
wileyonlinelibrary.com/ETC © 2020 The Authors

Environmental Toxicology and Chemistry—Volume 40, Number 2—pp. 487–499, 2021
Received: 8 October 2020 | Revised: 4 November 2020 | Accepted: 23 November 2020 487

Environmental Toxicology

Effect‐BasedTriggerValues forMixturesofChemicals inSurface
Water Detected with In Vitro Bioassays

Beate I. Eschera,b,* and Peta A. Nealec

aHelmholtz Centre for Environmental Research–UFZ, Leipzig, Germany
bCenter for Applied Geoscience, Eberhard Karls University of Tübingen, Tübingen, Germany
cAustralian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland, Australia

Abstract: Effect‐based trigger (EBT) values for in vitro bioassays are important for surface water quality monitoring because
they define the threshold between acceptable and poor water quality. They have been derived for highly specific bioassays,
such as hormone‐receptor activation in reporter gene bioassays, by reading across from existing chemical guideline values.
This read‐across method is not easily applicable to bioassays indicative of adaptive stress responses, which are triggered by
many different chemicals, and activation of nuclear receptors for xenobiotic metabolism, to which many chemicals bind with
rather low specificity. We propose an alternative approach to define the EBT from the distribution of specificity ratios of all
active chemicals. The specificity ratio is the ratio between the predicted baseline toxicity of a chemical in a given bioassay
and its measured specific endpoint. Unlike many previous read‐across methods to derive EBTs, the proposed method
accounts for mixture effects and includes all chemicals, not only high‐potency chemicals. The EBTs were derived from a
cytotoxicity EBT that was defined as equivalent to 1% of cytotoxicity in a native surface water sample. The cytotoxicity EBT
was scaled by the median of the log‐normal distribution of specificity ratios to derive the EBT for effects specific for each
bioassay. We illustrate the new approach using the example of the AREc32 assay, indicative of the oxidative stress response,
and 2 nuclear receptor assays targeting the peroxisome proliferator–activated receptor gamma and the arylhydrocarbon
receptor. The EBTs were less conservative than previously proposed but were able to differentiate untreated and in-
sufficiently treated wastewater from wastewater treatment plant effluent with secondary or tertiary treatment and surface
water. Environ Toxicol Chem 2021;40:487–499. © 2020 The Authors. Environmental Toxicology and Chemistry published by
Wiley Periodicals LLC on behalf of SETAC.

Keywords: Cytotoxicity; Specific mode of action; Environmental quality standard; Water quality; Reporter gene assay; Water
pollution

INTRODUCTION
Many in vitro bioassays, particularly mammalian reporter

gene assays, are increasingly sensitive and can detect effects in
relatively clean waters, such as drinking water and recycled
water, after enrichment with solid‐phase extraction (SPE; e.g.,
Jia et al. 2015; Conley et al. 2017; Neale et al. 2020b). How-
ever, just because an effect is detected does not necessarily
mean that the water is toxic and the chemical water quality is

not acceptable. As a result, effect‐based trigger (EBT) values
have been proposed to help differentiate between an accept-
able and an unacceptable bioassay response in a water sample.
The current approach used for chemical water quality mon-
itoring is to compare detected chemical concentrations from
targeted chemical analysis to chemical guideline values. How-
ever, chemical guidelines cannot possibly capture all chemicals
potentially present in water and do not account for the mixture
effects that can occur between the many chemicals present.
This emphasizes the need for effect‐based monitoring and
consequently the definition of EBTs.

A number of different approaches have been applied to
derive EBTs for both drinking water and surface water. The
simplest approach involves directly translating a chemical
guideline value to a bioanalytical equivalent concentration
(BEQ) using the bioassay's reference compound (Leusch
et al. 2014; Kunz et al. 2015). This implies that the reference
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compound is representative of all chemicals inducing a specific
effect in the assay. This is not necessarily the case, and there-
fore, a number of studies have determined the in vitro effect at
the guideline concentration using the different potencies of the
bioactive chemicals and accounted for mixture effects using a
read‐across approach (Escher et al. 2013, 2015, 2018b). An
additional approach specific for drinking water has been pro-
posed that converts the concentrations of reference com-
pounds considered safe in vivo to concentrations that can be
detected using in vitro assays using differences in the tox-
icokinetics of different compounds to correct the EBT (Brand
et al. 2013). Brion et al. (2019) derived EBTs for estrogenicity by
comparing the effects detected in vitro to effects detected
in vivo. In addition, other studies have derived EBTs for surface
water using a combination of approaches, including converting
from in vivo toxicity data and field investigations, often fol-
lowing multiple lines of evidence in a more qualitative manner
(van der Oost et al. 2017; de Baat et al. 2020), or using dis-
tributions of a large set of water samples (Besselink et al. 2017).

Previous methods to derive EBTs have relied on a very lim-
ited number of experimental effect data of single chemicals. This
was successful for bioassays indicative of highly specific modes
of action such as estrogenicity or inhibition of photosynthesis,
where a small number of highly active chemicals dominate the
mixture effects in water samples. In contrast, this method has
limitations for cytotoxicity and bioassays indicative of modes of
action where many chemicals are active but with lower potency,
such as oxidative stress response mediated by the nuclear er-
ythroid 2‐related factor 2 (Nrf2)–antioxidant response element
(ARE) pathway and activation of the peroxisome proliferator–
activated receptor gamma (PPARγ) or the arylhydrocarbon re-
ceptor (AhR). Direct read‐across from guideline values was not
possible for low‐potency chemicals, and a mixture factor had to
be invoked to derive the EBT for bioassays that respond to many
but low‐potency chemicals (Escher et al. 2018b).

However, these biological endpoints are very important:
wide screening of water samples with multiplexed assays that
included more than 60 nuclear receptors and transcription
factors (Escher et al. 2014; Blackwell et al. 2019) have indicated
that Nrf2, AhR, the pregnane X receptor (PXR), PPARγ, and
some hormone receptors are activated most prominently by
many types of water samples.

We propose an alternative approach that defines safe levels
for overall cytotoxicity as the point of departure. We illustrate
the new method using 3 reporter gene assays often used for
water quality assessment: AREc32 for the activation of oxida-
tive stress response, PPARγ‐BLA for binding to PPARγ, and
AhR‐CALUX for activation of AhR. From a general EBT 10%
inhibitory concentration (IC10) for cytotoxicity, we derived the
EBT for specific effects in reporter gene assays by analyzing the
degree of specificity (specificity ratio) and accounted for mix-
tures by looking at the distribution of specificity ratios of large
numbers of chemicals for each assay. We included effect data
of 689 environmentally relevant chemicals that have been de-
tected in European surface waters and had previously been
included in water quality monitoring studies. We used ex-
perimental effect data for single chemicals from the literature

but also mined the Tox21 database for developing the EBTs
and for estimating what fraction of chemicals is expected to
be active in a whole‐water sample. Finally, we applied the
new mixture EBT to several case studies on wastewater and
surface water and evaluated if the EBT can differentiate
between these water types and how they compare to
previously proposed EBTs for these bioassays.

THEORY: DERIVATION OF MIXTURE
EBTs FOR CYTOTOXICITY AND MODES
OF ACTION WITH LOW SPECIFICITY
What is a safe level of cytotoxicity in cell‐based
bioassays?

Baseline toxicants, which act nonspecifically according to
narcosis (McCarty et al. 2013), have very similar internal effect
concentrations, more specifically critical membrane concen-
trations, with 69mmol kglip

–1 (95% CI 49–89mmol kglip
–1) for

10% cytotoxicity derived for 7 different reporter gene cell lines
that were based on 5 different cell types including MCF7,
HepG2, H4IIe, HEK293H, and HEK293T (Escher et al. 2019).
Because critical membrane concentrations were uniform across
cell types, the quantitative structure–activity relationships
(QSARs) for baseline toxicity were very similar for diverse cell
lines (Escher et al. 2019). Figure 1A depicts the empirical
baseline toxicity QSARs for the 3 cell lines investigated. Small
differences between the empirical baseline toxicity QSARs of
different cell lines stemmed from experimental variability and
the setup of the assay, mainly differences in medium compo-
sition, leading to small differences in the bioavailability of
the chemicals (Escher et al. 2019). Given the similarity in
baseline toxicity between cell lines, we can define one EBT for
cytotoxicity for all cell lines.

Similar to how safe effect levels are derived for aquatic or-
ganisms, we first have to decide on an effect level that is con-
sidered safe for cells and then translate this effect level to an
EBT‐IC10 for cytotoxicity. Cytotoxicity of 1% cannot be differ-
entiated from the control and can be considered a safe level of
effect. For aquatic organisms, the lower 5th percentile of species
sensitivity distributions of no‐observed‐effect concentrations
(NOECs) is typically used to derive environmental quality
standards for single chemicals (Posthuma et al. 2002). Consid-
ering the variability of controls, effect level variability of NOECs,
and sensitivity differences between aquatic organisms and cells,
it seems reasonable to accept 1% cytotoxicity as a safe level.

How the acceptable cytotoxicity level of 1% is translated
into an IC10 for cytotoxicity is illustrated in Figure 1B. At low
effect levels (<30%) the concentration–response curves are
typically linear (Escher et al. 2018a), so we can directly inter-
polate in this range. If we would accept 10% of cytotoxicity in
the original water sample (green dotted line in Figure 1B), then
the acceptable IC10 for cytotoxicity (concentration that causes
10% reduction of cell viability and growth) would be a relative
enrichment factor (REF) of 1. The REF takes into consideration
sample enrichment and dilution in the assay, with an REF of
1 indicating the unenriched sample. If we accept 1% of
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cytotoxicity at an REF of 1 (red line in Figure 1B), then the
acceptable IC10 for cytotoxicity would be an REF of 10.
If we only accept 0.1% of cytotoxicity (blue dashed line in
Figure 1B), then the acceptable IC10 for cytotoxicity would be
an REF of 100.

We suggest accepting 1% of cytotoxicity in any original water
sample; that is, the anchor for the accepted baseline toxicity of
chemical mixtures extracted from water would correspond an
EBT‐IC10 of REF 10. Even if the cytotoxicity was caused by
chemicals with specific modes of action, we can use the same
cytotoxicity threshold because it does not matter if the effect is
caused by a large molar amount of baseline toxicants or a
smaller molar amount of specifically acting chemicals.

What is a safe level for chemicals with specific
modes of action?

Ideally, we would need to anchor each effect of an in vitro
assay applied in water quality assessment to the relevant ad-
verse outcome pathways (AOPs). More than 200 AOPs have
been developed in the last decade (Leist et al. 2017) since the
concept was proposed (Ankley et al. 2010), but their applic-
ability for risk assessment remains limited because of their
chemical‐agnostic feature, limited quantitative aspects, and
lack of multiple networks of AOPs (Perkins et al. 2015). Fur-
thermore, we want to be protective for any aquatic organism
and protect human health in case surface water is used for
occupational or recreational purposes or drinking water ab-
straction, but AOPs are typically specific for certain organisms.

If we use the cytotoxicity EBT‐IC10 as a point of departure,
then the question for a given reporter gene assay remains how
many chemicals elicit specific effects in this assay and how

much of this specific effect may a mixture trigger before it
becomes a problem for the organism. A measure of the degree
of specificity of a chemical is the so‐called baseline specificity
ratio (SRbaseline; Escher et al. 2020b), which describes how much
more potent a chemical is in reporter gene activation (i.e., its
specific mode of action) in comparison to the baseline cyto-
toxicity QSAR of the same cell line (Figure 2A). The SRbaseline

(Equation 1; Escher et al. 2020b) is defined as the ratio of
predicted baseline toxicity (IC10baseline) to the effect concen-
tration for a specific endpoint (EC10; effect concentration
causing 10% of maximum activation) or ECIR1.5 (effect con-
centration causing an induction ratio [IR] of 1.5–50%
over control of IR1).

= =SR
IC10

EC10
or SR

IC10
ECIR1.5

baseline
baseline

baseline
baseline (1)

An SRbaseline≤ 1 is not specific, 1≤ SRbaseline< 10 can be
considered moderately specific (with high uncertainty),
10≤ SRbaseline< 100 is specific, and 100≤ SRbaseline is highly
specific (Escher et al. 2020b). It is also possible to define the
specificity ratio against the measured IC10 in a given bioassay
(SRcytotoxicity; Escher et al. 2020b). We are not using SRcytotoxicity

in the present study because the cytotoxicity might also be
triggered by a specific mode of action. The SRcytotoxicity value is
therefore rather an indicator of selectivity (i.e., a combination
by multiplication of SRbaseline and the toxic ratio, which is the
ratio of IC10baseline to the experimental IC10).

Bioassays can be classified into 2 categories that are
distinctly different from baseline toxicity. Baseline toxicants
are expected to show a fairly tight log‐normal distribution
approximately specificity ratio= 1 (Figure 2B); that is, the
effect concentrations are expected to be close to the IC10

FIGURE 1: (A) Quantitative structure–activity relationships for baseline toxicity (Escher et al. 2019) of the 3 reporter gene assays considered:
AREc32 for the activation of oxidative stress response, PPARγ‐BLA for binding to the peroxisome proliferator–activated receptor gamma, and AhR‐
CALUX for activation of the arylhydrocarbon receptor. (B) Conceptual considerations for the derivation of the effect‐based trigger for cytotoxicity
from linear concentration–response curves (note that they are plotted on a double logarithmic scale for visualization only). AhR= arylhydrocarbon
receptor; EC= effect concentration; Dlipw= lipid–water distribution constant; IC10= 10% inhibition concentration; PPARγ= peroxisome
proliferator–activated receptor gamma; QSAR= quantitative structure–activity relationship; REF= relative enrichment factor of a water sample in the
bioassay (a REF of 1 means that the concentrations of the extracted chemicals are the same as in the original water sample); SR= specificity ratio.
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(or no effects can be detected because cytotoxicity masks
the effect).

Bioassays that are mainly triggered by highly specific
chemicals have been classified as category 1 bioassays in a
previous study that proposed EBTs (Escher et al. 2018b). These
category 1 bioassays target highly specific, mainly receptor‐
mediated effects such as binding to hormone receptors. We
proposed to define category 2 bioassays as those assays cov-
ering effect endpoints that are triggered by many more and
more diverse chemicals that exhibit specific effects but with
lower degree of specificity. Category 2 bioassays include oxi-
dative stress response and reporter gene assays with more
promiscuous nuclear receptor, such as AhR and PPARγ (Escher
et al. 2018b).

In the earlier study on EBTs (Escher et al. 2018b), there were
no clear criteria defined on how to differentiate category 1 from
category 2 bioassays. With the definition of the specificity ratios
in Escher et al. (2020b), we have a quantitative measure for the
categorization. The highly specific category 1 bioassays re-
spond to chemicals that have a relatively narrow distribution at
high SRbaseline (Figure 2B), and the responsive chemicals have
been termed “defined mixtures” (Escher et al. 2018b). Their
SRbaseline values are typically ≥100, often up to 106 (Escher
et al. 2020b). Category 2 bioassays respond to many more
chemicals that have lower SRbaseline values that typically show a
wider distribution (Figure 2B). Many of the chemicals activating
category 2 bioassays are presumably not known and hence are
“undefined mixtures.” Of course, there can be transitions be-
tween category 1 and 2 bioassays if those have bimodal or
multimodal distributions of high‐ and low‐potency ligands.
Hence, we could also look at Figure 2B with different eyes—it
could refer to one bioassay, in which some chemicals act highly
specifically, whereas others show low potency and some are
merely baseline toxicants whose measured specific effect is an

artifact of the cytotoxicity burst (Judson et al. 2016; Fay
et al. 2018).

If all chemicals were baseline toxicants in a given assay, we
could directly apply the cytotoxicity EBT‐IC10. For category
1 bioassays, existing EBTs that were read across from envi-
ronmental quality standards (EQSs; Escher 2018b) remain valid
because it is typically just a very small number of high‐potency
chemicals triggering the specific effect.

For category 2 bioassays, low‐potency effect data were fil-
tered out in the previous proposal for EBT derivation (Escher
et al. 2018b). Read‐across from EQS was only possible for the
most potent chemicals in these category 2 bioassays, and we
had to invoke a mixture factor to acknowledge that many more
chemicals with lower potency were active in these bioassays. As
discussed previously (Escher et al. 2018b), this approach is not
very useful and is subject to major uncertainty. The resulting
EBTs for category 2 bioassays were considered preliminary,
although they have been applied in several case studies and
slight improvements have been made by using a larger ex-
perimental single‐chemical database (Neale et al. 2020a) or by
harmonizing (de Baat et al. 2020) with the Smart Integrated
Monitoring (SIMONI) approach (van der Oost et al. 2017).

We propose an approach for these category 2 bioassays
that uses the effect data for all chemicals and their distributions
of SRbaseline to not only better differentiate between the dif-
ferent bioassay categories but also use these distributions to
derive the EBT. First, it is important to check if the SRbaseline

values are indeed log‐normally distributed. We will show in the
Results and Discussion section how this can be practically ac-
complished and how to diagnose bioassays with high‐ and
low‐potency chemicals by breaking them up into several
distributions.

We then suggest using the 50th percentile of the log‐
normal distribution, which is effectively the median, to derive

FIGURE 2: (A) Conceptual figure describing the derivation of the baseline specificity ratio (SRbaseline; Equation 1) from experimental effect con-
centrations and the inhibitory concentration causing 10% reduction in cell viability that was predicted from the quantitative structure–activity
relationship for baseline toxicity. (B) Conceptual figure of distributions of specificity ratios log SRbaseline for highly specific bioassays (category 1) and
those that respond to many different chemicals (category 2) compared to distributions of log SRbaseline of baseline toxicants. EC= effect concen-
tration; Dlipw= lipid–water distribution constant; IC10= 10% inhibition concentration; QSAR= quantitative structure–activity relationship.
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the EBT‐ECIR1.5 for adaptive stress responses and the
EBT‐EC10 for receptor‐mediated effects (Equation 2):

‐ ‐ = =EBT ECIR1.5 or EBT EC10
IC10
SR

REF 10
SR

baseline

baseline baseline
(2)

The median is used with the rationale that this is an in-
tegration over all SRbaseline values provided that they follow a
standard log‐normal distribution, which will be checked and
discussed. Also, the division by the SRbaseline basically means
that, on average, the mixture of chemicals in any sample with a
very high number of chemicals responds at a lower REF than
baseline toxicity. Given that all these considerations rely on
linear concentration–response curves at low effect levels, one
can expect that a sample that does not exceed the EBT‐EC for
specific effect does not exceed 1% of effect.

As for the cytotoxicity EBT‐IC10, these EBT‐ECIR1.5 and
EBT‐EC10 values are given in units of REFs of the water sample;
but for comparison with the previously proposed EBT‐BEQ values,
they can also be related to reference compounds (Equation 3).

‐ =
‐ ‐

EBT BEQ
ECIR1.5

EBT ECIR1.5
or

EC10

EBT EC10
reference compound reference compound

(3)

MATERIALS AND METHODS
Cell lines

The AREc32 reporter gene cell line, which was derived from
MCF7 cells (Wang et al. 2006); PPARγ‐BLA, derived from
HEK293H cells; and AhR‐CALUX (H4L7.5c2), based on H4IIe
cells (Brennan et al. 2015) were frequently used in the past for
water quality assessment and corresponding reporter gene assays:
TOX21_ARE_BLA_Agonist_viability/TOX21_ARE_BLA_Agonist_
ratio, TOX21_PPARg_BLA_Antagonist_viability/TOX21_PPARg_
BLA_Agonist_ratio, and TOX21_AhR_LUC_Agonist_viability/
TOX21_AhR_LUC_Agonist are included in the Tox21 database,
which is accessible via the CompTox Chemicals Dashboard (US
Environmental Protection Agency 2020).

Chemicals and their physicochemical properties
There were 689 environmentally relevant chemicals included

in the derivation of EBTs for the 3 bioassays (Supplemental Data,
Table S1). They were a subset of chemicals detected in surface
water, including chemicals identified by Busch et al. (2016) as
major European river pollutants (Malaj et al. 2014) and/or de-
tected in recent case studies in surface waters across Europe
(König et al. 2017; Neale et al. 2017b, 2020a). Only chemicals for
which we had in‐house measurements in one or more of the
3 reporter gene assays or data were available through the Tox21
database were included.

We collated physicochemical properties for the 689 chem-
icals (Supplemental Data, Table S1). The octanol–water parti-
tion constants (log KOW) of the neutral species were retrieved
from the CompTox Chemicals Dashboard, with preference
given to experimental data from PhysPropNCCT, followed by
predictions with OPERA (Mansouri et al. 2018). The QSARs use

the liposome–water partition constants (Klipw) as the descriptor
of hydrophobicity. For acids and bases as well as multiprotic
chemicals, the speciation has to be considered. The fraction of
the neutral and ionized species was calculated with the
Henderson‐Hasselbalch equation from the acidity constant
pKa, which was estimated with ACD/Percepta pKa using the
GALAS algorithm (ACD/Labs, 2015 release [Build 2726]).
The ionization‐corrected liposome–water distribution ratios
(logDlipw; pH 7.4) were calculated from experimental Klipw

values of the neutral species, Klipw(neutral), and the charged
species, Klipw(ionized), with Equation 4.

= × ( ) +

× ( )

D f K f

K

log log neutral

log ionized

lipw neutral lipw ionized

lipw (4)

Experimental Klipw data (Betageri and Rogers 1987; Avdeef
et al. 1998; Escher et al. 2000, 2017; Kwon et al. 2006; Endo et al.
2011; Bittermann et al. 2014; Henneberger et al. 2019a, 2019b;
Klüver et al. 2019; Ebert et al. 2020) were given preference in
Supplemental Data, Table S1. If no experimental data were
available, a logKOW‐based QSAR (Endo et al. 2011) was used to
predict the logKlipw(neutral), and it was assumed that Klipw(ionized)
was 10 times lower than Klipw(neutral; Bittermann et al. 2014) as
detailed previously (Escher et al. 2020b).

Baseline toxicity QSARs
The IC10baseline values were predicted with baseline toxicity

QSARs developed recently for the 3 cell lines (Escher
et al. 2019). The QSARs are depicted in Figure 1B and are very
similar for all 3 cell lines, in accordance with the concept of
critical membrane concentrations. These baseline toxicity
QSARs were initially derived for neutral species and a range of
1< log Klipw< 5 (Escher et al. 2019), but we extended them to
ionizable chemicals by replacing the log Klipw with the logDlipw

(pH 7.4) and applied them in a range from 0.6< logDlipw

(pH 7.4)< 5.4 in a previous experimental study (Escher
et al. 2020b). In the present study, we extrapolated the QSARs
another 0.6 log units on both ends of hydrophobicity and ap-
plied them to 0< logDlipw (pH 7.4)< 6. Seventy‐seven chem-
icals (11%) had a logDlipw (pH 7.4)< 0, and 24 chemicals (3%)
had a logDlipw (pH 7.4)> 6 and were therefore excluded from
the analysis, leaving 588 chemicals for analysis of the specificity
ratio, of which 75 chemicals fell into the extrapolated range of
0< logDlipw (pH 7.4)< 1 and 22 chemicals into the ex-
trapolated range of 5< logDlipw (pH 7.4)< 6. The logDlipw (pH
7.4) and the predicted IC10baseline are listed in Supplemental
Data, Table S1.

Experimental cytotoxicity and activity data
of single chemicals

The IC10s and effect concentrations ECIR1.5 in AREc32 or
EC10 in PPARγ‐BLA or AhR‐CALUX were previously measured
in our laboratory (Neale et al. 2017a; Escher et al. 2019;
Huchthausen et al. 2020; Neale et al. 2020a) for 121 chemicals in
AREc32, 52 chemicals in PPARγ‐BLA, and 89 chemicals in
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AhR‐CALUX (H4L7.5c2) and are listed in Supplemental Data,
Table S1. In Supplemental Data, Table S1, 55 data points
(20 chemicals in AREc32, 12 chemicals in PPARγ‐BLA, and
23 chemicals in AhR‐CALUX) were newly measured according to
methods described in Neale et al. (2020a). All Tox21 entries for
these assays have recently been reevaluated (Escher et al. 2020b)
with a linear concentration–effect model (Escher et al. 2018a),
and EC10 values for 522 chemicals in TOX21_ARE_BLA,
614 chemicals in TOX21_PPARg_BLA_Agonist_ratio, and 574
chemicals in TOX21_AhR_LUC_Agonist were also included in
Supplemental Data, Table S1, marked with the source “Tox21”;
but these EC10 values were previously reevaluated from
publicly available concentration–response data with a linear
concentration–effect model (Escher et al. 2020b). The cell lines
AREc32 and AhR‐CALUX are not identical to the Tox21 assays
TOX21_ARE_BLA and TOX21_AhR_LUC_Agonist but are suffi-
ciently similar to apply them as one data set (Neale et al. 2020a);
PPARγ‐BLA is identical to TOX21_PPARg_BLA_Agonist_ratio.

Overall 25% of all chemicals were active in ARE (30% in
AREc32, 24% in TOX21_ARE_BLA_Agonist), 5.6% in PPARγ‐
BLA, and 20% in AhR (26% in AhR‐CALUX and 18% in
TOX21_AhR_LUC_Agonist).

Iceberg modeling of mixture effects in water
samples

Iceberg modeling compares the mixture effects predicted
from the concentrations of detected chemicals and effect data of
the detected chemicals with the measured effects (Escher
et al. 2020c). In the present study, we reused data from iceberg
modeling of a highly diverse set of surface water quality data
(tables S7–S9 in Neale et al. [2020a], summarized in Supple-
mental Data, Table S2) and data from wastewater‐treatment
plants (WWTPs; Table S9 in Neale et al. [2020c], summarized in
Supplemental Data, Table S3), where more than 600 chemicals
were analyzed with the same analytical method, and all bioassay
data were measured with AREc32, PPARγ‐BLA, and AhR‐CALUX
after SPE. The number of analyzed chemicals was smaller in
those 2 case studies than in Supplemental Data, Table S1, and
hence a smaller number of chemicals had been considered in
the iceberg modeling (Neale et al. 2020a, 2020c).

For cytotoxicity, the ratio of the toxic units (TU= 1/IC10)
predicted from quantified chemicals (TUchem) to experimental
toxic units (TUbio) served as a measure of the fraction of total
cytotoxicity explained (Neale et al. 2020a). For activation of the
reporter genes, the ratio of BEQs (BEQchem/BEQbio), predicted
from the detected chemicals' concentrations and their effect
potency (BEQchem) and measured in the bioassays (BEQbio=
ECref/ECsample, when EC can be ECIR1.5 or EC10), served
as a measure of the fraction of effect explained (Neale
et al. 2020a).

Estimated number of cytotoxic and bioactive
chemicals in water samples

We know the number of detected chemicals that were cy-
totoxic or active and used to predict TUchem and BEQchem in the

water samples of the iceberg modeling case studies (Supple-
mental Data, Tables S2 and S3). From “#detected cytotoxic
chemicals” we can extrapolate the total number of cytotoxic
chemicals with Equation 5 and the extrapolated total number
of bioactive chemicals with Equation 6.

= # /( / )

Extrapolated total number of cytotoxic chemicals

detected cytotoxic chemicals TU TUchem bio (5)

= # /( / )

Extrapolated total number of bioactive chemicals

detected bioactive chemicals BEQ BEQchem bio (6)

RESULTS AND DISCUSSION
Estimated number of cytotoxic and bioactive
chemicals

In the case study on 128 highly diverse surface water sam-
ples collected during rain events (Neale et al. 2020a), cyto-
toxicity data were available and included for 99 water samples
of AREc32, 117 samples of PPARγ, and 113 samples of AhR
(Supplemental Data, Table S2). The fraction of cytotoxicity
explained by the detected chemicals (TUchem/TUbio) was low,
despite up to 64 cytotoxic chemicals being detected, and in-
creased only slightly with increasing number of detected
chemicals (Supplemental Data, Table S2; Figure 3A). The ex-
trapolated numbers of cytotoxic chemicals (Equation 5) varied
widely (Supplemental Data, Table S2) and were log‐normally
distributed (Figure 3B; D'Agostino & Pearson test, p=
0.41–0.98). The log‐normal distributions were significantly dif-
ferent between the 3 cell lines (one‐way analysis of variance,
p< 0.0001), with AhR having a slightly lower range of mean±
standard error (SE) with 6944± 1316 (95% CI 4336–9552) than
ARE with 25 770± 5456 (95% CI 14 925–36 616) and PPARγ
with 13 086± 1615 (95% CI 9887–16 286). The mean± SE ex-
trapolated number of cytotoxic chemicals in all assays was
14 793± 1843 (95% CI 11 169–18 418), which means that we
can expect roughly 15 000 cytotoxic chemicals in a water
sample that act together in a concentration‐additive manner
(Escher et al. 2020a). Because all chemicals are cytotoxic, albeit
with different potencies, we can use that number in principle as
an approximation of the number of chemicals present in a
complex mixture in a water sample. Of course, any complex
mixture contains high and low concentrations of thousands of
chemicals (Escher et al. 2020c). Furthermore, the main as-
sumption underlying this extrapolation is that the analyzed
chemicals are a representative subsample of the entire chem-
ical universe so that extrapolation to all chemicals is possible.
Another assumption is that the effect potency of the included
chemicals is representative of all chemicals. This is likely not
true because we have chemicals on the target list of chemical
analysis, from which we know that they are problematic and
known water pollutants. Nevertheless, this analysis can tell us
that there must be many more chemicals active in the complex
mixtures extracted from water than the ones we can quantify.
Increasing the numbers of chemicals analyzed will not solve the
problem; we need to complement chemical analysis with
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bioassays for apical endpoints such as cytotoxicity. This un-
derpins the need to develop EBTs that account for the mixture
effects and not only rely on a few highly potent chemicals.

Activity data were available from 128 surface water
samples (Neale et al. 2020a) and 20 samples from WWTPs
(Neale et al. 2020c) with activity detected in 120 water
samples in AREc32, 140 samples in PPARγ, and 142 samples
in AhR (Supplemental Data, Tables S2 and S3). Fewer
chemicals were active in these specific endpoints, and there
appeared to be an even weaker correlation between the
number of detected bioactive chemicals and the fraction of
BEQ explained by the detected chemicals (BEQchem/BEQbio;
Figure 3C), with most of BEQchem/BEQbio ranging from 0.01
to 1%. The low fraction of effect explained by the detected
chemicals means that there are many more bioactive
chemicals that have not been identified but need to be
accounted for because they contribute to the mixture effect
elicited by extracts from water samples. Because, despite
efforts to detect hundreds of chemicals and assess their
bioactivity individually, no substantial fraction of effect can
be explained by the detected chemicals, it is imperative that
we develop trigger values for mixture effects and not for
groups or individual chemicals.

What is a safe level for cytotoxicity in water
samples?

When applying the proposed EBT‐IC10 of REF 10 to the
cytotoxicity data set (IC10= 1/TUbio in Supplemental Data,
Table S2) of water samples collected during rainfall in small
agricultural streams (Neale et al. 2020a), we can see in
Figure 4 that only 2 of 72 samples in AhR, only 4 of 73
samples in PPARγ, and 7 of 62 samples in AREc32 exceeded
the threshold (i.e., had IC10 <10), whereas for WWTPs
(Table S2 of Neale et al. [2020c]) most influent samples were
more cytotoxic than the EBT‐IC10 of 10. Note that we did

not enrich more than REF 4 in that study, so we cannot tell
if some of the effluents were meeting the EBT‐IC10. Both
water types, surface and WWTP waters, were enriched by
SPE, which also removed inorganic contaminants and matrix
components. The good discrimination between surface water
and untreated wastewater and the fact that only a small
fraction of surface waters exceeded the trigger is a con-
firmation that the choice of the protection level of
1% was appropriate.

It is interesting to note that van der Oost et al. (2017) pro-
posed an EC50 of REF 20 for nonspecific effects toward cells
(Cytotox CALUX), bacteria, and zooplankton, which is very

FIGURE 3: (A) Relationship between number of detected cytotoxic chemicals and fraction of toxic units (TUs) explained by the detected chemicals
(TUchem/TUbio) in 128 surface water samples (Neale et al. 2020a). (B) Extrapolated number of cytotoxic chemicals in surface water (Equation 5).
(C) Relationship between number of detected bioactive chemicals and fraction of bioanalytical equivalent concentrations explained by the detected
chemicals in 128 surface water samples (Neale et al. 2020a) and 20 samples from wastewater‐treatment plants (Neale et al. 2020c). All data are in
Supplemental Data, Tables S2 and S3. AhR= arylhydrocarbon receptor; ARE= antioxidant response element; BEQ= bioanalytical equivalent
concentration; PPARγ= peroxisome proliferator–activated receptor gamma.

FIGURE 4: (A) Distribution of inhibitory concentration causing 10%
reduction in cell viability (IC10) in water samples collected during
rainfall in small agricultural streams; (Neale et al. 2020a) and (B) in
wastewater‐treatment plant influent (color) and effluent (gray; Neale
et al. 2020c). In both figures, the dotted lines correspond to the pro-
posed effect‐based trigger (EBT) for cytotoxicity EBT‐IC10 of REF 10.
AhR= arylhydrocarbon receptor; PPARγ= peroxisome proliferator–
activated receptor gamma; REF= relative enrichment factor.
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similar to the proposed threshold for cells considering also the
differences between the 10% and 50% effect levels.

Are the SRbaseline values log‐normally
distributed?

As shown in Supplemental Data, Table S1, for ARE, 166 of
689 chemicals were active, 497 chemicals were inactive, and for
26 chemicals we did not have data for this pathway. For PPARγ,
only 38 chemicals were active, 640 were inactive, and 11 data
points were missing, whereas for AhR 133 chemicals were ac-
tive, 553 were inactive, and 3 data points were missing.

The IC10baseline (Supplemental Data, Table S1) were pre-
dicted for all chemicals in the range of 0< logDlipw (pH 7.4)< 6,
leaving 152 (ARE), 34 (PPARγ), and 125 (AhR) chemicals for the
SRbaseline (Supplemental Data, Table S1) analysis.

We plotted the log SRbaseline against the rank, expressed in
probit units (Figure 5): ARE (Figure 5A), PPARγ (Figure 5B), and
AhR (Figure 5C) showed remarkably good log‐normal dis-
tributions with highly linear probit plots. Only very low and very
high probit values deviated slightly from the linear regression.
When the log SRbaseline values of all 3 bioassays were super-
imposed, they showed remarkably little difference (Figure 5D).

For comparison, we also plotted the distribution of a cat-
egory 1 bioassay, using the reporter gene assay for estro-
genicity ERα‐BLA as an illustrative example. Although the
distribution of single‐chemical effect data from Tox21
(Supplemental Data, Table S4; data from Escher et al. [2020b],
low‐potency estrogens) measured in ERα‐BLA overlapped with
these distributions at low log SRbaseline, there were 4 highly
potent estrogenic chemicals with SRbaseline> 1 million that
largely deviated from the probit regressions of the low‐potency
chemicals (Figure 5D). These are 17‐α‐ethinylestradiol, 17‐α‐
estradiol, 17‐β‐estradiol, and estriol (Supplemental Data,
Table S4; data from Hashmi et al. [2018]). These high‐potency
estrogens dominate the mixture effects in environmental
waters together with the lower‐potency estrone (Kase
et al. 2018; Könemann et al. 2018) even if xenoestrogens such
as bisphenol A and butylparaben are present at much higher
concentrations because of the much lower potency of the
xenoestrogens. This analysis confirms that estrogenicity

bioassays are category 1 bioassays, where previously proposed
EBTs remain valid (Escher et al. 2018b).

The AhR also has ligands of very high specificity, such as
dioxin and dioxin‐like chemicals; but these high‐potency AhR
ligands are very hydrophobic and do not occur in the aqueous
phase but are bound to suspended particulate matter and
sediments. Therefore, they are not relevant for the derivation of
EBTs for surface water. If the approach was used to derive EBTs
for sediments, though, one would need to consider dioxin‐like
chemicals.

The question may arise as to why we are not working with
effect concentrations themselves but with the SRbaseline. Effect
concentrations have both a toxicokinetic and a toxicodynamic
component, whereas the SRbaseline reflects toxicodynamics
only. Hence, the distributions of ECIR1.5 and EC10 values of
the chemicals listed in Supplemental Data, Table S1 are not
log‐normal (Figure 6) and cannot be used to derive EBTs.

Derivation of mixture EBTs
The log‐normal distributions of SRbaseline projected with the

regression parameters from the probit analysis are plotted in
Figure 7. The 50th percentiles of the distributions are high-
lighted with dotted lines and correspond to SRbaseline values of
8 for ARE (Figure 7A), 33 for PPARγ (Figure 7B), and 12 for AhR
(Figure 7C). With these 50th percentiles we are in the region of
moderately specific (1≤ SRbaseline< 10), but although un-
certainty of this region is high for single chemicals, the dis-
tribution of large numbers of data points provides some
robustness of the SRbaseline and reflects the fact that many
chemicals are active but with moderate specificity.

Although ARE, PPARγ, and AhR showed unimodal dis-
tributions, ERα‐BLA had 2 distinct distributions with a maximum
at SRbaseline of 6.6 for low‐potency ERα agonists and another
maximum at SRbaseline of 4 × 106 for high‐potency ERα agonists
(Figure 7D). This visualization confirms the analysis that ERα is a
category 1 bioassay.

The EBT‐ECIR1.5 for oxidative stress response can be de-
rived from the 50th percentile of the log‐normal distribution of
SRbaseline of 8, which can be converted with Equation 2 to a
mixture EBT‐ECIR1.5 of REF 1.2. This AREc32 EBT‐ECIR1.5 is

FIGURE 5: Probit plots of logarithms of specificity ratios (Supplemental Data, Table S1) for (A) ARE (slope= 1.4, intercept= 3.7, r 2= 0.9928), (B)
PPARγ (slope= 1.0, intercept= 3.5, r2= 0.9778), (C) AhR (slope= 1.1, intercept= 3.9, r2= 0.9952), and (D) overlay of all 3 probit plots (A–C) and
comparison with ERα (Supplemental Data, Table S4). AhR= arylhydrocarbon receptor; ARE= antioxidant response element; ERα, estrogen receptor
alpha; PPARγ= peroxisome proliferator–activated receptor gamma; SR= specificity ratio.
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remarkably similar to the initial EBT‐ECIR1.5 of 3 derived in
2013 (Escher et al. 2013). The corresponding EBT‐dichlorvos‐
EQ is 1.4 mgdichlorvos/L, which is 10 times higher than the pre-
viously proposed EBT‐dichlorvos‐EQ of 156 µgdichlorvos/L that
had applied a mixture factor of 1000 (Escher et al. 2018b). In
hindsight, a mixture factor of 10 000 would have been more
appropriate and led to the same EBT‐dichlorvos‐EQ as the
specificity ratio‐distribution method.

The EBT‐EC10 for PPARγ is now REF 0.3, which corresponds
to an EBT‐rosiglitazone‐EQ of 1.2 µgrosiglitazone/L. This is
33 times higher than the previously derived EBT‐rosiglitazone‐EQ
of 36 ngrosiglitazone/L (Escher et al. 2018b) and the revised value of
19 ngrosiglitazone/L (Neale et al. 2020a), which had assumed that
PPARγ is a high‐potency endpoint and that no mixture factor had
been considered. At the time, there was limited experimental
data for the PPARγ assay available, but more recent iceberg
modeling experience (Neale et al. 2020a) has shown that the
fraction of effect explained by known chemicals was often <1%
and that many chemicals are low‐potency agonists. Hence the
reclassification as a category 2 bioassay seems reasonable,

although only 5.6% of the 678 chemicals with bioassay data were
active (in contrast to 25% for ARE and 19% for AhR).

The mixture EBT‐EC10 for AhR is REF 0.9, which corre-
sponds to an EBT‐B[a]P‐EQ of 250 ngB[a]P/L. This value is
40 times higher than the previously proposed EBT‐B[a]P‐EQ of
6.4 ngB[a]P/L, which had applied a mixture factor of 100 (Escher
et al. 2018b), but is similar to the SIMONI EBT‐B[a]P‐EQ of
150 ngB[a]P/L for the PAH‐CALUX, which was defined as twice
the background B[a]P‐EQ (van der Oost et al. 2017).

While the mixture factors in the previous derivation were
derived only from expert knowledge and considerations of
numbers of chemicals acting together, the new derivation is
based on large numbers of chemicals, does not filter out any
entries, and is the same approach for all category 2 bioassays.

Application of mixture EBTs in case studies
We applied the new mixture EBTs to the 2 case studies

on surface water (Neale et al. 2020a) and a WWTP (Neale

FIGURE 6: Probit plots of logarithms of effect concentrations from Supplemental Data, Table S1 for (A) ARE, (B) PPARγ, and (C) AhR. AhR=
arylhydrocarbon receptor; ARE= antioxidant response element; EC10= 10% effect concentration; ECIR1.5= effect concentration causing an
induction ratio IR of 1.5; PPARγ= peroxisome proliferator–activated receptor gamma.

FIGURE 7: Visualization of the log‐normal distributions of baseline specificity ratios (SRbaseline) and 50th percentile of the distribution for (A) ARE, (B)
PPARγ, (C) AhR, and (D) ERα showed 2 distinctly different distributions of low‐potency (gray) and high‐potency ERα agonists. The normal dis-
tributions were constructed from the probit regression descriptors in Figure 5 (ARE, slope= 1.4, intercept= 3.7; PPARγ, slope= 1.0, intercept= 3.5;
AhR, slope= 1.1, intercept= 3.9; ERα [low potency], slope= 0.4, intercept= 4.3; ERα [high potency], slope= 2.8, intercept= –13.6) using the Excel
function NORMDIST((slope × log SRbaseline+ intercept), 5, 1, 0), and the medians of log SRbaseline were calculated from the probit regression for
probit= 5. AhR= arylhydrocarbon receptor; ARE= antioxidant response element; ERα, estrogen receptor alpha; PPARγ= peroxisome
proliferator–activated receptor gamma.
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et al. 2020c) and revisited the case studies from the pre-
vious EBT paper (appendix B in Escher et al. [2018b]). With
the new EBT‐dichlorvos‐EQ of 1.4mgdichlorvos/L, most of the
surface water samples did not exceed the trigger for
oxidative stress response (Figure 8A). In addition, the
EBT‐dichlorvos‐EQ differentiated well between wastewater
and surface water and often even differentiated well be-
tween untreated wastewater and WWTP effluent. The one
exceedance of WWTP effluent was after an initial membrane
filtration step that was directly followed by further treatment.
The 4 surface water samples that now exceed the EBT‐
dichlorvos‐EQ were collected from sites impacted or likely
impacted by industrial and municipal WWTP effluent. Of
course, we cannot use exceedance for a certain water type
as a criterion for whether an EBT is valid or not, but this
comparison shows us that water that we expect to be of
poorer quality is exceeding the EBT‐dichlorvos‐EQ. The new
EBT‐dichlorvos‐EQ is probably more realistic than the EBT of
156 µgdichlorvos/L derived in 2018 using the method for high‐
potency chemicals and a mixture factor (Escher et al. 2018b),
which yielded much lower EBT and consequently a high
frequency of EBT exceedances (Neale et al. 2020a).

The same holds for PPARγ, where the EBT‐rosiglitazone‐EQ
differentiated well between treated and untreated wastewater,
with 2 wastewater samples exceeding the EBT (Figure 8B). Both
were from WWTPs that applied primary treatment only (P1 and
P2 in Neale et al. [2020c]). All surface water samples had ac-
ceptable water quality, with exception of 2 that were from the
Danube River at Novi Sad, in areas impacted by wastewater
(König et al. 2017).

For AhR (Figure 8C), one of the primary treated effluent
exceeded the EBT (339 ngB[a]P/L, P1 in Neale et al. [2020c]),
whereas the other effluent from primary treatment was below.
Seven of the surface water samples taken during rain events
exceeded the EBT, which can be rationalized by road runoff
and potentially river water impacted by WWTPs (Neale
et al. 2020a).

Overall the new EBTs differentiated much better between
wastewater and surface water than the EBT‐BEQ values derived

with the read‐across method (Escher et al. 2018b), which are
marked as dotted lines in Figure 8.

CONCLUSION
The present study closed the last conceptual gap in our

derivation strategy of EBTs (Escher et al. 2018b). It was rec-
ognized earlier that the different bioassay categories reacting
to highly specific but “rare” active chemicals (category 1 bio-
assays) and those reacting to a much larger range of more
diverse chemicals of lower potency (category 2 bioassays)
could not be treated in the same way. For category 2 bioassays,
a mixture factor was implemented, which was scientifically
justified but still subject to assumptions.

In the present study, we proposed an independent approach
that starts from scratch, that is, from acceptable cytotoxicity of
1%, not by reading across from chemical guideline values but by
rooting the derivation in acceptable cell toxicity for all cells and
beings. The concept of baseline toxicity also has drawbacks in
case of very hydrophilic and/or reactive chemicals because they
are not associated with critical membrane concentrations. Nev-
ertheless, the concept of baseline toxicity still appears suffi-
ciently robust to serve as a basis, on top of which specific effects
can be defined. By using the specificity ratio as a measure of the
degree of specificity of effect, we do not have a mixed param-
eter, as is the case for the effect concentrations, which are a
composite of toxicokinetics and toxicodynamics. Basically, with
the new approach we are disentangling toxicokinetics (indirectly
described by the baseline toxicity QSAR) from toxicodynamics
(represented by the SRbaseline). One weakness is that metabolism
is not accounted for or is merely integrated in the toxicodynamic
parameter of SRbaseline. Generally, in vitro reporter gene assays
are considered not to be metabolically active; but, as has been
recently demonstrated, one of the cell lines applied in the
present study, AREc32, expresses Cyp1A1 after induction with
B[a]p (Fischer et al. 2020).

The excellent log‐normal distributions of SRbaseline in all
3 investigated reporter gene assays serve as important under-
pinning of the concept. This is why we can use the 50th percentile

FIGURE 8: Application of the new effect‐based triggers (EBTs) in field studies (circles [Neale et al. 2020a] and squares and diamonds [Neale et al.
2020c]) and previous data collections (gray symbols [Escher et al. 2018b]). Red dashed lines indicate new EBT bioanalytical equivalent concentration
(BEQ), black dotted lines indicate previously proposed EBT‐BEQ with the read‐across method (Escher et al. 2018b). AhR= arylhydrocarbon
receptor; ARE= antioxidant response element; EQ= equivalent; PPARγ= peroxisome proliferator–activated receptor gamma; WWTP=wastewater‐
treatment plant.
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or median of the distribution to translate the cytotoxicity EBT to
EBTs for specific modes of action. The outlined method would,
of course, be applicable to any category 2 bioassay, including
other reporter gene constructs targeting the same endpoints as
those applied in the present study or other receptors (e.g., PXR).
However, we would need a large number of single‐chemical
data for construction of the SRbaseline distributions, which pres-
ently are not available. It remains to be explored if genotoxicity
assays also fall into category 2 bioassays and if EBTs for geno-
toxicity could also be developed, which is clearly a gap at
present. Only van der Oost et al. (2017) have derived geno-
toxicity EBTs for Ames, umuC, and p53 CALUX with EBTs de-
rived for nonspecific endpoints reduced by an assessment factor
of 10. This is actually very similar to the proposed approach with
the assessment factor of 10 replaced by the specificity ratio. The
distributions of SRbaseline might also have some utility to better
filter appropriate chemicals for the read‐across approach of
category 1 bioassays, as was evidenced by the bimodal dis-
tributions of estrogenic chemicals in the ERα‐BLA assay.

Application of the new EBT in existing case studies
confirmed that they differentiate unambiguously between poor
and acceptable water quality. The present derivation had fo-
cused on surface water. However, with the baseline toxicity
concept applicable to human cell lines, it can easily be ex-
tended to drinking water. Existing EBTs for category 1 bio-
assays are already mostly in a similar range for surface water
and drinking water; hence, we could apply the proposed EBTs
for surface water also to drinking water. Alternatively, one
could also consider an additional uncertainty factor, which
would effectively be equivalent to accepting only 0.1% of
baseline toxicity for drinking water; but the specificity ratio
factor would not change (unless there are substantial numbers
of new single‐chemical data) because it is bioassay‐specific and
not protection target‐specific.

Supplemental Data—The Supplemental Data are available on
the Wiley Online Library at https://doi.org/10.1002/etc.4944.
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