. This exercise can thus be interpreted as a reconstruction of the full data 
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Name
Type of experiment 

(AF)
Type of experiment 

(LF)
Training (input data-

target data)
Validation (input data-

validation data) Comment

AF1 X - AMM7-AMM7 AMM7-AMM7 Randomly distributed no-data locations.

AF2 X - - - At the validation step, there are missing 
data only in the interior.

AF3 X - - - At the validation step, data are available 
only at the boundary.

AFK X - - - -

LF - X - - -

LFK - X - - -

Note. Index “K” in the experimental nomenclature stays for the “Kalman filter approach.”
Abbreviations: AF, all frequencies (full data set); AMM7, Atlantic Margin Model-7; LF, low frequencies (low-pass filtered data set).

Table 2 
List of Experiments in a Small Domain
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set using data only at the boundaries (all the boundary locations). In AFK (“K” stays for “Kalman”), we use 
the Kalman filter approach described in Section 2.3 to reconstruct the SSH following the scenario of AF3.

Experiment LF is essentially the same as AF3; that is, only data at the boundary are used to train the mod-
el. The difference is that LF analyses the capability of using a GAN to reconstruct the data set from which 
the high-frequency tides have been removed. LFK is the same as LF; however, the reconstruction method 
uses the Kalman filter approach. In all the experiments described above, the computational resources were 
relatively low. On one GPU node, which is an Nvidia Tesla V100 with 32 GB memory, it takes ∼30 min for 
GAN to complete the training in the AF experiments and ∼45 min to complete the training in the LF exper-
iments. The latter takes a longer time than the former because the more stochastic signals associated with 
the atmospheric forcing compared to the periodic tidal signals make the convergence slower.

3.2.  Experiments in the Entire North Sea

The second group of experiments is for the entire North Sea basin (index “B” in Table 3). Experiment BAF1 
is essentially the same as AF3. The difference is that in the training phase, we use only data from 19 loca-
tions where TGs operate. These data in BAF1 are taken from AMM7 from the nearest to the observation 
location model grid points. As in AF3, the input from the remaining grid points belonging to the model area 
is specified as zero. The training and validation periods are the same as those in the experiments with re-
duced area. BLF1 is essentially the same as BAF1; the difference is that we analyze the quality of the recon-
struction of the low-frequency North Sea data set, that is, the data used in this experiment are the low-pass 
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Name
Type of 

experiment (AF)
Type of 

experiment (LF) Area
Training (input 

data-target data)
Validation (input 

data-validation data) Comment

BAF1 X - Entire North Sea - - Similar to the comment for AF 
(see Table 2).

BLF1 - X - - - Similar to the comment for LF 
(see Table 2).

BAF2 X - - - TG-AMM7 Similar to the comment for 
BAF1 for the observations 
used at the validation step.

BLF2 - X - - - Similar to the comment for 
BLF1 observations used at 
the validation step.

BAF2-G X - - - GCOAST-AMM7 Similar to the comment for 
BAF2 GCOAST data used at 
the observation locations at 
the validation step.

BLF2-G - X - - - Similar to the comment for 
BLF2 GCOAST data used at 
the observation locations at 
the validation step.

BAF3 X - - TG-AMM7 TG-AMM7 The data at the boundary are 
the same in the training and 
validation steps.

BLF3 - X - - - -

BAF3-G X - - GCOAST-AMM7 GCOAST-AMM7 -

BLF3-G - X - - - -

Notes. Notice that all names of experiments in in this table start with “B.” The fourth column makes explicit the difference from Table 2.
Abbreviations: AF, all frequencies (full data set); AMM7, Atlantic Margin Model-7; B, basin-wide; GCOAST, Geesthacht COAstal model SysTem; LF, low 
frequencies (low-pass filtered data set); TG, tidal gauge.

Table 3 
List of Experiments in the Entire North Sea
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filtered data used in BAF1. The idea to carry out this experiment was two-fold. It was assumed that remov-
ing the high-frequency oscillations would result in a better model when reconstructing the low-frequency 
variability of basin-wide SSH using only coastal data. The second consideration was that the high-frequency 
oscillations are not included in some altimeter products; thus, it is worth trying to test whether ML can well 
resolve only the low-frequency variability.

BAF2 is the same as BAF1; however, real observations from TGs are used in the validation step along with 
the same model developed in BAF1. Obviously, this experiment uses data of different origins (in the “Val-
idation” column of Table 3, the data sources are different). Thus, these data are not fully consistent with 
each other. In the following, we will refer to this type of experiment as experiments with “inconsistent data.” 
BLF2 is the same as BAF2, but BLF2 addresses the quality of the reconstruction of low-frequency variability. 
One important difference between the BAF and BLF experiments is that we use different ML models (see 
Section 2) because of the different spatiotemporal characteristics of the tidally and atmospherically driven 
sea level. Practically, in the BAF2 and BLF2 experiments, we assign the TG observations to the nearest 
model grid neighbors.

In BAF-G and BLF2-G, we do not use real observations as in BAF2 and BLF2 but rather data from the 
GCOAST model in the nearest to the observation locations model grid points.

The next two experiments, BAF3 and BLF3, use partially inconsistent data for training and validation. By 
“partially inconsistent,” we mean the following. At the training step, at the positions of the TGs, we use data 
from the TGs. The target data set is the basin-wide SSH, which is produced using AMM7 (TG-AMM7 in the 
“Training” column of Table 3). It is expected that the ML model learns the consistency between the forcing 
data and the target. Therefore, the product is partially consistent with the data from the TGs and the AMM7. 
At the validation step, we use tidal gauge data and the ML model to reconstruct the SSHs and compare 
them to the AMM7 data. BLF3 is the same as BAF3, but BLF3 addresses the quality of the low-frequency 
reconstructions.

In the final two experiments (BAF3-G and BLF3-G), we used the same approach as in BAF3 and BLF3. In 
this case, in the observation locations (Figure 1), the data are sampled from the GCOAST model, which has 
a horizontal resolution two times better than that of the AMM7. These data are considered pseudo-observa-
tions with “different quality” than the quality of the coarser AMM7.

4.  Results
4.1.  Sea-Level Reconstruction in Idealized (Reduced) Areas

The results of all the reduced area experiments are presented in Figure 7. As representative characteristics 
measuring the agreement between the reconstruction data and the observations, we use the index of agree-
ment (Willmott, 1981):

D P Q P O P O O O
i

n
i i

i

n
i i, / | | | |� � � � �� � � � �� �

� �
� �1

1

2

1

2

� (1)

In the above equation, the overbar indicates the temporal mean, and the other notations are explained in 
Section 2.1.3. The above equation provides a statistical approach to compare model predictions (P) with 
observations (O). The numerator measures the average error magnitude, and the denominator gives a basis 
of comparison. The index of agreement measures the model performance as the degree to which P match-
es O, where 1 indicates perfect agreement and 0 indicates complete disagreement. Other possible indexes 
for model-data comparison are defined by Nash and Sutcliffe (1970), Legates and McCabe (1999); see also 
Willmott et al. (2012).

The results of the three AF experiments (AF1–AF3) are shown in Figures 7a–7c. They illustrate how the 
reconstruction results deteriorate if some input data are missing. However, “deterioration” is not an ade-
quate word in this case because all three reconstructions are characterized by an index of agreement greater 
than 0.99. The pattern of D reflects some characteristics of the data distribution and dynamics. In AF1, the 
no-data locations are randomly distributed. However, the results in Figure 7a show that the lowest values 
of the index of agreement appear predominantly at the boundary. This finding is explained by the fact that, 
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in the basin interior, the no-data locations are uniformly surrounded by locations where observations are 
available. However, at the periphery of the studied area, the no-data locations are surrounded by fewer ob-
servations (because no observations exist outside of the area).

In AF2, where we prescribe a wide coastal area with data, the index of agreement is higher than 0.995. In 
the no-data area (in the middle of Figure 7b), the index of agreement shows a propagation pattern, which is 
in agreement with the propagation direction of the Kelvin wave (see the rectangle in Figure 1 and the phase 
lines in Figure 2a). The situation in AF3 (Figure 7c) is qualitatively similar to that in AF2 (a better agree-
ment with the validation data set in the western part). However, in this experiment, only the data along the 
boundary are used; therefore, the index of agreement is slightly lower, and its pattern is less regular than 
that in AF2. The lowest D∼0.994 in AF3 appears in the area closest to the amphydromic point (Figure 2a), 
where the amplitude of the signal is lower; therefore, the signal-to-noise level is also lower.

Experiment LF (Figure 7d), which quantifies the capability of GAN to reconstruct the SSH using the LF 
data set, shows a comparable skill as AF1–AF3. In all four cases, the index of agreement is above 0.99, and 
its ranges are comparable. The fundamental difference between the AF and LF experiments is the pattern 
of the index of agreement, which is no longer tidally dominant in the LF case.

The comparison between the performance of GAN and Kalman filter approach is presented in Figure 8 
for one location shown in Figure 7 where the reconstruction quality of GAN is relatively low (D∼0.997). 
Obviously, the two methods perform very similarly. For this specific location, the RMS differences between 
the AF reconstructions and AMM7 data are ∼3 cm. The RMS differences between the LF experiments and 
low-pass filtered SSH are ∼1 cm. These values, as seen in Figure 8, are negligibly smaller than the amplitude 
of the respective signals. It is clearly seen from these illustrations, in particular in the plots on the bottom, 
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Figure 7.  Index of agreement between the “true” and reconstructed SSHs in the experiments carried out in the 
reduced areas. The index was computed at the validation step. The numbers on the axes are the longitude and latitude 
(see Figure 1 for the position of this area). The blue dots are locations where time series are analyzed for the validation 
period. AF, all frequencies (full data set); LF, low frequencies (low-pass filtered data set); SSH, sea surface height.
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that the largest differences between the reconstructions using GAN and Kalman filter methods, from one 
side, and data, from the other, occur almost at the same times.

The above experiments are relatively easy, at least in terms of the volume of data used. In real-world appli-
cations, data sets are usually much larger, and it was not clear a priori whether the used method would have 
the same performance if larger datasets were used. By increasing the data volume by ∼25 times, one reaches 
the volume of the data set generated from AMM7 over the entire North Sea. Therefore, we performed a pre-
paratory experiment in which we interpolated the 32 × 32 matrices with a resolution five times better than 
in the AF experiments and repeated AF3 experiments using the new data set. Because of the increase in 
the data size, we increase the number of convolutional layers to 13; the number of epochs is set to 600. The 
initial learning rate is the same as in the case of the 32 × 32 data set. The computational time for training 
increased up to ∼6 h, which is approximately 12 times longer compared to the 32 × 32 cases. The index of 
agreement in this additional experiment (not shown here) is higher than 0.993, and its pattern is close to 
that in AF3.

4.2.  Sea-Level Reconstruction Over the Entire North Sea

Here, we discuss the skill of experiments introduced in Section 3.2. As a measure of the skill of each of 
them, we will show maps of the index of agreement (Figure 9). The RMS difference between the recon-
structed and “true” data is shown in the supporting material (Figure S1). The results from experiment BAF1 
(Figure 9a) demonstrate that using the data from only 19 locations where the TGs operate is sufficient for 
adequate sea-level reconstruction over most of the analyzed domain. Only in the northwestern part of the 
study area and in Kattegat, where TGs are not available, and in the area between the two amphidromic 
points in the eastern North Sea, the index of agreement drops to ∼0.8. The smaller D in the area between 
the two amphidromic points is explained by the low-amplitude tides in this zone (small denominator in 
Equation 1).

The reconstruction of the LF variability (experiment BLF1, see Figure 9b) is approximately as good as the 
reconstruction of the full signal. The lower index of agreement in the interior of the North Sea is explained 
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Figure 8.  Sea level in the locations shown in Figure 7 for the 2-month validation period. (a and b) are AF experiments; (c and d) are LF experiments. Panels 
on the left are from GAN reconstructions; those on the right are from the reconstruction using the Kalman filter approach. AF, all frequencies (full data set); 
AMM7, Atlantic Margin Model-7; GAN, generative adversarial network; LF, low frequencies (low-pass filtered data set).
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by the relatively low amplitude of the signal there (compare with Figure 2c). Because of this phenomenon, 
the signal-to-noise ratio reduces the reconstruction skill. Overall, BAF1 and BLF1 demonstrate that if con-
sistent datasets are used in the locations where TGs are located, the GAN model adequately reconstructs the 
basin-wide SSH.

We remind the reader here that the SSH reconstructed in BAF1 contains low- and high-frequency signals, 
while the output of the BLF1 experiment reproduces only the low-frequency variability. The initial expec-
tation was that the GAN could better learn less complicated temporal and spatial variability, which is in the 
case when a high-frequency signal was removed from the data. Figure 9c shows the Brier skill score

BLF1 BAF1BSS 1 BS / BS � (2)

where    2
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   is the mean-squared error in each experiment and BAF1 is taken as 

the reference experiment. The reconstruction is perfect when the BSS is equal to 1. BSS = 0 means that 
there is no improvement in BLF1 compared to the results in BAF1. If BSS<0, the quality of BLF1 recon-
struction is poorer than that in BAF1. Obviously, there are areas where BAF1 shows better agreement with 
the observations than BLF1. This result suggests that processing a much more complex data set (BAF1) is 
superior in many areas than processing low-pass filtered data, which demonstrates that the GAN can learn 
about processes with multiple time scales. As demonstrated by Jacob and Stanev (2017), in the North Sea, 
processes with multiple time scales in the ranges studied here are nonlinearly coupled. The fact that the 
reconstruction of the full signal is superior in many areas compared with the reconstruction of the LF signal 
provides indirect proof that the nonlinear interactions between processes with different time scales are well 
captured by ML. These patterns would not occur if nonlinear interactions between processes with different 
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Figure 9.  Index of agreement (see Equation 1) between the “true” and reconstructed SSHs in the experiments carried out over the entire North Sea (see 
Table 3). The training data set is from January 01, 2016 to January 01, 2017, and the validation data set is from January 01, 2017 to March 01, 2017. The names 
of the individual experiments are shown in each panel. The ML model BAF1 is used in all the experiments shown in the first column (a, d, and h). The panels 
in the second column (b, e, and i) use the BLF1 model. Panels f and j and panels g and k use the BAF3 and BLF3 models, respectively. (c) shows the Brier skill 
score (see Equation 2) of BLF1 against the low-pass output of BAF1. ML, machine learning.
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time scales did not exist. Figure S2 gives an illustration how M4 tides, which are due to nonlinear advection, 
are replicated. This result emphasizes the performance of ML method in the coastal regions.

In the BAF2 and BLF2 experiments, the reconstruction models are the same as in BAF1 and BLF1, respective-
ly. However, unlike the BAF1 and BLF1 experiments, where the training and validation steps use consistent 
data, the BAF2 and BLF2 experiments belong to the class of experiments using inconsistent datasets at the 
validation step; that is, instead of using AMM7 data at the coast (consistent with the training data), we feed the 
model with real observations (which are inconsistent with the model). The level of inconsistency is quantified 
in Section 3 (see Figure 3 and Table 1). This substitution of data at the validation step resulted in a reduction 
in the reconstruction quality. What the GAN model can only adequately capture (index of agreement above 
0.85) is the sea-level variability in the coastal areas of the western and southern North Sea (Figure 9d). The 
areas of low sea-level variability show a very low reconstruction skill (compare with Figure 2b, particularly 
the region of the small amphydrome in the Southern Bight). The reconstruction of the LF-signal is slightly 
better, particularly in the coastal zone of the German Bight, where the variability range of the LF-signal is the 
strongest (compare Figure 9e with Figure 2c). Obviously, the GAN model is not very flexible in using arbitrary 
types of data at the reconstruction step. The reduction in the reconstruction skill reminds us of the problems 
in data assimilation when errors in the data and model are not treated appropriately.

The BAF2-G and BLF2-G experiments, similar to the BAF2 and BLF2 experiments, belong to the group of 
experiments using inconsistent data sets at the validation step. In this case, the ML models are the same as 
in BAF1 and BLF1; however, the GCOAST data in the locations of TGs are used at the validation step. As 
shown in Section 2, the GCOAST data are slightly more consistent with the AMM7 data than with the TG 
data (Figure 3, Table 1). Therefore, the reconstruction skill improved in comparison to that in BAF2 and 
BLF2 (compare Figures 9h and 9i with Figures 9d and 9e, respectively). However, D is much lower than in 
the BAF1 and BLF1 experiments.

The “partial inconsistency” of the data for training and validation in BAF3 and BLF3 implies that, at the 
training step, the processing of the GCOAST data (at the coast) and the AMM7 data (as the target) tends to 
decrease the inconsistency between the two datasets in the GAN model. Thus, the results of new models, 
which are different from BAF1 and BLF1, respectively, are documented by the comparison between Fig-
ures 9f and 9g and Figures 9d and 9e, respectively. Obviously, the GAN model learns to adapt the solution 
to the data from different origins. The model skill is also dependent on the magnitude of the sea-level varia-
bility (compare with Figure 2b), which also explains the relatively good skill of BLF3 in the coastal zone of 
the German Bight. Notable is the more uniform and better reconstruction skill in the LF experiment than in 
the AF experiment over most of the area.

The final two experiments, also belonging to the group of experiments with “partially inconsistent” data 
(BAF3-G and BLF3-G), illustrate the improvement of the reconstruction skill if synthetic observations (the 
GCOAST data in the TG locations) are used in the training (compare Figures 9j and 9k with Figures 9h and 
9i, respectively). The better agreement between the GCOAST and AMM7 data than the agreement of each 
of them with the real observations (see Table 1) explains why the index of agreement in Figures 9j and 9k 
are better than those in Figures 9f and 9g, respectively.

5.  Discussion
One year of training data appeared sufficient for a model using a generative adversarial network to learn the 
structure of the SSH data and to adequately reconstruct the basin-wide SSH during the validation period us-
ing data from only 19 locations along the coast. The quality of the reconstructions was almost equally good 
for the full signal (AF) and low frequency one (LF). The high values of the index of agreement (area mean 
values of 0.937 and 0.945 for the BAF1 and BLF1 experiments, respectively) were possible provided data 
from the same source was used (in this case, the AMM7). Another reason for the reconstruction success is 
the relative smoothness of the SSH maps.

The use of the same model fed from either the observations (TGs) or independent numerical simulations 
(GCOAST data) reduced the quality of the reconstructions: 0.761 and 0.822 in BAF2 and BLF2, respectively, 
and 0.823 and 0.860 in BAF2-G and BLF2-G, respectively. The comparable numbers are explained by the 
comparable differences between the three data sets fed to the model. In the BAF experiments, the agree-
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ment between the reconstructions and validation data depends strongly on the patterns of the tidal ampli-
tude: the lower the amplitude (in amphidromic points), the lower the agreement is. The BLF experiments 
show a much more uniform distribution of the index of agreement. In both the BAF and BLF experiments, 
the reconstruction model performs better if it is fed with the GCOAST data than when it is fed with actual 
observations.

Some drawbacks in the reconstruction could be avoided if data from the coastal stations are used in the 
training. In BAF3, BLF3, BAF3-G, and BLF3-G, the basin mean indexes of agreement are 0.823, 0.879, 0.882, 
and 0.889, respectively. Obviously, there are good perspectives by developing an optimal learning process to 
improve the reconstruction quality, which should include the study of the individual imprint of stations for 
the reconstruction of the basin-wide sea level. TGs are sometimes placed in locations that are not represent-
ative of the large-scale dynamics; therefore, the observed signal is not fully consistent with the basin-wide 
dynamics. Such stations would have low imprints but could also contaminate the learning process.

A further adjustment of the loss function or other parameters would improve the reconstruction quality, 
which is another technical task to solve in future research. This issue has not been addressed in the present 
study because our aim was to demonstrate the power of the GAN model in reconstructing SSH maps by 
using different types of inputs and targets.

Another issue that has not been discussed in the present study is the length of the data series that we use. 
As is well known, neural networks can reconstruct situations similar to those they encounter from the past. 
Therefore, another way to improve the reconstruction quality would be to extend the duration of the learn-
ing process and perhaps to set a clearer aim to the reconstruction exercise with respect to the time scales 
addressed.

One important question to discuss here is what we learn about physics. One zero-order answer would be 
“nothing” because what we see in the validation step is a synthesis of situations from the past. However, the 
basic message from Figures 9a and 9b is that a decent reconstruction capability is realized using a relatively 
short time series, which is an illustration of a substantial recurrence of patterns. This would imply that the 
spatial-temporal patterns repeat (quasi)periodically, and a relatively short-time record contains the most 
representative characteristics of SSH dynamics. While this was clear for the tides, it was not so obvious 
about changes in sea level caused by the atmosphere. Furthermore, the GAN has a good skill to learn and 
reconstruct dynamics with multiple time scales. The results presented in Figure 7a illustrate that the recon-
struction capabilities of the model decrease when approaching the boundaries of the area addressed. This 
finding justifies that having data at the boundaries is an important prerequisite for optimal reconstructions. 
In other words, much information on the dynamics of the entire basin is encapsulated in the boundary data, 
which enables the good reconstruction skill of the specific GAN application.

The patterns in Figures 7 and 9 demonstrate that the errors in the reconstructions are closely linked to spe-
cific physical patterns; that is, one can also make useful analyses of the model errors to study the physical 
properties of the sea level. This analysis would be important when developing concepts to specify error co-
variance matrices in data assimilation models. Another aspect concerns the role of coasts, which constrain 
the circulation features in different ways. One example is the low index of agreement in the area of the 
Norwegian trench, which is a known challenge for numerical models. Evaluation of different types of non-
linearities and identification and quantification of the responsible processes with the help of ML is another 
issue of future development. Our preliminary analyses of other types of data (e.g., sea surface temperature 
and sea surface salinity in the German Bight) show that in some cases Kalman filter approach performs 
better, in some other cases, for example, reconstruction of sea surface salinity, it is the ML approach, which 
performs better. The studied here SSH maps is just one type of data with their respective temporal and spa-
tial scales. They cannot be considered as а comprehensive set of different types of data with different spatial 
and temporal characteristics, as well as different level of stochasticity. Therefore, the experiments presented 
here do not allow to fully analyze the advantages and disadvantages of two methods. A deeper analysis of 
the performance of the ML and Kalman filter approaches when using different and more challenging data 
sets will be presented in a forthcoming study.

Longer periods are beyond the scope of the present research. Reconstructing basin-wide SSH over long 
times would require a different design of deep learning. One can expect that reducing the resolution of 
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basin-wide data used in the training, both in time and space, would allow more efficient computations and 
extension of the addressed time scales to decadal and beyond. One fundamental issue to address is whether 
coarser resolution in space and time ML would ensure adequate decadal reconstructions. Such an exercise 
will be analyzed in a separate study using different data sampling and processing technologies.

Another natural extension of the present research would be the application of a GAN to data-only cases. 
One candidate is the amalgamation between satellite altimetry and TGs, which would open up the perspec-
tives to improve and optimally use the observational networks in the North Sea.

6.  Conclusions
The method proposed here to reconstruct the basin-wide SSH using TG data from a few coastal stations builds 
on the capability of GANs to detect and reproduce nonlinear dynamics, as well as learning the dominant re-
lationships of different spatial and temporal signals. We presented the method in detail, motivating interested 
scientists to apply it to similar natural settings or other oceanographic datasets. In the case when the coastal 
and open ocean data are consistent (e.g., they are from the same source), as was the case in experiments BAF1 
and BLF1, only 19 stations in the locations of the permanently operating TGs are enough for the GAN to 
ensure an adequate reconstruction. The relatively short time series, which is only 1 year, provides an illustra-
tion of a substantial recurrence of events. It was demonstrated that, in this case, the skills of the models used 
to reconstruct tidally and synoptically driven temporal and spatial variability were almost equally good and 
comparable to the skill when using the Kalman filter approach. However, differently from the case of optimal 
linear estimator (e.g., the Kalman filter approach), of particular value is the capability of the GAN to learn and 
replicate processes with multiple time scales and the associated nonlinear interactions between them.

Using data from different sources (real observations or data from another numerical model) resulted in a 
decrease in the skill, and the patterns of disagreement with the test data were constrained by the model 
dynamics, generally reflecting the signal-to-noise ratio. Thus, the index of agreement between the recon-
structions and validation data depends strongly on the patterns of the tidal amplitude. Including real coastal 
observations in the learning process increased the skill of the model. Obviously, GANs optimally learn from 
data from different sources. The lower skill of the experiments, in which real coastal observations are not 
used in the training process, reveals a similarity with the problems in data assimilation when errors in the 
data and model are not treated appropriately. Using other independent observations when training the GAN 
has the potential to further increase the power of the proposed method in real applications. This method 
can be attempted in other oceanographic settings.

Annex 1:  Loss Functions of the Generator and Discriminator
The Unet-like GAN is established to train two defined network models: Generator (G(Z)) and Discriminator 
(D). G(Z) is established to reconstruct SSH maps with full information, where Z denotes the input SSH maps 
with only several tidal gauge point information available. Generated SSH maps from G(Z) together with real 
SSH maps from the numerical model are fed into the discriminator (D), and the outputs of D are a dense 
scalar that represents the probability of discriminating whether the input maps are from the real input map 
(which is from the numerical model). The stopping criterion of model training is that the discriminator 
cannot distinguish whether the generated SSH maps are from real maps.

The GAN loss functions are defined as in Goodfellow et al. (2014):

   logGAN
GL E D G z    � (3)

      log log 1GAN
DL E D x E D G z        � (4)

where LG is the generator loss and LD is the discriminator loss. The GAN model parameters are trained and 
updated based on the following minimization and maximization method:
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            Pdatamin max , log log 1x x z P zzV G D E D x E D G z 
        � (5)

here, Pdata(x) is the real SSH map data distribution, taking real data sample x from Pdata(x). Pz(z) is the in-
put(z) (as in Figure 10) SSH data distribution, sampling z from Pz(z). E is the expectation operator. Based on 
the original DCGAN loss function, we also introduce L1 as pixel-wise reconstruction loss and L2 as content 
loss into the generator for accomplishing our experiments. The discriminator loss is the same as the original 
GAN. The overall loss for the generator is:

L G z x1 � � � ��

L G z x2 2
2� � ���

   log 1 2GAN
GL E D G z L L     �

In the LF reconstruction model, an additional pixel-wise reconstruction loss La is introduced into the gen-
erator part:

L G z xa OC� � ���

L E D G z L L LG
GAN

a� � � �[log( ( ( )))] 1 2
�

here,  OCG z  represents the generated coarse sea surface LF map data sample. x is the same as above, de-
noting the real numerical sample data.
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Figure 10.  Schematic representation of the sea-level variability reconstruction GAN system. Input (Z) is the SSH 
input sample with only tidal gauge point data available, G(Z) denotes the generator module for mapping input (Z) to 
generated data samples G(Z). Real data (x) is the real numerical model SSH data sample, D represents the discriminator 
module for discriminating the real data (x) and the generated data (G(Z)) as real or fake samples. GAN, generative 
adversarial network; SSH, sea surface height.
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