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Abstract To monitor the success of carbon dioxide removal (CDR) or solar radiation management
(SRM) that offset anthropogenic climate change, the forced response to any external forcing is required to
be detectable against internal variability. Thus far, only the detectability of SRM has been examined using
both a stationary and nonstationary detection and attribution method. Here, the spatiotemporal
detectability of the forced response to artificial ocean alkalinization (AOA) and stratospheric aerosol
injection (SAI) as exemplary methods for CDR and SRM, respectively, is compared in Max Planck Institute
Earth System Model (MPI-ESM) experiments using regularized optimal fingerprinting and single-model
estimates of internal variability, while working under a stationary or nonstationary null hypothesis.
Although both experiments are forced by emissions according to the Representative Concentration
Pathway 8.5 (RCP8.5) and target the climate of the RCP4.5 scenario using AOA or SAI, detection
timescales reflect the fundamentally different forcing agents. Moreover, detectability timescales are
sensitive to the choice of null hypothesis. Globally, changes in the CO2 system in seawater are detected
earlier than the response in temperature to AOA but later in the case of SAI. Locally, the detection time
scales depend on the physical, chemical, and radiative impacts of CDR and SRM forcing on the climate
system, as well as patterns of internal variability, which is highlighted for oceanic heat and carbon storage.

1. Introduction
The Parties to the United Nations Framework Convention on Climate Change (UNFCCC) agreed to dras-
tically reduce their CO2 emissions in order to limit warming by the end of this century to 2 ◦C above
preindustrial levels (p. 2, UNFCCC, 2015). However, curbing CO2 emissions alone may no longer be suf-
ficient (Rogelj et al., 2016), and carbon dioxide removal strategies (CDR) and solar radiation management
(SRM) may need to be deployed in order to meet these temperature targets (Fuss et al., 2014; Lawrence
et al., 2018; Royal Society, 2009). Before any of these options become part of a portfolio of strategies to
address the challenges posed by anthropogenic climate change, potential side effects and risks need thor-
ough evaluation. For this, it is crucial to ensure detectability of CDR or SRM signals in order to attribute any
observed changes to a particular cause. Only then can the success of CDR or SRM be monitored, and in case
unpredicted side effects occur, liability claims can then be made (Pfrommer et al., 2019).

CDR differs fundamentally from SRM (Royal Society, 2009; Vaughan & Lenton, 2012). CDR strategies
include all anthropogenic activities that remove atmospheric CO2 and durably store it in either long-term
reservoirs or products (IPCC, 2018). Hence, not only would the temperature response to anthropogenic CO2
emissions be tackled (Caldeira et al., 2013; Tavoni & Socolow, 2013) but also the problem of ocean acid-
ification would likewise be addressed (Doney et al., 2009). SRM strategies on the other hand modify the
shortwave radiative budget of the atmosphere (IPCC, 2018) such that a larger amount of incoming solar radi-
ation is reflected back to space and the temperature response to CO2 emissions is damped (Crutzen, 2006;
Irvine et al., 2016). In this study, an exemplary measure for each strategy is employed: artificial ocean alka-
linization (AOA) for CDR and stratospheric aerosol injection (SAI) for SRM. AOA accelerates the uptake
and storage of atmospheric CO2 in the ocean that would occur naturally on time scales of ∼100–200 ka
through the chemical weathering of silicate rocks (Hartmann et al., 2013). SAI, in the form of particles or
their precursor gases such as sulfur dioxide analogous to a volcanic eruption, could reduce the rate of global
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warming through enhancing the albedo of the stratospheric aerosol layer (Irvine et al., 2016). Depending on
the deployment scale, both in space and time, for either AOA or SAI, the resulting signals may be potentially
obscured by the natural variability of the climate system, which complicates detectability.

Detection is first and foremost a statistical term: Any observed change in a climate variable or in a process is
detected if the signal is significantly different from natural internal variability (Bindoff et al., 2013). A given
signal can only be confidently attributed to a certain cause, if first, the change is consistent with the expected
response to a forcing or driver and second, no other explanation for the observed change can be found (e.g.,
Allen & Tett, 1999; Hasselmann, 1993; Hegerl et al., 1997). Classical detection and attribution methods, that
is, optimal fingerprinting methods, use climate model output to quantify the expected responses to external
forcing and internal variability in order to evaluate evidence found in observational data (Hegerl & Zwiers,
2011). The underlying assumption that the statistics of the climate is stationary in the absence of external
forcing may no longer hold with ongoing emissions of greenhouse gases as well as additional forcing agents
such as CDR or SRM (Bürger & Cubasch, 2015; Lo et al., 2016). The impact of either SRM or CDR on the
mean state of the climate system and its dynamics remains to be tested, particularly on regional scales, where
signal-to-noise ratios of externally forced changes are generally decreased (Stott, 2003).

Thus far, only the detectability of SRM temperature and precipitation signals has been examined using a clas-
sical optimal fingerprinting approach (Lo et al., 2016, 2018) and a nonstationary detection method (Bürger &
Cubasch, 2015; Lo et al., 2016), for global (Bürger & Cubasch, 2015; Lo et al., 2016) and regional perspectives
(Lo et al., 2018). All three previous studies are based on climate model data from the Geoengineering Model
Intercomparison Project (GeoMIP; Kravitz et al., 2011) and used simulations of the multimodel Coupled
Model Intercomparison Project Phase 5 (CMIP5; Taylor et al., 2012) to evaluate internal variability, despite
individual models not being independent from each other and equal treatment of all models may induce
biases (Knutti et al., 2013). Moreover, intermodel differences in the simulated SRM response patterns are
potentially large and may lead to nonphysical detection and attribution results (Ribes & Terray 2013; Ribes
et al., 2017).

In this study, only single-model estimates of the externally forced response based on experiments run with
the state-of-the-art, Max Planck Institute Earth System Model (MPI-ESM; González & Ilyina, 2016; González
et al., 2018; Sonntag et al., 2018) are considered. Moreover, single-model estimates of internal variability pro-
vided by the Max Planck Institute Grand Ensemble (MPI-GE; Maher et al., 2019) are used to avoid potential
biases that may be related to the sampling uncertainty of internal variability in the CMIP5 database. The
detectability of forced responses to AOA and SAI in global mean near-surface air temperature is evaluated
and compared using both a classical optimal fingerprinting approach and a nonstationary detection method.
While SAI targets only temperature, AOA directly impacts the global carbon cycle; therefore, surface ocean
hydrogen ion concentration ([H+]) signals as a measure of pH are evaluated as well. pH itself is a logarith-
mic parameter and therefore not suitable for the regularized optimal fingerprinting approach. Beyond the
SRM-only studies by Bürger and Cubasch (2015) and (Lo et al., 2016, 2018), here, the detectability of global
mean AOA and SAI signals and their local patterns are discussed. Most detection studies focus on tempera-
ture only; here, the discussion is extended using the example of AOA and SAI-driven carbon inventory and
ocean heat content changes and their detectability.

2. Methodology
2.1. Model Description

The model experiments were run using the Max Planck Institute Earth System Model (MPI-ESM, version
1.0.02p1) in the low-resolution (LR) configuration as in CMIP5 (Giorgetta et al., 2013). MPI-ESM includes
components of the ocean (MPIOM; Jungclaus et al., 2013), atmosphere (ECHAM6; Stevens et al., 2013), land
surface and terrestrial biosphere (JSBACH; Reick et al., 2013), and marine biogeochemistry (HAMOCC5;
Ilyina et al., 2013). The fully coupled carbon cycle mode of MPI-ESM allows to calculate atmospheric CO2
prognostically in response to prescribed CO2 emissions. The CMIP5 experiments include a preindustrial
control simulation (ESM-CNTL, 1,000 years) and three realizations of each of the emission-driven historical
experiment (1850–2005) and the emission-driven Representative Concentration Pathway 8.5 (RCP8.5) sce-
nario run (2006-2100). A detailed discussion on MPI-ESM evaluation can be found in Giorgetta et al. (2013)
and references therein.
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The MPI-GE (version MPI-ESM 1.1.00p2) allows to estimate model internal variability in a transient sce-
nario (Maher et al., 2019). Compared to MPI-ESM used in CMIP5, MPI-GE has a slightly different ocean
component and a different version of ECHAM6, while using the CMIP5 configuration of HAMOCC5 and
JSBACH, including the soil carbon model YASSO (Goll et al., 2015) and a five-layer soil hydrology scheme
(Hagemann S. & Stacke, 2015). Additionally, cloud feedback parameters were adjusted, which lead to an
equilibrium climate sensitivity that is lowered from 3.4 K in CMIP5 to 2.8 K in MPI-GE (Maher et al.,
2019). Here, the concentration-driven 100-member ensemble for the historical simulations (1850–2005)
and RCP8.5 scenario run (2006–2100) are used. The MPI-GE runs are used for the nonstationary detection
method (Bürger & Cubasch, 2015), assuming that the similarities between model versions are large, the dif-
ferences in internal variability between concentration-driven MPI-GE and emission-driven MPI-ESM runs
are minor, the differences in internal variability despite the slightly different climate sensitivity are minor,
and these differences are very likely smaller compared to a multimodel CMIP5 ensemble.

2.2. AOA and SAI Scenario

Both AOA and SAI experiments (González & Ilyina, 2016; González et al., 2018; Sonntag et al., 2018) use
the solar irradiance, land use transitions, aerosols, and atmospheric concentrations of greenhouse gases
according to RCP8.5, while through the application of AOA and SAI, the climate of the RCP4.5 scenario
is targeted. RCP8.5 is the only no-mitigation CMIP5 scenario and therefore allows comparison to AOA or
SAI as large-scale intervention options. The RCP4.5 target climate is significantly different to the RCP8.5
base climate state. AOA and SAI experiments are initialized from the emission-driven historical CMIP5
experiment (Giorgetta et al., 2013) in 2006 and are run until 2100. Both experiments consist of an ensemble
of three members.

In the AOA scenario, atmospheric CO2 concentrations are designed to follow the RCP4.5 trajectory, while the
CO2 emissions increase according to RCP8.5 (González & Ilyina, 2016; González et al., 2018). The cumulative
emissions of the RCP8.5 scenario are 910 GtC larger than those of the RCP4.5 scenario. This excess amount
of carbon can be taken up by the ocean through enhancing the oceanic CO2 buffer capacity. Thereby, the
entire ocean is turned into a sink for atmospheric CO2, even areas that act as a source of carbon to the
atmosphere in the modern ocean (González & Ilyina, 2016). This can be achieved by adding alkalinity every
time step to the first ocean model level, that is, to the upper 12 m of the ocean, as soon as the difference
between actual and RCP4.5 atmospheric CO2 concentration is larger than 1% which occurs in 2018. In total,
114 Pmol of alkalinity are added until 2100.

In the SAI scenario, the radiative forcing is designed to follow the RCP4.5 trajectory, while the CO2 emissions
increase according to RCP8.5 (Sonntag et al., 2018). As there is no explicit calculation of aerosol concen-
trations in ECHAM6, the aerosol optical properties are prescribed every time step starting 2006 in order to
mimic the radiative effects of enhancing stratospheric aerosols by injecting sulfur (Niemeier et al., 2013;
Niemeier & Timmreck, 2015). By 2100, almost 20 Mt S year−1 is assumed.

2.3. Regularized Optimal Fingerprinting

The detection of a climate signal can be claimed, if that signal is no longer within the bounds of internal
variability. If the same signal is consistent with the expected response to different combinations of external
forcings, the signal can be attributed to its cause (Bindoff et al., 2013). Many detection and attribution studies
are based on the optimal fingerprinting approach that was introduced by Allen and Tett (1999), Allen and
Stott (2003), Hasselmann (1993), and Hegerl et al. (1997). Essentially, in this linear regression technique, an
observed signal is regressed onto the expected response to external forcing. Assuming that the response to
several external forcings is additive, the following linear regression model applies:

y =
𝑓∑

i=1
𝛽iXi + 𝜀 (1)

Here, y is the observed signal, Xi is the response to the ith of f external forcings, 𝛽 i is an unknown scaling
factor, and 𝜀 denotes the internal climate variability. In order to estimate the confidence intervals of the
linear regression model in Equation 1, the covariance matrix of the internal climate variability needs
to be evaluated, assuming that 𝜀 is a Gaussian random variable. Particularly, for data sets with a large
spatial or spatiotemporal size this is challenging. Therefore, here a regularized estimate of the covari-
ance matrix is used, which avoids underestimation of high-order eigenvalues (Ribes et al., 2009, 2013).
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While in the ordinary least squares approach (Allen & Tett, 1999), Xi is assumed to be perfectly known, in
the total least square approach (Allen & Stott, 2003), Xi is unknown. The total least square approach is used
here, where the ensemble mean, X̃i, is provided by the climate model simulation: X̃i = Xi + 𝜀Xi

. Here, 𝜀Xi
represents internal climate variability and, as such, can be written as Cov(𝜀Xi

) = 1
n

Cov(𝜀), while n represents
the number of ensemble members used to calculate X̃i.

2.4. Defining the Null Hypothesis

The classical statistical model for optimal fingerprinting techniques assumes a stationary, unperturbed state
of the climate such that the null hypothesis is derived from observed normals (Bürger & Cubasch, 2015). In
this case internal variability is based on the preindustrial, emission-driven control run of MPI-ESM, while
both the responses to RCP8.5 forcing and to additional forcing of the large-scale climate intervention (LSI),
that is, AOA or SAI, have to be taken into account to assess detectability:

�̃�obs,LSI = 𝛽1X̃*LSI* + 𝛽2X̃RCP8.5 + 𝜀

= 𝛽1(X̃LSI + X̃RCP8.5) + 𝛽2X̃RCP8.5 + 𝜀

= (𝛽1 + 𝛽2)X̃RCP8.5 + 𝛽1X̃LSI + 𝜀

(2)

No observations are available for the future signals; therefore, one ensemble member of the SAI or AOA
scenario is used as a pseudo-observation �̃�obs,LSI. The simulated response patterns to the external forcing,
the so called fingerprints, are defined as the mean over the remaining two ensemble members of the SAI
and AOA experiment (X̃LSI), respectively, and the mean over the three ensemble members of the RCP8.5
scenario (X̃RCP8.5). The results may depend on which of the three ensemble members has been assigned as
pseudo-observation (see Appendix A1).

Note that the response of the LSI signal is not independent of the forced response of the RCP8.5 scenario
as no AOA-only or SAI-only experiments are available. Therefore, the calculated scaling factor needs to be
corrected (Equation 2 and Lo et al., 2016). Before regularized optimal fingerprinting is applied to calculate
detectability, signal anomalies are estimated with respect to the 1991–2005 year mean period prior to the
deployment of the large-scale climate intervention measure. The anomaly of the preindustrial control sim-
ulation is estimated by removing the 1,000-year mean state in order to have a zero-mean control climate
(Hasselmann, 1993).

Following the line of argumentation by Bürger and Cubasch (2015), the climate evolution over the 21st
century is per definition nonstationary. The long-term gradual warming as a consequence of the increas-
ing emission of greenhouse gases introduces uncertainty as the future climate sensitivity is unknown. The
grand ensemble MPI-GE-LR allows to adjust the null hypothesis accordingly. The 100-member RCP8.5 sce-
nario run is used to evaluate the internal climate variability under forcing over the course of the 21st century.
In this case, the assumed additivity of the response of external forcings is fully exploited. Here, the null
hypothesis is formulated in a perfect model or at least a near-perfect model framework as two slightly dif-
ferent models, that is, MPI-GE and MPI-ESM are used, such that only the LSI response pattern remains in
the statistical model:

�̃�obs, LSI = 𝛽LSIX̃LSI + 𝜀 (3)

Note that due to the different climate sensitivity in MPI-ESM and MPI-GE and due to likely different
response patterns, the anomalous signals cannot be estimated by removing the forced trend, that is, the
100-member mean (Maher et al., 2019). Instead, the anomaly of the AOA and SAI scenario is estimated by
removing a 3-year running mean of the RCP8.5 run, that is, the forced trend over the three ensemble mem-
bers of MPI-ESM. The filtering becomes necessary in order to avoid contamination of the observation with
the fingerprint signal and vice versa. The estimates of the forced response of the MPI-ESM RCP8.5 run could
be improved and recovered using dynamical adjustment techniques (Deser et al., 2016; Sippel et al., 2019),
which, however, goes beyond the scope of this study.

Prior to the application of regularized optimal fingerprinting, all data are temporally smoothed using
a causal, 10-year trend-based filter in order to reduce interannual variability (Bürger & Cubasch, 2015;
Lo et al., 2016). The scaling factors 𝛽 are estimated over time in order to evaluate the time of detection of
signals due to the large-scale climate intervention. Note that despite not all signals being equally noisy, the
same temporal filter was used for different variables.
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Figure 1. The anomalies of global, annual, 10-year trend-based filtered mean over three ensemble members for surface
temperature (panels a, c) and hydrogen ion concentration (panels b, d) for RCP8.5 (blue), AOA (red), and SAI (orange)
that serve as input for the optimal fingerprinting tool. Panels a and b show signals relative to the 1991–2005 mean to
illustrate the stationary null hypothesis using a 1,000-year mean of ESM-CNTL (gray). Panels c and d show signals by
removing the forced trend using a 100-member mean of MPI-GE, RCP8.5 (gray) to illustrate the nonstationary null
hypothesis. The shaded areas illustrate the spread over 3 members, 100-members or 1,000 years, respectively.

2.5. Hypothesis Testing

Finally, the approach of Monte Carlo simulations introduced by Ribes et al. (2013) is applied to evaluate
the consistency of the estimated global mean residuals in Equation 1 with internal climate variability. The
residual consistency test fails when the variability of the residual in the observed signal is larger than the
expected 5–95% range of internal variability from ESM-CNTL or MPI-GE or if the expected response patterns
are incorrect (Ribes et al., 2013). Note that the grid pointwise Monte Carlo analysis is too costly to run;
instead, residual consistency is estimated following Allen and Tett (1999) and Allen and Stott (2003). Due to
small differences between the two residual consistency checks, local detectability results are shown at 10%
significance levels.

The p value serves as criterion to either accept the null hypothesis, that is, “𝛽 = 0,” or reject the null hypoth-
esis, that is, ”𝛽 > 0,” at the 5% significance level for global signals and at the 10% significance level for local
signals. Then, detection is the point in time after which the lower confidence interval of 𝛽SAI or 𝛽AOA or 𝛽RCP,
that is, the 5% (or 10%) significance level, is permanently larger than zero. That means, that there may be
periods of time before, where the signal appears detectable, but becomes undetectable again over the course
of the century. If “𝛽 = 1” can also not be rejected, attribution can be claimed; however, the focus within this
study lies on the detectability.

3. Spatiotemporal Detectability of AOA and SAI
3.1. Global Signals

The time of detection allows to quantitatively compare CDR with SRM, illustrated for global and annual
mean AOA and SAI near-surface air temperature and surface ocean hydrogen ion concentration ([H+])
as a measure of pH signals over the 2005–2100 period under the stationary and nonstationary control cli-
mate. The chosen pointer variables show different magnitudes of change and levels of noise in the response
patterns; therefore, regularized optimal fingerprinting can be well tested using different statistical models.
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The signal anomalies that serve as input are slightly different for the two null hypotheses: Assuming a sta-
tionary control climate, anomalies are designed with respect to the 1991–2005 period (Figures 1a and 1b),
while working under the assumption of a nonstationary control climate, the forced RCP8.5 trend is removed
(Figures 1c and 1d).

Compared to the RCP8.5 experiment, both SAI and AOA lead to reduction in near-surface air temperature
starting in the 2040s, and the reduction strongly increases until the end of the century (Figures 1a and
1c). The small offset by 2100 in the mean temperature signal between the AOA and SAI experiment is a
consequence of a slightly different non-CO2 greenhouse gas forcing, aerosol forcing, and effects of land use
transitions (Modak et al., 2016; Sonntag et al., 2018). The tight relationship between atmospheric CO2 and
the CO2 system in seawater leads to the smooth response of the H+ concentration in the surface ocean to
increasing atmospheric CO2 levels over the course of the century (Figures 1b and 1d). The small reduction in
atmospheric CO2 in the SAI experiment due to a temperature-driven enhancement of terrestrial and oceanic
carbon sinks (Sonntag et al., 2018) translates to a small reduction in surface ocean H+ concentration (Figures
1b and 1d, red line), while in the AOA experiment, the increased oceanic buffer capacity mitigates the strong
ocean acidification as in the RCP8.5 scenario and even produces pre-2000 global mean H+ concentration
signals by the end of the 21st century (González & Ilyina, 2016).

While Sonntag et al. (2018) and González and Ilyina (2016) analyzed and compared the magnitude of AOA
and SAI signals, regularized optimal fingerprinting allows to quantify the point in time, at which these sig-
nals are detectable and no longer consistent with internal variability. The time series in Figure 2 show the
evolution of the scaling factors calculated for the AOA and SAI experiments between 2006 and 2100 for
surface temperature (first and third row panels) and hydrogen ion concentration (second and fourth row
panels), assuming a stationary control climate (left and center rows, 𝛽SAI or 𝛽AOA and 𝛽RCP) and a nonsta-
tionary control climate (right row, 𝛽SAI or 𝛽AOA only). The gray shaded area illustrates the failed residual
consistency check (see section 2.5).

Assuming a stationary control climate, the global temperature response to SAI can be detected in 2066,
while the response to AOA can be only detected roughly 10 years later, in 2075. Assuming nonstationarity,
detection can be claimed earlier, that is, approximately in 2046 for SAI and 2051 for AOA. In all experiments,
SAI is designed to balance all anthropogenic forcings and AOA only the CO2 forcing (Sonntag et al., 2018).
Therefore, the signal-to-noise ratio is slightly higher for temperature response to SAI than to AOA, which
is reflected in 𝛽SAI and 𝛽AOA. As opposed to the GeoMIP data used by Bürger and Cubasch (2015) and
Lo et al. (2016), the experiments here are designed to follow the RCP4.5 trajectory, but the temperature
difference between RCP8.5 and RCP4.5 is relatively small until midcentury. The response patterns in tem-
perature to the AOA or SAI forcing and the RCP8.5 forcing are therefore almost colinear until 2050, which
complicates detectability as the corresponding signal-to-noise ratios are low. The evolution of the scaling
factor 𝛽 between 2006 and 2100 is accordingly noisy, particularly when assuming a stationary control
climate. Detecting small anomalies close to zero toward the beginning of the century is challenging, because
the linear regressions fail more easily.

In contrast, H+ concentration signals are already detectable within the first 5 to 10 years after the deploy-
ment of AOA in 2018, with little difference between the stationary and nonstationary null hypothesis. The
input of alkalinity over time directly affects the CO2 system in seawater with a robust signal-to-noise ratio;
therefore, changes in H+ concentration due to AOA are detectable before 2025. For SAI, changes in the H+

concentration can be detected 15 years earlier in the middle of the 21st century if the nonstationary null
hypothesis is assumed compared to the stationary control climate. In principle, H+ concentration is not a
variable of choice to detect the impact of SAI mitigation; however, SAI indirectly affects atmospheric CO2
concentration via an enhanced terrestrial carbon sink (Sonntag et al., 2018), which in turn imprints on
surface ocean H+ concentration.

The residual consistency test compares the estimated residuals of the statistical model with the modeled
internal climate variability (section 2.5; Ribes et al., 2013). In general, close to the time of detection the
regressions become significant at the 95% confidence level, that is, p values are smaller than 0.05. If a nonsta-
tionary control state is assumed, detection can not only be claimed earlier but is also more robust. Although
Lo et al. (2016) find similar results in their comparison study, they dismiss the use of the nonstationary
control case for their purpose.
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Figure 2. Detection and attribution for global mean-annual mean SAI and AOA signals. Scaling factors for surface
temperature (first and third row panels) and hydrogen ion concentration (second and fourth row panels) under the
stationary assumption (left and center panels) and under the nonstationary assumption (right panels). The dashed line
indicates the time of detection, that is, the lower confidence interval is larger than 0 (year indicated in top right
corner). The failed residual consistency check is highlighted by the gray shaded area, that is, p values larger than 0.05.

3.2. Local Signals

Global mean AOA and SAI signals are expected to be detected earlier then local signals, because patterns of
internal variability that may compete on local scales are averaged, leading to reduced noise on global scales
(Schlunegger et al., 2019). Despite potentially high local internal variability, local detection of the forced
responses to AOA and SAI can eventually be claimed if signal-to-noise ratios become high enough. This is
tested by processing the data as before, but instead of using global mean AOA and SAI signals, regularized
optimal fingerprinting was applied at every grid point. In order to reduce noise, local signals are spatially
averaged over all adjacent grid points for surface air temperature and H+ concentration, assuming the non-
stationary control climate first as it has yielded more robust results for global scale estimates (Figure 3) and
assuming the stationary control climate (Figure 4).

By design, the overall AOA forcing counterbalances only the RCP8.5 CO2 forcing, while SAI balances all
anthropogenic RCP8.5 forcing. Therefore, the magnitude of SAI-driven cooling signals is larger than the
AOA-driven signals, globally and locally. As the resulting signal-to-noise ratios remain low well through-
out the century, the AOA signals are consequently detected later in the 2060s and beyond. For SAI, earlier
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Figure 3. Local detectability for temperature (panels a, b) and hydrogen ion concentration (panels c, d) for SAI (panels
a, c) and AOA (panels b, d) simulations. Regularized optimal fingerprinting was applied to every grid point assuming a
nonstationary control climate.

detectability in the 2030s and 2040s is claimed in the low latitudes, in the Northern Hemispheric high lati-
tudes as well as in a small area over the Atlantic sector in the Southern Ocean. In general, the fundamentally
different radiative impact of either external forcing can be detected within the framework of regularized
optimal fingerprinting (Figures 3a and 3b). The magnitude of internal variability on local scales shows
minor differences between MPI-ESM and MPI-GE; that is, the variability patterns are slightly different (see
Appendix A3). Working under the transient null hypothesis, this may lead to a small range in estimates of
the uncertainty of the scaling factors within this only “near-perfect” model framework. Note that areas are
hatched in the global maps presented in Figure 3 where the variability of the residuals, that is, the com-
ponent of the observations not explained by the forcings, is larger than expected from the 10–90% range of
internal variability of MPI-GE.

Figure 4. Local detectability for temperature (panels a, b) and hydrogen ion concentration (panels c, d) for SAI (panels
a, c) and AOA (panels b, d) simulations. Regularized optimal fingerprinting was applied to every grid point assuming a
stationary control climate.
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On local scales, the cooling due to both SAI and AOA is more pronounced on land than on the ocean,
more pronounced in the Arctic than at low latitudes, and low in the Southern Ocean (Sonntag et al., 2018).
Although the time of detection for global mean near-surface air temperature is almost the same, locally, the
spatial distribution of SAI and AOA time of detection resembles known variability patterns that emerge due
to both atmospheric and oceanic processes (Figures 3a and 3b). Areas, in which temperatures deviate more
frequently from long-term annual means, that is, that show large nonseasonal variability, are the Southern
Ocean and Antarctica, the North Atlantic as well as northern Europe, and the North Pacific as well the
upwelling zones along the equatorial Pacific (see Appendix A3 and e.g., Deser et al., 2010). These prominent
features of temperature variability may be associated with modes of atmospheric circulation variability such
as the Southern Annual Mode, the Atlantic Multidecadal Oscillation, the Pacific Decadal Oscillation, and
coupled ocean-atmosphere interactions such as the El Niño–Southern Oscillation (Deser et al., 2010). In
contrast to that, comparably low variability occurs across the tropical ocean basins with the exception of the
tropical Eastern Pacific, where signal-to-noise ratios can be maximized earlier such that detectability can be
claimed sooner as well.

Although the magnitude of variability patterns of H+ concentration is less pronounced than temperature
patterns, they may also be associated with circulation-driven variations in surface dissolved inorganic car-
bon associated with modes of atmospheric circulation variability (Lovenduski et al., 2015). The internal
variability of surface ocean CO2 system is spatially more heterogeneous, because equilibration timescales
of surface waters to increasing atmospheric CO2 affect local air-sea CO2 fluxes (Friedrich et al., 2012). As
signals associated with SAI in atmospheric CO2 are small, changes in H+ concentration in the climate sys-
tem can be detected at the earliest in the middle of the 21st century (Figure 3c). Detection is claimed even
later in the 2070s in the upwelling zones along coastal Peru and Chile, the Arctic Ocean, and large areas
in the Southern Ocean. The changes in H+ concentration are not only driven by the uptake of atmospheric
CO2; temperature signals contribute as well to H+ concentration signals, which is why similarities to the
SAI near-surface air temperature patterns emerge. In contrast to SAI signals, the direct intervention in the
surface ocean CO2 system can be detected within the first 10 to 20 years of AOA deployment in 2018 (Figure
3d). The signal-to-noise ratio is accordingly high, and the local time of detection of H+ concentration shows
a close to uniform distribution, as alkalinity is added every time step in every grid box homogeneously.

Assuming a stationary null hypothesis, the role of individual forcings that contributes to the observed change
in a climate signal should be separated by simultaneously regressing two fingerprints onto the observations.
The importance of the choice of null hypothesis is illustrated in all maps of Figure 4, which shows the same
as Figure 3 but assuming a stationary control climate state. For near-surface air temperature, both SAI and
AOA signals (Figures 4a and 4b) are scarcely detectable on a local scale this century. Only a few areas in
the low latitudes stand out with detection times of around 60 years after the deployment of SAI. For the H+

concentration, SAI signals in the low latitudes may be detected; however, the spatial detectability pattern is
highly heterogeneous (Figure 4c). Despite the small signal in surface ocean H+ concentration in response
to SAI forcing, detectability can be claimed earlier than for near-surface temperature, because of higher
signal-to-noise ratios. Only the H+ concentration signals in the AOA experiment can be detected (Figure 4d)
and an almost similar pattern emerges as in the map shown in Figure 3d.

The shift in the detectability pattern between the two null hypotheses, which is clearly visible for H+ con-
centration signals in the AOA experiment (Figure 5), indicates that the assumption of additive responses to
forcing may fail on local scales (Meehl et al., 2003). The choice of null hypothesis has little effect on the time
of detection in large areas of the ocean, and the difference in the time of detection is smaller than 5 years.
However, H+ concentration signals in areas prone to higher internal variability such as the tropical Pacific,
the Southern Ocean, upwelling close to the coast of Peru and Chile, and the northern high latitudes (see
Appendix A3) are detected up to 30 years later assuming a stationary control climate, despite independence
between forcings being assumed.

The failure for detection using a stationary background in a “perfect” model framework climate state indi-
cates that the response to the RCP8.5 forcing and the AOA or SAI forcing, respectively, lacks detail in space
and time. The responses to AOA or SAI and RCP8.5 forcing are therefore either indistinguishable, or the
magnitudes of the signals are too small on local scales. This could be overcome by taking information from
adjacent grid boxes into account to improve the filtering of data. The failure to detect engineered forcing
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Figure 5. Difference in local detectability for hydrogen ion concentration between a nonstationary and stationary
control climate.

should, therefore, not be interpreted as that no influence exists through SAI or AOA locally but rather that
the forced responses to either forcing are not detectable above the internal variability.

4. Implications for Local Carbon Inventory and Heat Content Changes
For the purpose of detecting changes of the climate response to cumulative carbon emissions and changes
thereof through AOA or SAI deployment, it might be more meaningful to assess the oceanic storage of
anthropogenic carbon and heat. The oceans play a crucial role in climate change mitigation as they con-
stitute an important sink for both anthropogenic heat and carbon albeit with large interannual to decadal
variability (Frölicher et al., 2015; Thomas et al., 2018). The responses to SAI-driven changes in the shortwave
radiative forcing and AOA-driven longwave radiative forcing should not only be separable to the RCP8.5
forcing in observed temperature trends or changes in the surface ocean CO2 system. Instead, the regular-
ized optimal fingerprinting may also be applied to carbon inventory changes, that is, the integrated column
inventory of dissolved inorganic carbon, and to ocean heat content changes, that is, the integrated heat con-
tent between the surface ocean and 69-m depth. The analysis of nontemperature variables might increase
confidence in the detection and attribution results.

The signal anomalies between the AOA and SAI scenario, respectively, and the RCP8.5 scenario by the end
of the 21st century illustrate the strong carbon storage due to AOA as opposed to negligible storage due
to SAI (Figures 6a and 6b). The largest AOA-driven carbon inventory changes are observed in the North
Atlantic, the subtropical gyres, and in the Arctic, while the upwelling areas in the Atlantic and Pacific, the
ENSO region in the tropical Pacific and Southern Ocean, are associated with little carbon inventory changes.
Compared to the organized carbon inventory pattern, both scenarios lead to a reduced uptake of heat in
the upper ocean over the course of the century with similar but finer patterns (Figures 6c and 6d). The
largest reduction in upper ocean heat content occurs in the North Atlantic current, the Kuroshio current,
the Antarctic Circumpolar current, and and the tropical Pacific. SAI leads to a slightly larger reduction in
upper ocean heat content than AOA.

Assuming a nonstationary control climate state, the time of detection is shown in all maps of Figure 7.
As expected, SAI has negligible impact on storage of carbon, which is why no detectability can be claimed
in the open ocean. Despite the close to uniform detectability pattern for the surface ocean CO2 system in
response to the homogeneous application of alkalinity, the detectability pattern of carbon inventory changes
resembles the large-scale ocean circulation pattern. Earliest detection is claimed in areas subject to strong
convection that transfer carbon-enriched surface water masses to the deep ocean, that is, the North Atlantic,
where signals were strongest as well. Large areas in the Southern Hemispheric midlatitudes show early
detectability as well, due to larger signal-to-noise ratios. Despite high levels of carbon inventory changes due
to AOA in the subtropical Pacific, high internal variability obscures detectability.

The slightly larger magnitude of heat storage due to SAI than AOA results in earlier detectability of these
signals; however, the patterns are generally more structured compared to carbon. The SAI-driven changes
in ocean heat content are detected earliest in the Northern Pacific and the tropical Atlantic and Indian
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Figure 6. Ensemble mean change in depth-integrated dissolved inorganic carbon (panels a, b) and upper ocean heat
content (panels c, d) for SAI (panels a, c) and AOA (panels b, d) simulations between the ensemble mean of the RCP8.5
scenario for the mean period 2090–2099.

Oceans. Except for the Indian Ocean feature, a similar pattern emerges for the AOA scenario, but later, with
large areas with no detection at all prior to 2100. For both AOA and SAI, detectability is not exclusively
claimed in areas with the strongest signals of heat invasion, which indicates higher internal variability in, for
example, the subtropical North Atlantic. Over the historic period, variability in global carbon content using
the suite of CMIP5 models stems mainly from Southern Ocean circulation changes (Frölicher et al., 2015;
Thomas et al., 2018), while variability in ocean heat content is primarily driven by variability in the southern
midlatitudes and tropical regions (Thomas et al., 2018). This leads to anticorrelated global heat and carbon
content variability. Here, SAI and AOA forcing impact the timescales of heat and carbon uptake kinetics,
air-sea equilibria, and atmospheric boundary conditions that lead to distinct patterns in magnitude and
variability of oceanic heat and carbon storage. Regularized optimal fingerprinting can therefore be used to
distinguish the mechanisms that are impacted by the deployment of SAI or AOA with statistical confidence.
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Figure 7. Local detectability for dissolved inorganic carbon (DIC) inventory (panels a, b) and upper ocean heat content
(panels c, d) for SAI (panels a, c) and AOA (panels b, d) simulations. Regularized optimal fingerprinting was applied to
every grid point assuming a nonstationary control climate.
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5. Robustness of Results
In this study, the detectability results rely on the MPI-ESM simulations. Using a different Earth System
Model will yield similar detectability time scales for global variables, if the simulated responses to anthro-
pogenic forcing and SAI or AOA forcing are similar (Hegerl & Zwiers, 2011). On local scales, different
detectability patterns will likely emerge due to different spatial patterns of the response to external forcing in
different models, distinct from patterns of internal variability. Using single-model estimates of observation,
fingerprints and internal variability is an advantage in this study, because the discrepancies between simu-
lated response patterns of different models do not need to be taken into account (Ribes et al., 2017). Using
multimodel estimates will likely result in longer detection time scales, as shown in Bürger and Cubasch
(2015) for imperfect models with imperfect initial conditions. In general, detection and attribution stud-
ies that rely on multimodel assessments can be more confident that their fingerprints better represent the
“true” response to forcing (Hegerl & Zwiers, 2011). If either SAI or AOA would ever be deployed, multimodel
ensembles should be used to robustly detect climate change mitigation.

Beyond the structural uncertainty associated with MPI-ESM itself, the choice of the high-CO2 emission
scenario RCP8.5 as a background climate state and RCP4.5 as a target climate also affects the detectabil-
ity results. If a lower and likely more plausible emission scenario (Hausfather & Peters, 2020) would have
served as a base line, the temperature response to either SAI or AOA would likely be detected even later
due to a lower magnitude of signal responses. The rapid response of hydrogen ion concentration to AOA
prior to the divergence of the RCP4.5 and RCP8.5 scenarios midcentury suggests that here detection time
scale is scenario independent. Therefore, SAI detection is limited, even in the highly idealized framework
of this study, whereas AOA detection, if identified in carbon system parameters, is less sensitive to the
deployment scale.

The robustness of the results depends further on the preprocessing of the data, the construction of the
response to forcing, that is, the fingerprints, and the uncertainty of the internal variability estimates. As
pointed out by Ribes et al. (2013), with regularized optimal fingerprinting, the choice of appropriate spatial
and temporal filtering remains problematic as different filter lengths suppress or enhance different patterns
of variability. Depending on the parameter, the detectability time scale changes using different filter length
scales as different frequency components are smoothed over time (see Appendix A2), which remains to
be tested locally. Applying a more refined spatial filtering, that is, taking information from larger regions
into account, could improve signal detail in space and time. Then uncertainty for local detectability may be
reduced, especially while working under a stationary null hypothesis.

Using only two ensemble members, as done in this study, to construct the fingerprints might not be sufficient
to remove all remnants of internal variability (Hegerl & Zwiers, 2011). Particularly for near-surface temper-
ature, where signal-to-noise ratios are low, especially on local scales, uncertainty in the fingerprints might
be large (see Appendix A1). However, the total least squares approach shows only little sensitivity to small
ensembles (Allen & Stott, 2003); therefore, increasing the ensemble size might not improve detectability
estimates.

With ongoing climate change, internal variability will likely change, which has been shown in many stud-
ies for, for example, daily summer temperatures over Europe (Fischer & Schär, 2008), Atlantic Meridional
Overturning Circulation (Drijfhout et al., 2008), precipitation (Pendergrass et al., 2017), surface-air temper-
ature as well as sea ice volume and area (Olonscheck & Notz, 2017). Already now, internal variability is
the dominant source of uncertainty in climate projections of potential ocean ecosystem stressors at global
and regional scales for the next few decades (Frölicher et al., 2016). While with the advent of large ensem-
bles, the potential change in internal variability due to greenhouse gas forcing can be better quantified, the
impact of climate engineering on modes of internal variability remains largely unclear, especially for any
CDR strategy. The deployment of SRM perturbs the Earth's energy balance, atmospheric dynamics, and
hydrological cycling and thereby affects the local response of heat waves and soil moisture extreme events
(Dagon & Schrag, 2017) but has been shown to have little impact on El Niño–Southern Oscillation frequency
(Gabriel & Robock, 2015). In terms of detectability, potential changes in internal variability introduce addi-
tional uncertainty, especially on local scales. Therefore, depending on the parameter, estimated detection
and attribution timescales may be underestimated or overestimated.
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6. Conclusions
The fundamentally different forcing mechanisms complicate any comparative assessment of SRM and CDR
strategies (Oschlies et al., 2017; Sonntag et al., 2018; Zürn & Schäfer, 2013). In this study, the scenario design
allows to compare the detectability of the effects of SAI and AOA as exemplary measures for SRM and CDR
after deployment in 2006. Globally, signals in near-surface air temperature can be detected 5 years earlier,
that is, in 2046, in the SAI experiment compared to the AOA experiment. While the direct intervention of
AOA in the CO2 system in seawater is detectable within the first years after its deployment, that is, before
2025, the response in atmospheric CO2 to SAI is indirect, and as such, detectability of SAI-driven changes
in H+ concentration signals is claimed in the second half of the 21st century. Locally, the response in tem-
perature and the CO2 system in seawater as well as heat and inorganic carbon inventories to both AOA
and SAI have distinct detectability patterns. High internal variability impedes detectability, particularly if
signal-to-noise ratios are low.

In general, detection can be claimed earlier and the results are more robust while working with a transient
background climate state instead of a stationary null hypothesis. For example, the temperature response to
SAI is detected in 2066 working with a stationary null hypothesis, which is 20 years later than working with
a nonstationary null hypothesis. Particularly on local scales are the response patterns to AOA or SAI and
RCP8.5 forcing too similar or too small and therefore indistinguishable. Additionally, the assumed additivity
of signals may no longer be valid, as shown with the example of hydrogen ion concentration. Such nonlinear
behavior may limit the detectability of individual responses to single forcing agents. Still, constructing cli-
mate normals by taking the modeled warming trend due to greenhouse gases into account allows a realistic
application of regularized optimal fingerprinting.

Within the framework of this study, the response to external forcing is by design well known and not sub-
ject to large uncertainty. However, if actually deployed, feedback mechanisms may amplify or dampen the
response patterns to either AOA and SAI. Moreover, the climate impacts of well-mixed greenhouse gases are
less uncertain than those of aerosols and other short-lived climate forcers (e.g., Zhao et al., 2019), because of
complex aerosol-cloud interactions. While regularized optimal fingerprinting may actually be used to detect
the individual response patterns to fundamentally different forcing agents such as CDR and SRM, additional
uncertainty is introduced through the combination of observed and modeled climate data.

Depending on detectability patterns that result from grid pointwise regularized optimal fingerprinting, mon-
itoring systems could be designed to allow for control the success of SAI or AOA locally. These observation
time series need to be at least as long as the detection timescale and probably longer in areas prone to large
internal variability. However, the deployment of a single SRM or CDR measure such as SAI or AOA to off-
set anthropogenic climate change on a global scale is not very likely, particularly as individual approaches
may lead to unintended side effects. In fact, implementation of either SAI or AOA on the scale suggested
in this study is currently not technically feasible (González & Ilyina, 2016; Sonntag et al., 2018). The imple-
mentation of a combination of a number of different SRM or CDR measures on smaller scales is far more
likely in order to meet the global temperature target. However, this will limit the detectability of individual
responses to single measures, particularly if signals are small or response patterns are similar or local vari-
ability is high. Therefore, nontemperature variables that show distinct response patterns to SRM or CDR
measures should be analyzed as well in order to increase confidence in the detection and attribution results.

Appendix A
A1. Sensitivity of Detection Time Scale to Choice of Ensemble Member

Throughout the manuscript, the same ensemble member was assigned to be the pseudo-observation, while
the mean over the remaining two ensemble members of the engineered experiment was used to represent
the response pattern to the forcing. Uncertainty in the estimate of the response pattern to the forcing that
stems from internal variability decreases with increasing ensemble size (Hegerl & Zwiers, 2011). Figure
A1 shows the time of detection for different ensemble members chosen as pseudo-observation for SAI and
AOA and near-surface air temperature and hydrogen ion concentration. The choice of ensemble member
has minor influence on the timescale of detection, except for the SAI-driven hydrogen ion concentra-
tion. Here, detectability can be claimed significantly earlier if the second ensemble member is assigned as
pseudo-observation. Including more ensemble members could potentially reduce the uncertainty associated
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Figure A1. Sensitivity of detection timescale to choice of first, second, or third ensemble member as
pseudo-observation. Distribution over window size of the filter between 5 and 15 years for AOA or SAI and
near-surface air temperature (SAT) or hydrogen ion concentration ([H+]).

with the choice of ensemble member. However, each member represents a potential realization of future
climate that may include strong decadal trends that impact detectability independent of ensemble size.

A2. Sensitivity of Detection Time Scale to Choice of Filter

The optimal reduction of spatial and temporal dimension of the data before ROF may be used remains
challenging (Ribes et al., 2013) as different filtering techniques may enhance or suppress different frequency
components over time. Particularly assuming a nonstationary control climate state, the performance of a
trend-based filter exceeds the one of a moving-average filter as no temporal phase shift occurs (Bürger &
Cubasch, 2015). According to Lo et al. (2016), the choice of filter is crucial and determines the timescale of
detectability, independent of the underlying null hypothesis. Both studies do not explicitly explore different
window sizes of the filter and lengths of the base period but acknowledge that they might be of importance.
Here, the time of detection is evaluated for global mean hydrogen ion concentration signals (Figure A2) and
near-surface air temperature (Figure A3). One year is added stepwise in the length of the base period, that
is, the time prior to the deployment of AOA or SAI, that is used as learning period (Ribes et al., 2013), and
in case of the stationary control climate, to calculate signal anomalies. The window size of the filter ranges

Figure A2. Sensitivity of detection timescale to choice of filter, size of filter window, and length of base period for
hydrogen ion concentration signals in the SAI (left four panels) and AOA experiment (right four panels). Following the
notation of Bürger and Cubasch (2015) and Lo et al. (2016), C0 stands for moving average filter and C1 for the
trend-based filter. Both stationary (upper panels) and nonstationary null hypotheses (lower panels) are evaluated.
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Figure A3. Same as Figure A2 but for near-surface air temperature signals.

between 5 and 15 years, that is, from a 5-year to a 15-year moving average filter or a 5- to 15-year trend-based
filter.

Depending on variable and magnitude of the signal the choice of filter, both the length of the base period and
size of the filter window can impact detectability. In general, the time of detection is more sensitive to the
length of the base period, that is, the time prior to the deployment of AOA or SAI that is used as a learning
period than the length of the filter window. The trend-based filter is less sensitive to the choice of length of
the base period and filter window length than the moving average filter. The nonstationary null hypothesis
yields more robust results than assuming a stationary control climate state. If signals are large enough, that
is, for H+ concentration in the AOA experiment, the time of detection is independent of the choice of filter
or null hypothesis.

A3. Patterns of Annual Variability of the Control Climate States

In section 4, the patterns of internal variability of MPI-GE and ESM-CNTL are recognized in the maps of
local detection timescale for both AOA and SAI. Figure A4 shows the mean standard deviation of anomalies

Figure A4. Standard deviation over 1,000 years of ESM-CNTRL (left panels) and over 100 ensemble members of
MPI-GE from 1850–2100 (right panels) for temperature (upper panels) and hydrogen ion concentration (lower panels).
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with respect to the 1,000-year mean (left panels) or to the 100-ensemble mean from 1850 to 2100 (right
panels). In general, the differences in both magnitude and distribution of variability between MPI-GE and
ESM-CNTL are small.

Data Availability Statement
Computational resources were made available by the German Climate Computing Center (DKRZ) through
support from the German Federal Ministry of Education and Research (BMBF). Primary data are avail-
able through González and Ilyina (2016) and Sonntag et al. (2018), and scripts needed to reproduce this
analysis are archived by the Max Planck Institute for Meteorology and will be available by contacting
publications@mpimet.mpg.de website.
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