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One important attribute of meteorological forecasts is their representation of
ggﬂ::ﬁg;ﬂi:tc:ute of Geosciences, spatial structures. While several existing verification methods explicitly measure
University of Bonn, Bonn 53113, Germany. a structure error, they mostly produce a single value with no simple interpre-
Email: sebastian.buschow@uni-bonn.de tation. Extending a recently developed wavelet-based verification method, this
Funding information study separately evaluates the predicted spatial scale, orientation and degree of
German Research Foundation (DFG), anisotropy. The scale component has been rigorously tested in previous work
Grant/Award Number: FR 2976/2-1 and is known to assess the quality of a forecast similar to other, established
methods. However, directional aspects of spatial structure are less frequently
considered in the verification literature. Since important weather phenomena
related to fronts, coastlines and orography have distinctly anisotropic signatures,
their representation in meteorological models is clearly of interest. The ability of
the new wavelet approach to accurately evaluate directional properties is demon-
strated using idealized and realistic test cases from the MesoVICT project. A
comparison of precipitation forecasts from several forecasting systems reveals
that errors in scale and direction can occur independently and should be treated
as separate aspects of forecast quality. In a final step, we use the inverse wavelet
transform to define a simple post-processing algorithm that corrects the struc-
tural errors. The procedure improves visual similarity with the observations, as
well as the objective scores.
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1 | INTRODUCTION have been misjudged. Alternatively, the simulated pattern

was perfectly adequate but its spatial location was wrong.
In some cases, the precipitating process is so small and
short-lived that no present-day weather model could be
expected to foresee its exact timing and placement.

In order to obtain useful diagnostic information on
the merits of highly resolved simulations, many forecast
verification tools aim to separate the various types
of error from one another. Most prominently, spatial

The errors of modern weather forecasts can take many
different forms. While everyday users may only notice
that their weather app failed to predict rainfall at a
specific point in space and time, such a mistake could
have several possible meanings. Perhaps the coherence
of a frontal precipitation band was underestimated. The
likelihood of convective initiation in a certain region may

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited and is not used for commercial purposes.
© 2020 The Authors. Quarterly Journal of the Royal Meteorological Society published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.

QJ R Meteorol Soc. 2021;1-20. wileyonlinelibrary.com/journal/qj 1


https://orcid.org/0000-0003-4750-361X
http://creativecommons.org/licenses/by-nc/4.0/

Quarterly Journal of the

BUSCHOW AND FRIEDERICHS

Royal Meteorological Society

displacements tend to mask all other kinds of error in
a point-wise evaluation. To tackle this issue, a multitude
of so-called “spatial” verification techniques have been
developed throughout the last two decades. A first inter-
comparison of these methods was undertaken within the
intercomparison project (ICP; Gilleland et al., 2009), which
classified the various approaches and attempted to elu-
cidate their differences and similarities using a set of
standardized test cases. The Mesoscale Verification Inter-
comparison over Complex Terrain (MesoVICT; Dorninger
et al., 2018), launched in 2014, constitutes the second
phase of the ICP and focuses on the effects of uneven ter-
rain and uncertain observations and considers forecasts of
both precipitation and wind.

This study participates in MesoVICT by using both
the realistic test cases of Dorninger et al. (2018) and the
recently presented geometric tests of Gilleland et al. (2020).
Our focus lies on isolating and understanding errors in
the predicted spatial structure of quantitative precipitation
forecasts. Using a two-dimensional wavelet transform, we
want to separately determine whether the predicted struc-
ture was (a) too small or too large, (b) too directed or too
round, and (c) oriented along the correct angle.

Several popular methods from the rich spatial verifi-
cation literature have previously been used to determine
a “structure” error. Using the field deformation tech-
nique of Keil and Craig (2007), Han and Szunyogh (2016)
approximately corrected the forecast’s location and inten-
sity and referred to the residual error as “structural”. While
straightforward and intuitive, this kind of approach yields
no further information on how exactly the pattern was
mis-forecast. Furthermore, it should be noted that any
field deformation approach which allows for a divergent
optical flow will be sensitive, simultaneously, to errors in
both the spatial scale and anisotropy and therefore cannot
truly separate structure from location.

A more intuitive notion of structural disagreement can
be obtained using object-based methods that decompose
the fields into features and measure their individual prop-
erties. Such techniques are typically adapted to the special
case of precipitation forecasts where well-defined discrete
objects are known to exist. The popular SAL method of
Wernli et al. (2008) defines its structure component S via
the ratio between total and maximum precipitation in each
object. The resulting score is related to the size and num-
ber of objects as well as the tail behaviour of the marginal
distribution; directional aspects are neglected by S. Inter-
estingly, the relative placements of the individual objects
are also not included in S. It is clear that a number of
small features in close proximity to one another can form
a large-scale structure, perhaps driven by a single meteo-
rological process. Such fractured pattern may result from
the driving process itself, the complex terrain in which

it occurs, or, in case of observational data, the measure-
ment technique. SAL does not consider this as an element
of structure, but instead includes the relative placement
of the object in the location component (Wernli et al.,
2008). A further related drawback of this otherwise use-
ful technique is its potential sensitivity to the details of the
object identification algorithm (Weniger and Friederichs,
2016).

The popular Method for Object-based Diagnostic Eval-
uation (MODE; Davis et al., 2006) provides a wide frame-
work in which numerous structural properties such as
feature size, aspect ratio, aspect angle and even curvature
can be evaluated. Like SAL, it is mostly adapted to precip-
itation, can be sensitive to the object-defining algorithm
and does not simply allow multiple features to form an
organized super-structure on larger scales. More generally,
these techniques are inherently single-scaled. If objects are
detected by smoothing the field with a kernel of size ¢ and
thresholding at a value T, then the pair (¢, T) defines a spa-
tial scale: larger values of T isolate smaller intense regions,
larger values of ¢ lead to the union of increasingly dis-
tant features into single, larger objects. If we calculate, for
example, the average aspect ratio of the objects detected
in this manner (following Davis et al., 2006), the result
is characteristic of the anisotropy on the scale defined
by (o, T). Re-arranging the objects in space (larger-scale
variability) or re-arranging the pixels within an object
(smaller-scale variability) leave the result of the analy-
sis unchanged, since the aspect ratio depends only on an
object’s shape, not its position or internal composition.

Avoiding such pitfalls of the object-based methods,
several authors have based their structural verification
on indirect estimates of the spatial correlation structure.
Marzban and Sandgathe (2009), Scheuerer and Hamill
(2015) and Ekstrom (2016) rely on empirical variograms
for this purpose. The latter study in particular achieves an
intuitive notion of the predicted and observed spatial scale
by estimating the variogram’s range. Without defining a
verification score, Willeit et al. (2015) study the climatolog-
ical structure of forecast precipitation fields using Fourier
transforms. Wong and Skamarock (2016) extended this
work using directional information from the 2D Fourier
spectra.

A similar direction was pursued in Buschow et al
(2019). Building on the work of Kapp et al. (2018), they
used a two-dimensional redundant discrete wavelet trans-
form (RDWT) to analyze the scale on which spatial vari-
ability occurs, both globally and at each grid point. The
resulting scores effectively isolate scale errors in ideal-
ized (Buschow et al, 2019) as well as realistic situa-
tions (Buschow and Friederichs, 2020). A first analysis of
anisotropy, using the same kind of wavelet transform, was
undertaken by Brune et al. (2018) who included a measure
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of anisotropy as one component of their wavelet-based
convective organization index (WOI). Following the same
approach, Brune et al. (2020) furthermore attempted to
infer the local direction in precipitation fields from the rel-
ative contributions of horizontal and vertical features to
the total variability. However, as discussed in Buschow and
Friederichs (2020), the classic discrete wavelet transform
has inherent shortcomings in its representation of direc-
tional structures which make it especially unsuitable to
the task of forecast verification. With this transform, one
could rotate forecast and observation by the same angle
and receive a very different score.

In the context of image processing, the same issues
were long ago recognized by Kingsbury (1999), who
addressed the problem using complex-valued wavelets.
Their so-called dual-tree complex wavelet transform
(DTCWT) forms the new basis for our verification method.
A first meteorological application of this technique was
recently presented by Scovell (2020) who used it to incor-
porate anisotropy into a stochastic noise generator for
precipitation nowcasting. Nerini et al. (2017) pursued a
similar route in their application of a localized Fourier
transform to the task of reproducing non-stationary,
non-isotropic rainfall variability.

After introducing the relevant datasets in Section 2, we
explain in Section 3 why the original RDWT is unsuited
to analyze directions and how the DTCWT solves the
problem. The next step (Section 4) is to extend the
idea of a central scale (Buschow et al., 2019) to include
anisotropy and direction. This leads to the definition of
new wavelet-based structure scores in Section 5. Exper-
iments with geometric test patterns (Section 6) and the
realistic MesoVICT forecasts (Section 7) demonstrate that
the new wavelets allow for the same kind of sensitive
scale-verification as their predecessors. In addition, they
yield valuable information on the forecast’s degree of
anisotropy and predominant orientation. Section 8 uses
the inverse DTCWT to define a simple algorithm for cor-
recting the structural errors detected by our approach.
The algorithm is tested on individual forecasts as well as
the dataset as a whole. We discuss the outcomes of all
experiments in Section 9.

2 | DATA

In contrast to the largely homogeneous Great Plains con-
sidered in the ICP, the study area of the MesoVICT
project focuses on a small, mountainous region surround-
ing the European Alps (Figure 1). Six case-studies on inter-
esting weather situations in summer and autumn 2007
were selected (Table 1, reproduced from Dorninger et al.
(2018)). Gridded analysis data of precipitation and wind
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FIGURE 1 VERA orography in metres and minimum
common domain for the MesoVICT dataset (white rectangle)

TABLE 1
etal. (2018)

MesoVICT cases, reproduced from Dorninger

Case Date Weather event
1 20-22 June 2007  Strong convective activity north
of the Alps followed by a cold
front
2 18-21 July 2007 Strong convective events across
an airmass boundary impinging
the Alps from northwest
3 25-29 Accelerating cold front north of
September 2007  the Alps and cyclogenesis in the
Gulf of Genoa with heavy rains
south of the Alps (Venice flood)
4 6-8 August 2007  Squall line ahead of cold front
crossing the Alps causing
widespread thunderstorms
5 18  September Cold front crossing the Alps
2007 causing severe thunderstorm in
Slovenia
6 8-10 July 2007 Subtropical air mass advected

into the Alpine region causing
widespread thunderstorms

are provided by the Vienna Enhanced Resolution Analysis
(VERA; Bica et al., 2007) which incorporates station obser-
vations and topographic information but no data from
numerical models. While a variety of forecast datasets
are in principle available within MesoVICT, we focus on
four deterministic models which cover the entire region
for all cases: the Swiss COSMO (initialized at 0000 UTC),
CMH from the Canadian weather service (initialized at
0600 UTC) as well as BOLAM007 and MOL00225 from
the Institute for Environmental Protection and Research
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Abbreviation Organization Lead times Ax
CMH Environment Canada +1hr... +24hr  2.5km
COSMO MeteoSwiss +6hr... +24hr  2.2km
BOLAMO07 ISPRA +12hr...+35hr  0.07°
MOLO00225 ISPRA +12hr...+35hr  0.0225°
VERA University of Vienna  — 8km
RADKLIM DWD — 1km

(ISPRA, both initialized at 1200UTC, first 12hr dis-
carded). To avoid obvious artifacts of model spin-up, we
consider only time steps from 0700 UTC to 2300 UTC. Fur-
ther details and the references for each model are given in
Table 2.

In Section 7.2, we move beyond the domain of the
MesoVICT project and validate VERA, BOLAM007 and
MOLO00225 against the gauge-adjusted radar climatology
RADKLIM of Winterrath et al. (2018). The dates and other
characteristics of the datasets remain the same, but the
domain for this experiment is defined by the German
national borders. Missing pixels in RADKLIM (outside
Germany or due to radar failures) are set to zero in all fields
to ensure comparability.

Hourly rain sums for all forecasts have been interpo-
lated to the VERA grid at a common resolution of approx-
imately 8 km. After cropping the data to the core regions
where all datasets have non-missing values, we obtain
133 x 88 grid points for the Alpine domain and 99 x 116
for Germany. These regions are symmetrically extended
to 256 X 256 because our implementation of the wavelet
transform requires the input dimensions to be whole pow-
ers of two. Buschow and Friederichs (2020) discuss several
possible ways of handling these boundary conditions and
conclude that, in theory, reflective boundaries are the most
elegant and appropriate solution. However, this approach
may no longer be viable because we are interested not
only in the scale but also in the direction and anisotropy
detected by the wavelets. It is easy to imagine situations
where the latter two properties are distorted, when we
reflect the input image at the edges. To avoid such effects,
we pad the fields with zeros instead. Following Kapp et al.
(2018), we linearly decrease the original values to zero
across ten pixels along each side in order to smooth out
potential artificial edges.

Rain values below 0.1 mm are set to 0 mm, then all
values x are replaced by log,(x + 0.1) before the wavelet
transform is applied. Buschow and Friederichs (2020) dis-
cuss the rationale behind this step in detail. Simply, typ-
ical plots of rain fields use logarithmic or similar colour
scales in order to visualize both local extreme events and
extended areas of moderate intensities. Similar ideas apply

TABLE 2
all used datasets

N Summary of
Citations

McTaggart-Cowan (2009)
Ament and Arpagaus (2009)
Mariani and Casaioli (2018)
Mariani and Casaioli (2018)
Bica et al. (2007)
Winterrath et al. (2018)

to our automatic analysis of spatial structure. The results
of the wavelet transform are generally easier to understand
if they are based on the same data transformation as the
plots used for visual inspection.

3 | THE DUAL-TREE COMPLEX
WAVELET TRANSFORM

This section introduces the basics of discrete wavelet
transforms in a very concise manner. To readers who are
completely new to wavelets, we recommend Torrence and
Compo (1998) and Weniger and Friederichs (2016) for an
introduction in a meterological context, as well the general
textbook of Daubechies (1992).

Classic wavelet transforms start by selecting a function
w(r), r € R", which is localized in both space and fre-
quency and integrates to zero over its domain of definition.
From this so-called mother wavelet, a set of daugh-
ter wavelets are derived via shifting and re-scaling, i.e.,
Wsu(r) = sy ((r —u)/s). In a multidimensional space
R"with n > 1, the daughters can furthermore have various
spatial orientations, which we will denote by the index d.
A signal (a time series for n =1, an image for n =2) is pro-
jected onto the vy, q), thereby decomposing it into com-
ponents with specific scales and (in 2D) directions. This
so-called wavelet transform is similar to the well-known
Fourier transform except that the basis functions are also
localized in time (or space in 2D), which allows for the
correct treatment of non-stationary signals.

The bottom row of Figure 2 shows the three directional
daughter wavelets associated with the two-dimensional
discrete wavelet transform (DWT). Their mother is the
least asymmetric Daubechies wavelet with six vanish-
ing moments. By shifting several scaled versions of these
directed, localized wave-forms across an image, one can
localize and study features of various spatial scales and
orientations. Looking at the diagonal daughter (45° in
the bottom row of Figure 2), it becomes obvious that all
attempts at deriving direction and anisotropy from these
basis functions are flawed: while the vertical and horizon-
tal daughter wavelets are rotated versions of one another,
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FIGURE 2
number 6, bottom). Solid and dashed lines indicate positive and negative values, respectively, the background shading indicates the absolute
amplitudes squared. White contours correspond to the imagery part of the DTCWT daughters

the daughter for 45° clearly lives on a smaller scale and
cannot distinguish between the two diagonals. Using this
wavelet transform, it is thus impossible to decide whether
an edge is oriented at +45° or —45°. The degree to which
one of the three directions dominates over the others, that
is, the estimated anisotropy of a given feature, furthermore
depends on the scale and the orientation of that feature.

To understand the origin of (as well as the solution to)
these undesirable effects, we must briefly discuss the algo-
rithms by which wavelet transforms are implemented. In
principle, one could convolve the signal with each scaled
and oriented daughter wavelet individually. This proce-
dure is used in continuous wavelet transforms (CWTSs),
which allow arbitrary scales s and involve a high degree of
redundancy at high computational costs. A far more effi-
cient algorithm was introduced by Mallat (1989), paving
the way for innumerable modern wavelet methods: instead
of defining a continuous function y, the mother wavelet
is represented by a finite set of filter coefficients g1, . .
Next, the so-called father wavelet ¢(x) is defined by the
filter coefficients hy = (— 1) g,_1_. The father wavelet is
thus a reversed version of the mother, where the sign of
every second coefficient has been flipped. Loosely speak-
ing, mom performs a differentiation (high-pass) while dad
is an averaging (low-pass) filter.

In one dimension, the so-called discrete wavelet trans-
form (DWT) is then implemented by (1) convolving the
signal with g and discarding every second value from the
result to obtain the wavelet coefficients at the finest scale,
(2) convolving the signal by & (again discarding half of the
values) to obtain the input for the next coarser scale, and
(3) repeating (1) and (2) until only a single value remains.
By dropping every second value, we effectively shift the
smallest-scaled daughter wavelet (s =2°) to every second
location in the domain, the next larger one (s=2!) to
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Directed daughter wavelets of the DTCWT (top row) and the regular DWT (“extremal phase” Daubechies wavelet

every fourth, and so on, thereby removing the redundancy.
The scales of this so-called “decimated” transform are no
longer continuous but whole powers of two, and the larger
wavelets are shifted to fewer locations. As a result, the
daughter wavelets of this transformation form an orthogo-
nal basis. The algorithm can be adapted to obtain values at
all possible locations by simply not discarding any values
and instead inserting zeros between the filter coefficients
hi and g after each level, resulting in a redundant discrete
wavelet transform (henceforth RDWT).

The efficient DwT algorithm has a straightforward
extension to higher dimensions which wasalso intro-
duced by Mallat (1989) (shown in Figure 3). Given a
two-dimensional matrix of input values, convolve the rows
with h and then the columns with g to obtain the vertical
daughter coefficients. The horizontal daughter coefficients
result from applying g to the rows and h to the columns; the
diagonal daughter is the product of applying g to both rows
and columns. Application of & in both directions gives the
input for the next coarser scale. This procedure, which can
be implemented with decimation or redundancy just as in
the 1D case, generates the three directional daughters seen
in Figure 2. That explains the reduced scale of the diago-
nal wavelets (being the product of two high-pass filters), as
well as the absence of a fourth filter for the other diagonal.

Recognizing the shortcomings of the classic DWT,
Kingsbury (1999) introduced the so-called dual-tree com-
plex wavelet transform (henceforth DTCWT). Instead of a
single real-valued mother, they defined a complex-valued
v =y, + iy; with corresponding filters h;, hy, g;,g,. The
two mother wavelets y, and y; are each other’s Hilbert
transform, meaning that they are 90° out of phase with
each other. In two dimensions, the complex transform
can be implemented by performing four regular DWT s
(as in Figure 3) with all possible combinations of h; ,, g; ,
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rows columns

FIGURE 3 Onelevel of the
two-dimensional discrete wavelet

transform (dwt). g and h denote
applications of the high- or low-pass
0° filter, respectively. “2]” signifies a

down-sampling step

90°

®
m——(2)
U
... previous level |
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applied to the rows and columns. The twelve resulting
sets of coefficients are then re-combined into six complex
directional daughter wavelet coefficients. A set of corre-
sponding daughter wavelets is shown in the top row of
Figure 2. Each of these functions represents one distinct
direction, and the two diagonals are no longer ambiguous.
Here, we have furthermore applied the method of Kings-
bury (2006) to obtain optimized diagonal wavelets with
very nearly the same scale as their sisters. The two issues
preventing us from utilizing the directional information of
the wavelet transform are thus resolved. The absolute val-
ues, shown as background shading in Figure 2, reveal a
further advantage of this transform. While real and imagi-
nary parts both constitute wave forms, the Hilbert property
means that the modulus monotonously decreases from
the centre of the support. Image features can thus unam-
biguously be located within the support of each daugh-
ter wavelet — a task which is less straightforward for the
Daubechies wavelets. As a final benefit, Selesnick et al.
(2005) report that the complex nature of the coefficients
greatly reduces the shift dependence of the transform.
While for the regular DWT, we must always rely on the
computationally more expensive redundant transform, we
can obtain robust information on the global structure of
a field from the decimated DTCWT as well. We demon-
strate the effective equivalence of the two transforms in
Appendix B.

Regardless of the merits of the decimated DTCWT, it
does not deliver fully localized information because the
large-scale coefficients are only available on increasingly
coarse grids due to the downsampling (cf. Figure 3). If
we are interested in local characteristics at every loca-
tion, a fully redundant transform is needed. In this
case, an over-emphasis on very large scales, caused by
their great redundancy (large overlapping areas), must
be avoided. Here, we follow Kapp et al. (2018), Brune
et al. (2018) and Buschow et al. (2019) and rely on the
theory of locally stationary wavelet processes (Eckley
et al., 2010) to remove this large-scale bias. In a nutshell,
it can be shown that the squared local wavelet coeffi-
cients have a well-defined relationship with the spatial

.. next coarser level ...

covariances if we multiply them by a bias-correction
matrix which depends on the domain size and choice of
mother wavelet. This step mostly reduces the values of
large-scale coefficients and re-distributes their energy to
smaller scales. The theory was extended to the redun-
dant DTCWT by Nelson et al. (2018). Following Buschow
et al. (2019), any negative “energy” values introduced
by the bias correction are set to zero. Based on the dis-
cussion in Buschow and Friederichs (2020), we further-
more discard the three largest scales due to their ambigu-
ous localization (basis functions being larger than the
entire domain).

4 | ANALYZING SCALE
AND DIRECTION

In order to compactly summarize the output of the
wavelet transform, Buschow et al. (2019) studied the
central scales of the wavelet spectra. Let ¢; be the
(bias-corrected) squared wavelet coefficient for scale
je{1, ... ,J}, averaged over all directions. Now consider
the ¢; as point-masses, located along a line at the coor-
dinates zj=j. The central scale of the wavelet spectrum
is then defined as the centre of mass z. of that arrange-
ment. A plot of these central scales for each pixel of an
input image compactly visualizes the result of the wavelet
analysis by showing the dominant scale at each loca-
tion. Buschow et al. (2019) demonstrated how this map
of central scales can also serve as the basis for spatial
verification.

We now extend the idea to the case of the directional
wavelet spectra produced by the DTCWT. Noting that the
energy of the 15° daughter wavelet should be next to
those for 45° and 165°, both being a 30° rotation away
(Figure 2), the natural geometry in which to arrange the
6 x J coefficients is a prism with hexagonal base. Figure 4
schematically shows this arrangement. The energies for
the six directions are placed along the vertices of a regular
hexagon, parallel to the x-y plane. The various scales j cor-
respond to different values of the z coordinate. Indexing
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FIGURE 4 Geometry used to define the central scale, radius
and angle of the DTCWT spectra

the directions by d, the coordinates for the value ¢; 4 are

Xjq = acos{60(d — 1)z /180},
Yjd = asin{60(d — 1)z /180}, (1)

Zj,d =j )

where a denotes the arbitrarily fixed circumradius of the
hexagon. Calculating the centre of mass in this geome-
try leads to the same central scale z. as before. The other
two central components x, and y, contain information
on the preferred direction and degree of anisotropy. We
can easily separate these two properties by transforming
from the x-y plane to polar p, § coordinates. The central
radius p. = \/x? +y? then measures the total degree of
anisotropy, averaged over all scales. From the central angle
0. = arctan 2(y,, x.), we can derive the angle in image space
as @ = 15° + 6./2. Note that a is merely a multiplicative
factor dertermining the scale of p. A more detailed example
of these ideas is discussed in Appendix A.

5 | DEFINITION OF SCORES

Buschow et al. (2019) introduced the structure score semd,
which is given by the earth mover’s distance (EMD; Rub-
ner et al., 2000) between two direction-averaged spatial
mean spectra: the energy e; of scale j is considered a point
mass located at the position z=j along the real line. semd
measures the minimum cost of transporting all energy
from one spectrum to another. Both spectra are normal-
ized to unit sum, making the EMD a true metric. The EMD
was preferred over other metrics because it appropriately
measures shifts in the spectra as well as differences in their
shape.

Based on the ideas from Section 4, the extension of
semd to the case of directed spectra is very straightforward.
Simply place the energies ¢; 4 corresponding to the scales
j and directions d at the corresponding vertices of the
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hexagon (Figure 4) and solve the transport problem to
obtain the EMD. We will refer to this directed version of
semd as semdy. The radius a in Equation 1 i.e., the ratio
between width and length of the prism within which the
centre resides (cf. Figure 4), governs the relative contribu-
tions of errors in scale, direction and anisotropy to the
total value of the score. For the purposes of this paper, we
will set a=(J—1)/2 corresponding to equal weights for
both components (e; 150 is equally far away from e; 105- and
es15). A more in-depth explanation of this score, includ-
ing the mathematical definition of the EMD, is given in
Appendix A. In addition to this summary score, we intro-
duce three helpful auxiliary quantities:

b:
dp = p" = p™, )

(p(for) _ (p(obs) —180°
d(p — (p(for) _ (p(obs) +180°

for (p(for) — (p(ObS) > 900,
for (p(for) _ (p(obs) < —90°,

@for) — (0bs) otherwise,
(3
dz =z — 29 | 4)

where ) and ©°*9) denote quantities related to forecast and
observation, respectively. The difference in central scales
dz was studied in Buschow et al. (2019) (under the name
Sped)- These authors note that dz is a lower bound on
semd (Rubner et al., 2000) which gives a rough estimate
of the scale error and, crucially, determines its sign (too
small or too large in scale). Analogously, we have now
defined the signed anisotropy error dp and the angular
error de. It is important to note that de is only relevant if
the predicted and the observed field are both reasonably
anisotropic - a circle can be rotated by any angle with-
out actually changing. While this quantity is thus useful
and intuitive for individual comparisons, it cannot simply
be aggregated over many cases. We therefore define the
combined anisotropy and direction error

2 2
dxy = \/ (xéfor) _ xgobs)) " <y£for) _ygobs)> _ (5)

In Section 7, we show that semdy can usually be explained
as a linear combination of dxy and |dzl, the difference in
the shape of the spectra playing only a minor role.

Concluding this section, we note that the complete
verification procedure has been implemented in the sad
R-package (Buschow, 2020).

6 | GEOMETRIC TEST CASES

As a first test of our structural forecast verification
based on scale, anisotropy and direction, we consider the
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anisotropy, angle and scale of the “forecast” (dashed contour) minus the “observations” (grey area)

geometric test cases proposed by Gilleland et al. (2020).
These authors present a set of 50 binary images and sug-
gest 55 pairwise comparisons between them. Here, we will
discuss only the 23 comparisons between the elliptical test
images because these are most relevant and interesting for

our purposes.

Figure 5 shows all of the elliptical comparisons and
the resulting values of dp, dp and dz. We have calculated
the scores in this figure based on the decimated version
of the DTCWT in order to test its remaining dependence

on location and orientation. In Figure 5a-e, forecast and
observation differ only in their location. As expected, all of
our scores are close to zero with only very minor variations
due to the remaining shift variance.

The situation in Figure 5f-j is more interesting. Besides

possible displacement errors, the predicted area is now

also too small (f-i) or too large (j). Intuitively, we expect
dp =dp =0 and an identical non-zero scale error dz in
all of these cases. While d¢ is indeed almost exactly zero,
dp indicates that the small ellipse appears slightly less
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anisotropic than the larger one. The values of the scale
error differ by less than one tenth of a whole scale and
have the expected sign. Figure 5k-t introduce errors in
the orientation. In all of those tests, dp detects the rota-
tion with nearly perfect precision (errors <0.05°), irre-
spective of the presence of additional errors in location or
scale.

In the last three test cases (Figure 5u-w), more com-
plicated patterns are compared. In (u) and (v), the obser-
vation is a regular ellipse, while the forecast consists of
very small oblong shapes along the ellipses’ boundaries. As
expected, the orientation is found to be very nearly correct,
whereas the scale of the forecast is deemed far too small. As
for the slightly too small ellipses in previous comparisons,
dp indicates that the predicted pattern is too isotropic. In
the final suggested test (Figure 5w), the observation con-
sists of three small ellipses; the forecast shows a single
large feature enveloping the three. As expected, the scale
error dz is strongly positive. The anisotropy error is sig-
nificantly smaller than zero which is in good agreement
with our subjective judgement as well. A slight clock-
wise rotation, indicated by d¢, also seems reasonable since
the three small ellipses are vertically oriented, while the
combined pattern extends somewhat more along the diag-
onal. Since none of the suggested comparisons feature
an obvious error in anisotropy, we have added an extra
case Figure 5x which compares a circle to an ellipse. As
expected, the strongly negative value of dp correctly detects
the discrepancy. Note that the apparent rotation by -90° is
meaningless because one of the two images has a low value
of p.

In summary, the geometric tests show that our struc-
ture verification overall works as intended. The angular
component in particular yields almost perfect results and
is very robust to changes in location, scale, overall orienta-
tion and anisotropy of the fields to be compared. We have
seen that the remaining shift-dependence of the decimated
DTCWT plays only a minor role for our purposes (see also
Appendix B) with discrepancies on the order of ~0.05 in all
three components (compare, for example, Figures 5(r) to
(s), (u)to(v),and (i) to (j)). Conversely, this also means that
forecast errors smaller than 0.05 can generally be regarded
as negligible.

7 | REALISTIC TEST CASES

7.1 | Verification against VERA

For a first impression of our verification technique in a
realistic situation, we consider a single time step from
the second MesoVICT case. Here, we focus on only two
competing forecasts. Figure 6a-c show the hourly rain
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intensity analyzed by VERA and predicted by CMH and
COSMO. At this time, precipitation was mainly induced
by a quasi-stationary airmass boundary extending roughly
from the German-French border to the southwesterly cor-
ner of the domain. VERA shows a relatively linear rain
feature along the Rhine and a number of more amorphous
cells throughout France and Switzerland. CMH overesti-
mates the rain area slightly and the total intensity strongly
by producing a nearly round rain field in the north and
numerous very small convective cells across the rest of the
domain. COSMO, on the other hand, simulates a single
linear feature along the airmass border. According to the
maps of z. (Figure 6d-f), the spatial scales are well repre-
sented by COSMO while the structure of CMH is overall
slightly too small (dz ~ —0.3). As expected, CMH is slightly
too isotropic, whereas COSMO appears far more directed
than the observations (dp ~ 0.46). In addition, a rotational
error of about 14° is assigned to COSMO, which is also in
good agreement with our visual impression. The slightly
worse scale and much better anisotropy add up to sub-
stantially better overall rating for CMH (semdy ~ 0.2) than
COSMO (semdy ~0.41).

To get an overview of the complete MesoVICT dataset,
we apply the decimated DTCWT to all fields and calcu-
late the central components p., @. and z.. Figure 7 displays
the distributions of the evaluated central statistics for each
hourly field as well as the the total rain area and total inten-
sity, separated by case and model. Starting with the two
simple, non-wavelet quantities, we observe that all mod-
els are able to simulate approximately correct rain totals,
at least as far as the average over all cases is concerned
(case 5 being an exception where all models frequently
predict too little rain). The rain area, on the other hand,
is systematically underestimated, especially by MOL00225.
One possible interpretation would be that this model sim-
ulates variability on smaller scales than those analyzed
by VERA. We can partly confirm this hypothesis with
the help of z. which shows that MOL00225 , as well as
COSMO and CMH,, operate on smaller scales than VERA.
BOLAMOO07, with its nominal resolution of approximately
7 km, produces similar, in some cases even larger, scales
than VERA. The order of the five datasets, BOLAMO007
being largest, followed by VERA, COSMO, CMH and the
very fine-scaled MOL00225, is consistent across all six
cases.

Next, we are interested in the directional structure.
Looking at the distributions of p. in Figure 7, we note that
the degree of anisotropy of each model depends on the
weather situation. Cases 3 (featuring a Genoa cyclone),
4 (dominated by large convective cells across the Alpine
region) and 6 (no organizing frontal structure) are less
directed than the remaining three cases, in which cold
fronts and an airmass boundary dominate the weather
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FIGURE 6 Wavelet-based analysis of observed and predicted precipitation on 20 August 2007, 1100 UTC. (a-c) Hourly rain

accumulation with total rain sum in mm (R) and area fraction (A), (d-f) map of central scales with mean central scale (z) and (g-i)

anisotropy (length of the arrows) and angle (direction of the arrows) with mean anisotropy (p) and mean angle (¢)

patterns. In comparison to VERA, CMH reproduces the
average distribution of p. very well. COSMO has the largest
positive bias in p. (is far too anisotropic), followed by
BOLAMO07 and MOLO0225.

The angles ¢, are not included in Figure 7 because
box-plots can be misleading for a circular quantity.
Figure 8 therefore shows the corresponding histograms
instead. As expected, the two strongly directed cases 1
and 2 have a clear preferential direction around 45° and
60°, respectively, corresponding to the alignment of the
airmass boundaries present in these cases. All models
reproduce the analyzed direction reasonably well in the
first case; BOLAMO07 and MOL00225 exhibit slight rota-
tion errors in case 2. The anisotropic cases 3 and 4 feature
a wide variety of directions, which are not particularly
well matched by any of the models - recall that errors
in the orientation are not meaningful when p. is small.
Case 5, which only encompasses 24 hr, has well-defined
directions related to the cold front crossing the domain.
All models represent the 45° orientation of this feature
reasonably well. VERA’s secondary peak at 90° is caused
by a large rain area being cut off at the domain’s east-
ern edge during the final time-steps of the day. Despite

its relatively low anisotropy, case 6 also exhibits a well
defined peak around 45°, which is present in VERA and
all four forecast models. This phenomenon is likely related
to the shape of the western flank of the Alps, where many
of the precipitation events during this case-study were
triggered.

So far, we have only assessed the modelled and
observed statistics of spatial structures in each of the
six cases. Figure 9 shows the corresponding distributions
of the structure scores from Section 5 with respect to
VERA, calculated at each time step and separated by
case. COSMO and BOLAMO007’s systematic overestimation
of p. is reflected in increased values of the combined
anisotropy / direction score dxy. Cases 2 and 5 are deemed
particularly bad, while errors in the other, overall more
isotropic, cases are less severe. In total, the representa-
tion of directional structures in CMH and MOL00225 is
notably better than in the other two models. The oppo-
site result emerges for the representation of spatial scales
where CMH and MOL00225 are the worst candidates with
strongly negative values of dz. Despite its nominally finer
resolution, COSMO is only slightly too small in scale; the
low-resolution BOLAMOO7 fares best.
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FIGURE 9 Combined (row 1) anisotropy/direction error, (row 2) difference in scale and (row 3) complete spectral EMD between

VERA and the forecast models for the six cases. Positive values of dz indicate that the forecast is too large in scale

TABLE 3 Coefficient of determination R? for linear

CMH COSMO BOLAMO007 MOLO00225 All

ldzl~dxy 0.23 0.04 0.11 0.05
semdy ~ ldz| 0.82 0.58 0.51 0.69
semdy ~ dxy 0.61 0.57 0.79 0.48
semdy ~ |dzl+dxy 0.98 0.96 0.98 0.97

semdg, shown in row 3 of Figure 9, combines both
kinds of structural errors into a single score that takes
into account the complete distribution of energy across
directions and scales. We find that the large scale-error
makes MOLO0225 the overall loser in each individual case
and in total, despite its good representation of directions.
For CMH and COSMO, the two kinds of error tend to aver-
age out, leading to nearly identical scores in aggregate.
BOLAMOO07 emerges as the overall winner, largely due to
having similar spatial scales as VERA.

regressions of the scores on the left of ~ against those on the
0.05 right for each model individually and for all models

0.69
0.48
0.97

To get a rough idea of the interrelations between our
structure scores, we perform a series of linear regressions
between them and consider the degree of determination
measured by R2. Table 3 confirms that the scale and direc-
tional errors are largely independent of one another. The
relative contributions of dxy and dz to the overall score
semd, differ from model to model, scale dominating for
CMH and M0L00225, direction for BOLAMO007 and both
contributing equally for COSMO. In all cases, as well as
in total, semd, can almost entirely be explained as a linear
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combination of the shift in scale and the shift in direction/
anisotropy (R? > 0.95).

7.2 | Verification against RADKLIM

Up to this point, we have assumed VERA as a flawless rep-
resentation of the true precipitation fields and interpreted
all discrepancies as forecast errors. However, the fact that
the coarsest model achieved the best overall rating raises
some suspicions. Can VERA appropriately represent the
scale structure of precipitation fields? To address this ques-
tion, we shift our attention from the Alpine MesoVICT
domain to Germany, where the radar-based RADKLIM
dataset offers spatial observations at 1 km nominal resolu-
tion. CMH and COSMO are not available in this domain,
so the other three datasets are now treated as competing
forecasts to be verified against RADKLIM.

Before looking at the scores, it is again instructive to get
a visual first impression from an example case. Figure 10
shows an instance of scattered convective cells across Ger-
many during MesoVICT case 6. As expected, VERA and
RADKLIM agree very well on the placement and approxi-
mate shape of the individual cells. Accordingly, the degree
of anisotropy and the overall direction ¢ are nearly iden-
tical. However, RADKLIM reveals a much finer-scaled
texture and distributes more precipitation across a smaller
total area, leading to a scale error of dz=0.5 for VERA.
BOLAMO07 and MOL0O0225 both under-forecast the over-
all rain intensity and area and produce patterns slightly
too isotropic. Variability in MOLO0225 occurs on the same
small scales as in RADKLIM, and BOLAMOO?7 is again far
more similar to VERA.

The distribution of scores shown in Figure 11 reveals
that our example case was in fact representative of an over-
all trend: while the scale errors of MOL00225 are centred
around zero, both BOLAM007 and VERA exhibit a bias
towards larger scales (dz~0.3). In terms of directional
structure, VERA is by far the most similar to RADKLIM,
followed by MOL00225 and BOLAMO007. With respect to the
summary score semdy, VERA and MOL0O0225 are thus tied
for first place, both performing substantially better than
BOLAMOO07. It is worth noting that the distributions of the
scores for the two forecast models have substantially heav-
ier tails than for VERA. These outliers represent complete
mis-forecasts of spatial structure, which naturally do not
occur in observational datasets like VERA.

8 | CORRECTING STRUCTURAL
ERRORS

Errors related to the marginal distribution of a forecast
can generally be corrected if the desired distribution is
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known. Such a calibration procedure may be desirable
to improve the forecast or to remove marginal errors
before applying further verification methods. Most spatial
verification techniques do not suggest a simple way of
correcting the errors they detect; the wavelet approach
is an exception to this rule. As detailed in Section 3, a
wavelet transform is essentially just a change of basis,
which can be reversed. Similar to the well-known Fourier
case, the discrete wavelet transform allows for analysis
and synthesis. To correct the errors in the spatial mean
wavelet spectrum, we can therefore (1) transform fore-
casts and observations, (2) multiply the forecast values
at each location, scale and direction by the correspond-
ing ratio between total observed and predicted energy and
(3) reverse the transform to obtain a corrected version of
the forecast. The spatial distribution of the energy of the
resulting image is that of the prediction, but its distribution
over scale and direction corresponds to that of the obser-
vations. The complete procedure is given by Algorithm 1.
The logarithmic transform in step 2 and the limitation to
scales <J ensure that the correction is consistent with our
verification. By restoring the original mean and variance of
the log-transformed field in step 10, we concentrate on the
spatial structure without attempting to correct the margins
as well.

Algorithm 1 is applied to all forecasts in the Alpine
MesoVICT dataset; the reference in each case is the VERA
analysis. Figure 12 shows four examples which illustrate
the effects of our structural correction. In the first case
Figure 12a-c, a forecast by the MOL0O0225 model was
deemed too small and too anisotropic. The algorithm
smooths the field, rounds the linear pattern and visibly
reduces small-scale variability. The result has near-perfect
scale and direction properties, while maintaining the same
arrangement of features as the original.

The second example Figure 12d-f depicts a situation in
which the BOLAM007 model predicted a single large-scale
rain band over the Alps, whereas VERA sees a number of
smaller, disjointed cells. As expected, the correction con-
verts the continuous rain area of the forecast into several
smaller objects, thereby increasing the visual similarity
with VERA.

While the previous two predictions were too
anisotropic, Figure 12g-i show a forecast from the CMH
model that was both too small-scaled and too round. After
correction, much of the small-scale variability has dis-
appeared, while the elongated shape in the centre of the
domain has been rendered more coherent and linear.

As our final example, we have included a com-
plete mis-forecast from the CMH model, which fails to
simulate the front seen in VERA and produces scat-
tered small-scaled precipitation across the Alps. This
extreme example, which is clearly related to model spin-up
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Algorithm 1. Correction of structure errors

Input: forecast F, reference R, largest scale J, minimum
value Ry,
Output: corrected forecast F’

Set values <Ry, to zero

Set F — log,(F + Rmin), R = 10g,(R + Rin)

Standardize F and R to zero mean, unit variance

Forward transform dtF = dtcwt(F), dtR = dtcwt(R)

for all scalesj =1, ...,J, directionsd =1, ...,6 do
Calculate sum over all grid points i:
Y. ldtF;jal%, er = Y, |dtR; jql?

7. setall dtFjq — dtFijq - er/er

s: end for

o: Inverse transform F’ = dtcwt ™ (dtF)

10: Reset mean and variance of F’ to the values before step

3
11: Set F/ — 2 — Ruin
12: Set values < Ry, to zero

AN A O > e

er =

in CMH, serves to demonstrate the limitations of the
algorithm. The global adjustment of the wavelet spectra
cannot possibly create a cold front in which no precipita-
tion has been simulated. Instead, the two largest cells at
the western domain edge are united into a smooth, elon-
gated feature; most of the remaining small-scale variability
is removed.

Having seen that the correction algorithm produces
realistic-looking fields while greatly improving the visual
similarity between forecast and observation, we now quan-
tify its influence on the verification results. As expected,
Figure 13 shows that both directionality and scale, mea-
sured by dxy and dz, are greatly improved. The fact that
these scores are not exactly zero is due to the (necessary)
truncation step (Algorithm 1, step 12). In addition, the
inverse wavelet transform used here (following Kingsbury
2006) is not perfect due to the special treatment of the
diagonal directions. The improvement of the scores is

BOLAMO007

MOL00225

FIGURE 10

nonetheless immense, indicating that these effects play no
great role - the algorithm works as intended.

While the improvement in the wavelet scores is thus
almost guaranteed by design, it is interesting to see
whether beneficial effects on the structural forecast skill
are observed by other verification methods as well. To this
end, we apply the object-based structure score S of Wernli
et al. (2008) (using 1/15 of the observed and predicted
90% quantiles as thresholds) and the variogram score
vgs of Scheuerer and Hamill (2015). Following Buschow
and Friederichs (2020), we use the stationary, isotropic,
inverse-distance-weighted version of vgs with p=2 and
scale each field by its standard deviation to concentrate
on verifying the correlation structure. The bottom panels
in Figure 13 confirm that both the object-based S and the
variogram score vgs measure a significant improvement
after the wavelet-based structure correction. In particu-
lar, S originally also detects the substantial scale errors of
MOL00225 and CMH; after our adjustment, these models
are deemed as good as COSMO and BOLAMO07, both of
which see a modest improvement in S as well.

9 | DISCUSSION

The central goal of this study is to present a verification
technique that evaluates the predicted spatial structure
in terms of scale, anisotropy and direction. This level
of detailed structural analysis is enabled by the com-
plex dual-tree wavelet transform of Kingsbury (1999),
which comprises six directional filters on a range of spa-
tial scales. Using data from the MesoVICT project, we
have demonstrated that the DTCWT can indeed replace
the classic discrete wavelet transform in an analysis
of spatial scales. All previous results concerning the
usefulness of such an analysis for spatial forecast
verification (Kapp et al, 2018; Buschow et al., 2019;
Buschow and Friederichs, 2020) or the quantification of
convective organization (Brune et al., 2018; 2020) remain

radklim

Predicted, analyzed and observed rain fields and structural characteristics on 9 July 2007 at 1900 UTC
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FIGURE 11 (a)Anisotropy, (b) scale and (c) total structure error of BOLAM007, MOLO0225 and VERA, verified against RADKLIM in
the Germany domain. Only cases with at least 100 non-zero rain pixels in the RADKLIM image were included
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FIGURE 12 (a,d,g,]j) Original forecasts, (b, e“h, k) corrected versions, and (c, f, i,1) the corresponding VERA analysis for four cases
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valid for the dual-tree version. When only global charac-
teristics are of interest, we can even replace the computa-
tionally expensive redundant transform by the extremely
efficient decimated version. This potentially enables the
use of our methods in contexts where time constraints,
very large spatial domain sizes (n,>1024) or the sheer
number of fields would make the redundant transform
impractical. Incidentally, the decimated transform also
allows for an efficient implementation of the global WOI of
Brune et al. (2018).

However, the key innovation of the dual-tree approach
lies in the analysis of the directional structure, which is
impossible with the three directional filters of the clas-
sic DWT. Building on the idea of a central scale, we have
introduced two further components to the centre of the
wavelet spectrum, namely the degree of anisotropy p. and
the angle ¢.. The geometric MesoVICT test cases demon-
strate that p. adequately distinguishes between elongated
and round patterns; the analysis of directions using ¢, is
nearly flawless for simple geometric shapes.

For the purposes of verification, we advocate the use
of a combined anisotropy-direction score since errors in
@. are not meaningful when the anisotropy is low. This
score, denoted here as dxy was used together with the
signed difference in central scale dz and the combined
structure score semdy to verify precipitation forecasts from
four competing models within the MesoVICT framework.
Perhaps the most important lesson from this experiment
is that scale and directionality represent two independent
aspects of forecast quality. Compared to VERA, CMH and
COSMO achieve nearly the same average values of semdy,
but the composition of the structure score is very differ-
ent: while COSMO simulates structures that are system-
atically too linear, leading to higher values of dxy, CMH
produces excessive small-scale variability early in the day
(dz < 0). MOLO0225 is tied for the lowest dxy with CMH but
simulates far smaller structures than any other model. It
may be interesting to note that the scale of the precipitation
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Distributions of structure scores for the original and corrected predictions of each model

fields is not entirely determined by the model’s nomi-
nal spatial resolution, which is nearly the same for CMH,
COSMO and M0L00225. On the other hand, BOLAM007
has a much coarser grid spacing of approximately 7 km
and, somewhat expectedly, produces nearly the same dis-
tribution of spatial scales as VERA, which gives it the best
overall scores in this comparison.

Should we thus conclude that the coarsest model
delivers the most realistic representation of spatial struc-
ture? Doubting this, we have compared VERA, BOLAMO007
and MOLO00225 to the radar-based RADKLIM dataset,
which represents a realistic spatial observation of rain-
fall. Here MOLO00225, the overall loser in the previ-
ous comparison, is rewarded for simulating the same
fine spatial scales as seen in the observations; both
VERA and BOLAMO007 are deemed too large. MOLO0225’s
representation of directionality is good but not as good
as VERAs, again leaving two “forecasts” tied in terms of
the overall score semdy. This is a good example of inde-
pendence between directional and scale-related aspects
of the spatial structure: even if a comparatively coarsely
resolved validation dataset hinders our analysis of spa-
tial scales, we can nonetheless study the direction and
directedness.

The degree of anisotropy and the distribution of domi-
nant directions in a realistic precipitation field are closely
tied to meteorological processes like organized or unorga-
nized convection, moving airmass boundaries and pres-
sure systems, as well as the interaction of these pro-
cesses with the local topography. Our results demon-
strate that the wavelet-based approach can meaningfully
verify these directional aspects of spatial structure, and
thereby indirectly the simulation of the underlying pro-
cesses. Together with the analysis of scales and sim-
ple statistics such as the total rain area and accumu-
lation, we can obtain a very detailed, objective picture
of the spatial pattern in various observed and simulated
fields.
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An advantage of the wavelet-based approach is the
existence of an inverse transform which allows us to
correct the detected structural errors by a rather straight-
forward algorithm. The resulting post-processed fields
combine the spatial placement of the predicted rain
field with the global structure of the observations. We
have shown that this procedure produces realistic-looking
results with greatly improved wavelet and non-wavelet
structure scores. The correction procedure has three main
benefits. First, it enhances our intuitive understanding
of the wavelet-based verification by showing us what an
improved version of the forecast would have been. Second,
the errors detected by the wavelet scores can be removed
from the forecast before other scores are applied. In this
manner, one can eliminate structure errors before verify-
ing other aspects like the location of the predicted objects.
Third, if a forecasting system exhibits strong systematic
biases in its spatial structure (as was the case for MOL0O0225
here), a correction to the observed climatological spectra
could actually improve the value of the forecasts. How
exactly such a structural post-processing could be imple-
mented and whether it has any real-world utility is a
question for future research.
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APPENDIX A. HEXAGONAL ARRANGE-
MENT AND THE EMD

To further illustrate the concepts introduced in Section 4,
we consider the wavelet spectra corresponding to the rain
fields shown in Figure 121,j. In Figure Ala, b, we have listed
the energy values corresponding to each combination of
scale j and direction d. For our calculations, each of these
energies e; 4 is treated as a point mass located at the coor-
dinates X; 4, ¥, 4, Zj,a (cf. Equation 1). The point masses are
visualized as spheres of different volumes in Figure Alc, d.
The frontal structure from Figure 121 leads to a concen-
tration of mass at scale five and the directions around 90°.
Conversely, the small, isotropic pattern of Figure 12j is
reflected by a more even distribution across all directions
and the three smallest scales.

pe, 0. and z. are the barycentre of this arrangement
of point masses, represented in cylindrical coordinates.
Scores like dp and dz are simply given by the difference
between the central coordinates of two spectra. These sim-
ple scores are useful because they are easy to interpret,
but they neglect some information on the full distribu-
tion of energy (Buschow et al., 2019). To define a summary
score that includes all information from the mean spec-
trum, we therefore use the Earth Mover’s Distance (EMD)
which measures the minimum total cost of transforming
one arrangement of point masses into another (Rubner
etal.,, 2000). Letm=1, ... ,6J be an index enumerating all
combinations of scale and direction (j, d). One spectrum
is transformed into another by successively transferring
amounts of “mass” (in our case spectral energy) fy, -, >0
from locations m in the first spectrum to locations n in
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the second spectrum. Recalling that our “masses” are nor-
malized such that Ziegk) = 1(k=1,2denoting the first and
second spectrum), we seek a set of mass transfers which
satisfy

Do =e
m
D=y
n

Denoting the Euclidean distance between locations m
and n by

(the result of the

transport is spectrum 2) ,

(all mass from spectrum 1

is transported somewhere) .

dnn = \/(xm —X0)? + Om —Yn)?* + @m — 20)? ,

we can write the total work of a particular transport
scheme as . dmnfinn- The EMD is given by the mini-
mum work needed, i.e.,

6-J
semdy = min( Z dm,nfm—>n> ,

m,n=1

(A1)

where the minimum is taken over all possible sets of trans-
ports (fim— n)m,» that satisfy the requirements above. The
solution of the optimization problem is found numeri-
cally via the emdist R-package (Urbanek and Rubner,
2012).
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OO0 |O |0 Q
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Royal Meteorological Society

APPENDIX B. COMPARISON BETWEEN
WAVELET TRANSFORMS

To quantify the impact of our choice of wavelet transform
on the resulting structure analysis, we transform each field
in the original MesoVICT dataset (Alpine domain, VERA,
CMH, COSMO, BOLAM007, MOL0O0225) three times: once
with the decimated DTCWT which was used through-
out Sections 6 and 7, once with the redundant version
(used to produce Figure 6) and a third time with the sixth
“Extremal Phase” Daubechies wavelet (redundant version
with bias correction). Figure Bla shows the central scales
Z. resulting from the spatially averaged, bias-corrected
wavelet spectra. Apart from a slight linear offset, the
agreement between the three analyses is close to per-
fect (R*~0.99), and we observe no surprising outliers
and no nonlinear effects. This confirms our claim that
the DTCWT analyses scales in nearly exactly the same
way as the usual DWT used by Buschow and Friederichs
(2020). For the anisotropy p., we only compare the deci-
mated DTCWT to its undecimated version since the DWT
is not expected to agree with the dual-tree results here.
Figure Blb shows almost no systematic bias; the corre-
lation is again very high (R*>=~0.95). We conclude that
the global scale and anisotropy can be inferred from the
decimated DTCWT just as well as from the undecimated
version without incurring any significant, systematic dou-
ble penalty.

15° | 45° | 75° | 105° | 135° | 165°

OO0 0 |0 |Q
J=1 2 2 2 2 2 2
J=2| 2 2 3 2 2 2
J=3| 2 2 2 2 1 1
J=4| 1 1 1 1 0 0
J=5| 0 0 0 0 0 0

FIGURE Al

Mean wavelet spectra for the fields in Figure 121,j. (a“b”) Energy values, re-scaled and rounded to integers between 0 and

10. (c, d) Representation in a hexagonal arrangement (Figure 4); the volume of the spheres is proportional to the energy listed in the table
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FIGURE Bl Dependence of structural characteristics on the wavelet transform. (a) central scale z, of the DWT (DB6) against that of

the decimated and redundant DTCWT. (b) Anisotropy p, of the redundant and decimated DTCWT. The solid line indicates linear regression,
and the dashed line marks the unit diagonal



