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Abstract

Nitrogen (N) fertilization is the major contributor to nitrous oxide (N2O)

emissions from agricultural soil, especially in post-harvest seasons. This study

was carried out to investigate whether ryegrass serving as cover crop affects

soil N2O emissions and denitrifier community size. A microcosm experiment

was conducted with soil planted with perennial ryegrass (Lolium perenne L.)

and bare soil, each with four levels of N fertilizer (0, 5, 10 and 20 g N m−2;

applied as calcium ammonium nitrate). The closed-chamber approach was

used to measure soil N2O fluxes. Real-time PCR was used to estimate the bio-

mass of bacteria and fungi and the abundance of genes involved in denitrifica-

tion in soil. The results showed that the presence of ryegrass decreased the

nitrate content in soil. Cumulative N2O emissions of soil with grass were lower

than in bare soil at 5 and 10 g N m−2. Fertilization levels did not affect the

abundance of soil bacteria and fungi. Soil with grass showed greater abun-

dances of bacteria and fungi, as well as microorganisms carrying narG, napA,

nirK, nirS and nosZ clade I genes. It is concluded that ryegrass serving as a

cover crop holds the potential to mitigate soil N2O emissions in soils with mod-

erate or high NO3
− concentrations. This highlights the importance of cover

crops for the reduction of N2O emissions from soil, particularly following N

fertilization. Future research should explore the full potential of ryegrass to

reduce soil N2O emissions under field conditions as well as in different soils.

Highlights

1. This study was to investigate whether ryegrass serving as cover crop affects

soil N2O emissions and denitrifier community size;

2. Plant reduced soil N substrates on one side, but their root exudates stimu-

lated denitrification on the other side;
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3. N2O emissions were lower in soil with grass than bare soil at medium fertil-

izer levels, and growing grass stimulated the proliferation of almost all the

denitrifying bacteria except nosZ clade II;

4. Ryegrass serving as a cover crop holds the potential to mitigate soil N2O

emissions.
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denitrification, perennial ryegrass (Lolium perenne L.), soil bacteria, soil CO2 emissions, soil N2O

emissions

1 | INTRODUCTION

Increasing nitrous oxide (N2O) concentration in the
atmosphere is among the most serious consequences of
the anthropogenic alteration of the global nitrogen
(N) cycle (Bakken & Frostegard, 2017). In addition to its
high global warming potential and long atmospheric life-
time (IPCC, 2013), N2O has been shown to be the most
important emitted compound involved in stratospheric
ozone depletion (Ravishankara, Daniel, & Portmann,
2009). The intensive input of mineral N into agricultural
soils is one of the crucial factors contributing to soil N2O
emissions (Ju et al., 2009; Song et al., 2018). Denitrifica-
tion is the predominant N2O-producing biological process
in soils (Bremner, 1997; Hu, Chen, & He, 2015), which is
strongly affected by the soil nitrate (NO3

−) concentration
(Köbke, Senbayram, Pfeiffer, Nacke, & Dittert, 2018; Sag-
gar et al., 2013). In the denitrification pathway, den-
itrifying microorganisms use NO3

− as an electron
acceptor and reduce it to gaseous N2 in a stepwise man-
ner. Incomplete denitrification results in the emission of
gaseous intermediates such as N2O.

Soil denitrification is regulated by enzymes such as
NO3

−, nitrite (NO2
−) and N2O reductases that are pro-

duced by microorganisms. In arable soils, plant root
architecture and exudation alter soil structure, aeration
and biological activity (Bertin, Yang, & Weston, 2003;
Kuzyakov & Xu, 2013), as well as soil microbial commu-
nities (Berg & Smalla, 2009). The majority of laboratory
studies of soil N2O emissions, however, have not
included plants, although it is known that growing plants
may increase denitrification activities in soil (Guyonnet
et al., 2017; Klemedtsson, Svensson, & Rosswall, 1987).
Recent studies investigated how plant and rhizosphere
processes affect soil N2O emissions (Lenhart et al., 2019;
Senbayram et al., 2020). On the one hand, plants compete
with soil microorganisms for N (Moreau, Bardgett, Fin-
lay, Jones, & Philippot, 2019), on the other hand, plants
provide carbon (C) to the soil via root exudates that mod-
ulate microbial communities and denitrification activity
(Achouak et al., 2019). Apart from effects on the soil N

pool, plants consume O2 and increase soil CO2 concentra-
tions through root respiration as compared to unplanted
soil. It has been estimated that 5% to 21% of all photosyn-
thetically assimilated C is released into the soil in the
form of root exudates (Derrien, Marol, & Balesdent, 2004;
Nguyen, 2003). Consequently, the C turnover rate in the
soil rhizosphere is estimated to be at least one order of
magnitude greater than in the bulk soil
(Kuzyakov, 2010). It has been suggested that root exuda-
tion will increase denitrification (Bijay-singh &
Whitchead, 1988), as root-released C can serve as an elec-
tron donor (Philippot, Hallin, & Schloter, 2007). Indeed,
planted soils are several times greater in density of deni-
trifiers than unplanted soils (Chèneby et al., 2004; Her-
man, Johnson, Jaeger, Schwartz, & Firestone, 2006).
Growing perennial grasses, such as Festuca paniculata,
Bromus erectus and Dactylis glomerata (Guyonnet
et al., 2017), barley (Hordeum vulgare L.) (Klemedtsson
et al., 1987) and maize (Zea mays L.) (Mahmood, Ali,
Malik, & Shamsi, 1997) has been shown to increase deni-
trification activities in soil. The stimulation of soil denitri-
fication activity by plants depends on the plant species
and soil water content (Bakken, 1988). Furthermore, root
exudates have been shown to modulate soil microbial
communities (Haichar et al., 2008; Haichar, Santaella,
Heulin, & Achouak, 2014).

However, increased denitrification activity does not
necessarily mean higher N2O emissions from soil.
Ammonium (NH4

+) and NO3
− have different motilities

in soil due to the charge-dependent interaction with soil
colloids. As a consequence, a depletion zone of NH4

+ in
the rhizosphere can be created by plant root uptake of
NH4

+ as it shows low mobility in most temperate soils
(Orcutt, 2000). In contrast, no such depletion zones in
the rhizosphere can be expected for NO3

− due its high
mobility in most temperate soils (Kuzyakov & Xu, 2013).
The concentration of NO3

− in soil, however, can rapidly
decrease owing to uptake by plant roots (Tinker &
Nye, 2000). Therefore, the availability of mineral N in soil
is regarded as a major factor limiting denitrification
(Philippot et al., 2007; Saggar et al., 2013). The response
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of soil N2O emissions to the application of mineral N fer-
tilizer is exponential rather than linear (Shcherbak, Mil-
lar, & Robertson, 2014). Senbayram, Chen, Budai,
Bakken, & Dittert (2012) reported that increasing the soil
NO3

− concentration resulted in a higher N2O/N2 ratio.
The competition for NO3

− between plants and denitrifiers
can result in lower denitrification rates in planted soils
(Qian, Doran, & Walters, 1997). Similarly, regulation of
denitrifying soil communities by NO3

− has been reported
from different ecosystems (Correa-Galeote et al., 2017;
Deiglmayr, Philippot, & Kandeler, 2006; Enwall, Phi-
lippot, & Hallin, 2005); however, the effect of the soil
NO3

− concentration on the abundance and diversity of
denitrifiers remains to be determined.

Ryegrass is a common cover crop that is used to
reduce nitrate leaching (Bergström & Jokela, 2001;
Poeplau, Aronsson, Myrbeck, & Kätterer, 2015; Tho-
msen & Hansen, 2014) and increase soil organic C stocks
(Poeplau et al., 2015). The effect of ryegrass on soil N2O
emissions, however, is under-studied. A recent meta-
analysis revealed that cover crops have the potential to
mitigate N2O emissions in post-harvest seasons, yet few
studies focused on ryegrass (Muhammad et al., 2019).
The main aim of this study was therefore to investigate
N2O emissions from soil with ryegrass compared to bare
soil under varying fertilizer levels. To achieve this, we
used an incubation experiment with two experimental
factors: soil planted with grass and unplanted bare soil,
each with four levels of N fertilizer addition. Soil N2O
fluxes were determined using the closed-chamber
approach. Real-time PCR (qPCR) assays were performed
to estimate the abundance of soil bacteria and fungi, as
well as microorganisms harbouring genes involved in
denitrification. We hypothesized that the presence of
grass and the associated belowground modulations would
(i) lower soil N2O emissions at each fertilizer level and
(ii) promote the abundance of bacteria, fungi and denitri-
fiers, as compared to bare soil.

2 | MATERIAL AND METHODS

2.1 | Soil collection

Topsoil (0 to 25 cm) was collected from Reinshof agricul-
tural research station (51�29050.3”N, 9�55059.900E), Uni-
versity of Göttingen, Lower Saxony, Germany. Mean
annual precipitation was 651 ± 24 mm and mean annual
temperature was 9.2 ± 0.1�C (1981–2010, meteorological
station at Göttingen, station ID: 1691, Germany's Meteo-
rological Service). The site had been cropped with winter
oilseed rape (Brassica napus L.) (2015), winter wheat
(Triticum aestivum L.) (2016) and winter barley (2017)

prior to soil collection on March 23, 2018. The soil was
classified as Luvisol (IUSS, 2015) and the texture of the
topsoil (0 to 25 cm) was composed of 61% silt, 23% sand
and 16% clay. The bulk density was 1.3 g cm−3, the pH
was 7.1 ± 0.1, the soil total C concentration was 1.3% and
the total N concentration was 0.13%. Following collec-
tion, the soil was stored in a polyvinyl chloride (PVC)
container for 3 months at room temperature until incuba-
tion. Before incubation, the soil was air-dried to 2% gravi-
metric water content and sieved through a 2-mm mesh to
achieve higher homogeneity. PVC cylinders (diameter,
20 cm; height, 20 cm) were used for incubation and
sealed with removable lids (height, 5 cm) carrying butyl-
rubber septa for headspace gas sampling. Soil moisture
was first adjusted to 35% water-filled pore space (WFPS)
and soil (equivalent to 4.49 kg dry soil) was filled into the
experimental pots in three layers of approximately 3.7 cm
each (11 cm in total) for manual compaction to the origi-
nal bulk density of 1.3 g cm−3, resulting in 4,398 cm3 of
air space (9 cm headspace + 5 cm lid) for gas accumula-
tion when the chambers were closed. The following day,
the soil was carefully irrigated in a stepwise procedure to
avoid soil compaction and finally adjusted to 60% WFPS.

2.2 | Experimental setup

The experiment was conducted in a fully controlled cli-
mate chamber (Fitotron Walk in Plant Growth Room,
Type SGR221 LED, Weiss Technik, Leicester, UK). The
climate chamber was set to a light intensity of
520 μmol m−2 s−1 photosynthetically active photon flux
density at 25�C air temperature from 6.00 am to 10.00 pm
as “day mode” (16 hr), and from 10.30 pm to 6.00 am
(8 hr) as “night mode” with no light at 12�C air tempera-
ture. The relatively large temperature discrepancy was set
in order to mimic conditions close to those in the field.

The experiment consisted of two groups: soil with
perennial ryegrass (Lolium perenne L.) (DSV AG,
Salzkotten, Germany) and bare soil. Each group had four
different fertilizer levels (0, 5, 10 and 20 g N m−2, equiva-
lent to 0, 50, 100 and 200 kg N ha−1), resulting in a total of
eight treatments. Each treatment was performed in tripli-
cate, yielding a total of 24 pots. Before the first sampling
date, grass was sown at a density of approximately 5,000
seeds m−2 and pre-incubated for 4 weeks to allow grass
establishment in the pots. The treatments with bare soil
were treated equally but without plant cultivation. Cal-
cium ammonium nitrate N fertilizer (76% ammonium
nitrate (NH4NO3) and 24% calcium carbonate (CaCO3))
was applied after dissolution in distilled water. Half of the
total N fertilizer was applied after the first collection of soil
and gas samples on day 1 (August 3, 2018); the other half
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TABLE 1 Total N uptake and C assimilation of grass shoots and roots throughout the experimental period (56 days) at each fertilizer

level in soil with grass

Fertilizer level (g N m−2)

N uptake (g N m−2) C assimilation (g C m−2)

Shoot Root Total Shoot Root Total

0 2.6 ± 0.1c 1.5 ± 0.2b 4.1 ± 0.1d 58.3 ± 2.6b 58.7 ± 2.8b 117.0 ± 4.4b

5 4.7 ± 0.2c 1.8 ± 0.1a 6.5 ± 0.2c 98.4 ± 4.3a 74.3 ± 0.9a 172.6 ± 4.7a

10 7.4 ± 0.7b 2.0 ± 0.1a 9.3 ± 0.5b 115.8 ± 5.3a 74.8 ± 4.1a 190.5 ± 1.2a

20 11.8 ± 0.7a 2.1 ± 0.1a 13.9 ± 0.5a 123.6 ± 9.2a 68.1 ± 2.6a 191.8 ± 10.8a

Note: Means ± standard errors followed by different lowercase letters indicate significant differences among fertilizer levels within each parameter (one-way
ANOVA with Tukey's honestly significant difference (HSD) test or Kruskal-Wallis test with multiple comparison extension) at p < .05.

FIGURE 1 Time course of dissolved organic carbon (DOC) concentrations in (a) bare soil and (b) soil with grass, and soil NO3
−-N

content in (c) bare soil and (d) soil with grass, and soil NH4
+-N concentrations in (e) bare soil and (f) soil with grass during the 56 days

growing period. Solid lines with points of different grey intensities represent different fertilizer levels (0, 5, 10 and 20 g N m−2); dashed

vertical lines indicate fertilization dates (day 1 and 28). Error bars represent the standard error of the mean (n = 3)
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was applied after 28 days, with a full measuring period of
56 days. After fertilization, soil was irrigated daily, and up
to every 2 days in the later period by weighing the pots, to
keep the soil moisture at 60 ± 5% WFPS.

Two days before the first fertilization, the grass was
cut to a height of 4 cm. Following this, the grass was cut
every 2 weeks and the shoot dry matter was determined
from air-dried material. At the end of the experiment, the
roots were collected as well. Roots were carefully washed,
air-dried and weighed. The total C and N of finely ground
dry grass shoots and roots were determined on a NA-
1500 N elemental analyzer (Carlo Erba, Milano, Italy).
Grass N uptake and C assimilation were calculated as:

Nuptake = DMshoot × Nconcentrationshoot + DMroot

× N concentrationroot;
ð1Þ

and

Cassimilation = DMshoot × Cconcentrationshoot

+ DMroot × C concentrationroot;
ð2Þ

where DM refers to the dry matter of the harvested grass.
Apparent N recovery (ARN) was calculated as:

ARN %ð Þ= Nuptake fertilizedð Þ-Nuptake unfertilizedð Þ
amount of N applied

× 100:

ð3Þ
Gas samples of 25 mL in volume were collected using

a syringe inserted in the headspace of sealed lids. Sam-
ples were directly transferred to a pre-evacuated 12-mL
Exetainer vial (Labco, Lampeter, UK). Gas samples were
collected at 0, 20 and 40 min after the pots were sealed.
In the first week after each fertilization, gas samples were
collected every day to capture the fertilization-induced
peaks. In the following 3 weeks, gas samples were taken
at larger intervals of 2 to 4 days.

In order to avoid the disturbance of soil structure by
soil sampling during the incubation period, we incubated
a spare set of pots in parallel to the gas sampling pots for
soil sample collection. The setup of these pots was identi-
cal to that for pots for gas sampling. Soil samples were
taken on day 0 (1 day before the first fertilization), day

FIGURE 2 CO2 emission dynamics and cumulative CO2 emission during the growing period (56 days) from bare soil (a) and soil with grass

(b). Error bars represent the standard error of the mean of each treatment (n = 3). Solid lines with points of different grey intensities represent

different fertilizer levels (0, 5, 10 and 20 g N m−2). Dashed vertical lines indicate fertilization dates (day 1 and day 28). Asterisks indicate significant

differences in cumulative CO2 emission between bare soil and soil with grass at the same fertilizer level (t-test or Mann–Whitney U-test);

lowercase letters indicate significant differences in cumulative CO2 emission among fertilizer levels within bare soil or within soil with grass (one-

way ANOVA with Tukey's honestly significant difference (HSD) test or Kruskal-Wallis test with multiple comparison extension) at p < .05
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7, day 14, day 28 (before the second fertilization), day
35 and day 56 (final collection of samples). On day 0, day
7 and day 14, soil samples were collected from the first
spare pot; on day 35 and day 56, they were collected from
the second spare pot. The last soil samples were taken
from the pots on which gas measurements were per-
formed. The soil samples (0–11 cm depth) were taken
using a 16-mm diameter auger. Remaining holes were
filled with reagent glasses (16 mm diameter) to avoid extra
water and nutrient losses. Approximately 60 g of fresh soil
was taken and sieved through a 2-mm mesh. Soil samples
were homogenized and divided for soil NH4

+ and NO3
−,

and dissolved organic carbon (DOC) analysis. Soil pH,
total C and N, and WFPS did not differ among treatments.
From the last set of soil samples, aliquots were used for
soil DNA extraction and subsequent qPCR analysis.

2.3 | Gas and soil sample analysis

Gas samples were analysed on an Agilent 7890A gas
chromatograph (Agilent Technologies, Santa Clara, CA,
USA) equipped with a thermal conductivity detector for

the determination of carbon dioxide (CO2) concentrations
and an electron capture detector for the determination of
N2O concentrations. The flux rates of CO2 and N2O were
calculated using linear regression of the gas concentra-
tion over time (Parkin, Venterea, & Hargreaves, 2012;
Wang et al., 2013). Cumulative emissions were calculated
by interpolating the values of CO2 and N2O emissions.

To determine soil NH4
+ and NO3

− concentrations,
subsamples (10 g) of sieved fresh soil were extracted
by adding 50 mL of 0.0125 M calcium chloride (CaCl2).
Mixtures were shaken for 1 hr, filtered (MN615 1/4;
pore size, 4–12 μm; Macherey-Nagel, Düren, Germany)
and subsequently stored at −20�C until analysis. NH4

+

and NO3
− concentrations in the extracts were deter-

mined using a San++ continuous flow analyzer (Skalar
Analytical, Breda, The Netherlands). Soil pH was mea-
sured from 10 g of air-dried soil suspended in 50 mL
of 0.01 M CaCl2 solution using a pH meter. Total C
and N measurements were performed with finely gro-
und air-dried soil using an NA-1500 elemental ana-
lyzer (Carlo Erba, Milano, Italy). Prior to the
measurement of total C and N, the air-dried soil was
fumigated in a hydrogen chloride (HCl) atmosphere

FIGURE 3 N2O emission dynamics and cumulative N2O emission during the growing period (56 days) from bare soil (a) and soil with grass

(b). Error bars represent the standard error of the mean of each treatment (n = 3). Solid lines with points of different grey intensities represent

different fertilizer levels (0, 5, 10 and 20 g N m−2). Dashed vertical lines indicate fertilization dates (day 1 and day 28). Asterisks indicate

significant differences in cumulative N2O emission between bare soil and soil with grass at the same fertilizer level (t-test or Mann–Whitney U-

test); lowercase letters indicate significant difference in cumulative N2O emissions among fertilizer levels within bare soil or within soil with grass

(one-way ANOVA with Tukey's honestly significant difference (HSD) test or Kruskal-Wallis test with multiple comparison extension) at p < .05
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using 3 M HCl for 1 week to remove carbonates
(Harris, Horwath, & Kessel, 2001). For DOC measure-
ments, 10 g of fresh soil was extracted using 40 mL of
0.5 M potassium sulphate (K2SO4). The solution was
shaken for 2 hr and filtered (MN615 1/4; pore size,
4–12 μm; Macherey-Nagel, Düren, Germany). Extracts
were stored at −20�C until determination of organic C
and total C concentrations using a Total organic car-
bon/Total inorganic carbon (TOC/TIC) analyser (Multi
C/N 2100, Analytik Jena, Jena, Germany).

2.4 | DNA extraction from soil and qPCR

For qPCR analysis, soil was freeze-dried for 72 hr. The
freeze-dried material was finely ground using a swing mill
(MM400, Retsch, Haan, Germany) for 60 s at 25 Hz. Total
DNA was extract from 50 mg ground soil using a modified
cetyltrimethylammonium bromide-based protocol
(Brandfass & Karlovsky, 2008) as described previously (Beule
et al., 2019). Following DNA extraction, the quality and
quantity of DNA were examined on 0.8% (w/v) agarose gels
stained with ethidium bromide. The extracts were tested for
PCR inhibitors as described previously (Guerra, Beule,
Lehtsaar, Liao, & Karlovsky, 2020) and diluted 1:50 (v/v) in
double-distilled water (ddH2O) prior to qPCR analysis. We
quantified bacterial 16S rRNA and fungal 18S rRNA genes,
as well as genes involved in denitrification, namely narG and
napA for NO3

− reduction, nirK and nirS for NO2
− reduction,

and nosZ clade I and II for N2O reduction. All reactions were
carried out in 4 μL reaction volume (3 μL mastermix +1 μL
template DNA or ddH2O for negative controls) on a CFX384
Thermocycler (Biorad, Rüdigheim, Germany). A detailed
description of the mastermix composition and thermocycling
conditions can be found in Beule et al. (2019).

2.5 | Statistical analysis

All data were tested for homogeneity of variance
(Levene's test) and normal distribution (Shapiro–Wilk
test). Differences among treatments of cumulative data
(N uptake and C assimilation by grass and cumulative
CO2 and N2O emissions) or data without repeated mea-
surements (soil bacteria, fungi and denitrifiers) were
assessed by performing a t-test or one-way ANOVA with
Tukey's honestly significant difference (HSD) post-hoc test
for parametric data, or the Mann–Whitney U-test or
Kruskal–Wallis test with multiple comparison extension for
non-parametric data. Differences among treatments of
repeatedly measured data (DOC, NO3

−, NH4
+, CO2 and

N2O fluxes) were analysed using linear mixed effect (LME)
models. In the models, either the fertilizer level or the

treatment of bare soil versus soil with grass were set as a
fixed effect, and sampling date and replicate pot set as ran-
dom effects. The data were partially log10- or square-root-
transformed to meet the criteria for an LME model. Statisti-
cal significance was considered as p < .05, with marginal
statistical significance at p < .1. All statistical analyses were
performed in R version 3.5.2 (R Core Team, 2018).

3 | RESULTS

3.1 | Grass N uptake and C assimilation

In soil with grass, total plant N uptake, which was calcu-
lated by the dry matter of grass shoots and roots, ranged
from 6.5 to 13.9 g N m−2 in fertilized pots, compared to
4.1 g N m−2 in the unfertilized treatment. The ARNs of
fertilized treatments were 50% ± 2%. Plant shoot N
uptake at the 10 g N m−2 fertilizer level was lower than

FIGURE 4 Bacterial 16 s rRNA (a) and fungal 18 s rRNA

(b) gene copy number per g dry soil in bare soil and soil with grass

under different fertilizer levels (0, 5, 10 and 20 g N m−2) at the end

of the growing period (day 56). Error bars represent standard error

of the mean of each treatment (n = 3); asterisks denote differences

between bare soil and soil with grass (* p < .05); daggers represent

marginal differences between bare soil and soil with grass († p < .1)
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that at 20 g N m−2 (p = 0.006) and greater than those at
0 and 5 g N m−2 (p < .01) (Table 1). Plant root N uptake
in unfertilized treatments was lower than in the treat-
ments in which 5, 10 and 20 g N m−2 were added
(p < .04) (Table 1). The total N uptake throughout the
incubation period (56 days) increased along with increas-
ing fertilizer application (p < .03) (Table 1). Shoot C, root
C and total C assimilation were greater in fertilized than
unfertilized pots (p < .04) (Table 1), but did not differ
among the 5, 10 and 20 g N m−2 fertilization treatments.

3.2 | Soil DOC, NO3
− and NH4

+ dynamics
during incubation

Dissolved organic carbon was slightly increased in the
first 2 weeks, and gradually decreased in the following
weeks in both bare soil and soil with grass (Figure 1a,
b). DOC concentrations did not differ among bare soil
and soil with grass, nor among fertilizer levels
(Figure 1a,b). Soil NO3

−-N content in bare soil was
always greater than in soil with grass at all fertilizer
levels (p ≤ .001) (Figure 1c,d). Fertilization led to
increased NO3

−-N concentrations in bare soil as com-
pared to unfertilized treatments (p ≤ .05) (Figure 1c).
Compared to the background NO3

− (approximately 2 g
of NO3

−-N m−2) in unfertilized bare soil, soil NO3
−-N

was close to zero in the unfertilized treatment of soil
with grass (Figure 1d). Furthermore, in soil with grass,
at the 20 g N m−2 fertilizer level, soil NO3

−-N was
greater than at all other fertilizer levels (p ≤ .05)
(Figure 1d). When N fertilizer was applied, NH4

+-N
was marginally greater in bare soil than in soil with
grass (p < .1) (Figure 1e,f).

3.3 | CO2 and N2O emissions

The presence of grass strongly enhanced CO2 emissions
compared to bare soil, especially in treatments with fertil-
izer (p ≤ .003) (Figure 2). Fertilization had no effect on
CO2 emissions (neither on short-term rates nor on cumu-
lative fluxes) in bare soil (Figure 2a). In soil with grass,
however, CO2 emission rates and cumulative fluxes were
increased by fertilizer application (p ≤ .001) (Figure 2b).

In contrast to CO2 fluxes, N2O emissions from bare
soil were greater than from soil with grass at each fertil-
izer level (p < .05) (Figure 3). At the 5 and 10 g N m−2

fertilizer levels, bare soil showed greater cumulative N2O
emissions than soil with grass (p < .05). Cumulative N2O
emissions from soil with grass at the 0, 5 and 10 g N m−2

fertilizer levels were lower than at 20 g N m−2 (p < .05)
(Figure 3b).

3.4 | Soil microbial gene abundances in
bare soil and soil with grass

At the end of the experiment (day 56), the abundances of
bacteria, fungi and denitrification genes in soil were
quantified. The fertilization rate did not affect the abun-
dances of bacteria, fungi and denitrification genes
(Figure 4, Figure 5). At the 0 and 20 g N m−2 fertilizer
levels, the soil with grass showed marginally greater bac-
terial 16S rRNA gene copy numbers than bare soil
(p < .08) (Figure 4a). Similarly, the number of fungal 18S
rRNA gene copies did not differ among fertilizer levels,
but were greater in soil with grass than bare soil at the
0, 10 and 20 g N m−2 fertilizer levels (p < .05)
(Figure 4b). The abundance of narG was greater in the
soil with grass than bare soil at the fertilizer level of
20 g N m−2 (p < .005) (Figure 5a). At the 0 and 5 g N m−2

fertilizer levels, gene copy numbers of napA in soil with
grass were greater than in bare soil (p < .06) (Figure 5b).
At each fertilizer level, nirK gene copy numbers were
greater in soil with grass than in bare soil (p < .09)
(Figure 5c). The abundance of nirS was increased in soil
with grass compared to bare soil when 5, 10 or
20 g N m−2 of fertilizer was applied (p < .1) (Figure 5d).
At the fertilization rate of 20 g N m−2, nosZ clade I gene
copies were marginally greater in soil with grass than in
bare soil (p < .07) (Figure 5e). No differences between
soil with grass and bare soil at any fertilizer level were
detected for nosZ clade II genes (Figure 5f).

4 | DISCUSSION

4.1 | Soil organic C turnover and CO2
emissions

The soil microbial community is the main driver of soil
respiration and organic C mineralization in bare soils
(Li et al., 2018; Liu et al., 2018). The slight increase in
DOC in the first 2 weeks may have been due to the
rewetting of the dry soil to 60% WFPS (Kalbitz, Solinger,
Park, Michalzik, & Matzner, 2000). For example, when
Lundquist, Jackson, & Scow (1999) exposed soil to wet–
dry cycles, soil aggregates were partly decomposed and
their C was found in the DOC fraction. In the first
3 weeks of the experiment, soil CO2 emissions increased
gradually in bare soils, indicating a recovery of the micro-
bial respiration from the rewetted air-dried soil
(Figure 2a). As the soil was already pre-incubated for
4 weeks before the application of fertilizer, this may be
seen as an indication that the recovery of the soil micro-
bial activity in the bare soil may take approximately
7 weeks under the given conditions. One reason for this
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long recovery period in bare soil may be the limitation of
available C. Three weeks after the first fertilization, the
stable CO2 emissions and slow DOC consumption rate
may point towards a stabilized soil microbial community.

Pausch & Kuzyakov (2018) reviewed the distribution
of C compounds in soil that were released by roots. They
concluded that 12% of the assimilated C is emitted from
the plant as root-derived CO2 and 5% is deposited in the
rhizosphere. Most plant root exudates have been reported
to be readily available to soil microorganisms because
they can be metabolized within a few hours (Jones
et al., 2005; Kuzyakov & Xu, 2013). Moreover, it is rea-
sonable to expect a greater DOC content in soils with
grass than in bare soil given the estimation that 5% of the
assimilated C is sequestrated in the rhizosphere
(Pausch & Kuzyakov, 2018). However, no such increase
was found in our study. Zhang, Li, Wang, & Huang (2018)

reported that heavy grazing lowered the C input and
decreased C accumulation and total soil organic C con-
tents, due to reduced aboveground tissue (Schönbach
et al., 2011), more exposure of the soil surface, and thus
increased loss of soil moisture (Y. Zhao et al., 2007) and
stimulated compensatory growth of new leaves (W. Zhao,
Chen, & Lin, 2008). Therefore, the intensive cutting
throughout our experiment is likely to have contributed
to the lack of increased soil DOC, and the limitation of
available C may restrict denitrification activity and there-
fore reduce soil N2O emissions in soil with grass.

4.2 | Soil mineral N and N2O emissions

The N2O emissions followed a pattern that was similar to
that for soil NO3

− concentrations. For example, in each of

FIGURE 5 narG (a), napA (b), nirK (c), nirS (d), nosZ clade I (e) and nosZ clade II (f) gene copy number per g dry soil in bare soil and

soil with grass under different fertilizer levels (0, 5, 10 and 20 g N m−2) at the end of the growing period (day 56). Error bars represent

standard error of the mean of each treatment (n = 3); asterisks denote differences between bare soil and soil with grass (* p < .05). Daggers

represent marginal differences between bare soil and soil with grass († p < .1)

WANG ET AL. 9



the eight treatments, the second N2O emissions peak,
which followed the second fertilizer application, was
greater than the first peak (Figure 3a,b). Additionally, in
contrast to soil with grass, bare soil treatments showed
considerably greater N2O emissions, which lasted over the
entire study period. In soil with grass, N2O emissions fell
to nearly zero 2 weeks after each fertilizer application,
which was associated with exploited soil NO3

−. The rela-
tionships between soil NO3

− and N2O emissions indicate
that, under these conditions, soil NO3

− is the predominant
factor controlling soil N2O emissions (Dong et al., 2018; Ji
et al., 2018; Zhou, Zhu, Wang, & Wang, 2017).

At 60% WFPS, both nitrification and denitrification
are expected to be important contributors to soil N2O
emissions, as this moisture level is seen as the threshold
between aerobic and anaerobic conditions (Köbke
et al., 2018; Menéndez, Barrena, Setien, González-
Murua, & Estavillo, 2012; Volpi, Laville, Bonari, o di
Nasso, & Bosco, 2017). One week post the first fertiliza-
tion, only 0.2 g N NH4

+ was found and 7.9 g N NO3
−

were detected in the fertilized bare soil treatment at
20 g N m−2 (Figure 1c,e). Because the fertilizer was cal-
cium ammonium nitrate at a ratio of NH4

+ and NO3
− N

of 1:1, we assume that the vast majority of NH4
+ was

converted to NO3
− through nitrification. Additionally, we

assume that a certain proportion of the added NH4
+ was

released as N2O during nitrification (Bremner, 1997).
After 1 week, nitrification was unlikely to happen
because the amount of NH4

+ (0.2 g N) was low. Although
nitrification was not investigated in this study, our obser-
vations agree with other incubation studies that more
than 50% of the NH4

+ is converted to NO3
− within the

first week after fertilizer application (Senbayram, Chen,
Mühling, & Dittert, 2009; Wu et al., 2017). We anticipate
that, in the first week after fertilization, both pathways
(nitrification and denitrification) contributed to the
observed N2O emissions. In the following weeks, denitri-
fication is likely to have become the predominant process
contributing to N2O emissions owing to NH4

+ removal
(Figure 1e,f) and lowered oxygen partial pressure induced
by root O2 consumption (Klemedtsson et al., 1987).

Due to root activity, two opposing effects on denitrifi-
cation are likely to have occurred: (i) O2 consumption by
aerobic root activity (root respiration consuming O2)
(Kuzyakov & Razavi, 2019); and (ii) plant transpiration,
leading to drainage of coarse soil pores and thus
increased air-filled pore space, which will result in
increased oxygen availability. In our study, although
water content was adjusted every 1–2 days, soil with
grass had about 5% lower WFPS than bare soil prior to
irrigation. The loss of water was due to plant transpira-
tion. Therefore, lower soil moisture due to plant transpi-
ration may increase oxygen diffusion into the soil and

thereby suppress denitrification (Menéndez et al., 2012;
Volpi et al., 2017). Several previous studies reported that
the presence of plants would increase denitrification
(Guyonnet et al., 2017; Klemedtsson et al., 1987;
Mahmood et al., 1997). However, our study was not a
perfect proof of the opposite, but at least it provides evi-
dence that the earlier reported promotion of denitrifica-
tion does not always happen; at least, plants do not
always induce higher N2O emissions.

4.3 | Influence of the presence of plants
on soil microbial abundances

The population size and diversity of microbial communi-
ties have repeatedly been shown to increase in the pres-
ence of plants (Guyonnet et al., 2018; Haichar
et al., 2008; Li et al., 2018). In line with this, our results
showed that population densities of both soil bacteria
and fungi increased with the presence of ryegrass. Con-
sidering C-limited conditions in unplanted soil, we
assume that root-derived input of easily available C pro-
moted these microbial populations.

Plant root exudates are known to modulate both
microbial biomass and community composition (Benizri,
Nguyen, Piutti, Slezack-Deschaumes, & Philippot, 2007;
Henry et al., 2008; Langarica-Fuentes, Manrubia, Giles,
Mitchell, & Daniell, 2018; Zhalnina et al., 2018). How-
ever, a limited number of studies have explored how
plants influence genes involved in denitrification (Henry
et al., 2008; Pivato et al., 2017). We found that, with the
exception of nosZ clade II, all denitrification genes were
promoted in the presence of ryegrass, which may be due
to the root exudation of easily available C. Graf (2015)
proposed a greater affinity of nosZ clade I-carrying micro-
organisms to root exudates than for those carrying nosZ
clade II. Our findings agree with the suggestions of
Graf (2015): there was a trend showing that nosZ clade I
genes were greater in soil with grass, whereas nosZ clade
II showed no preference for bare versus planted soil.

4.4 | Relationship of reduced N2O
emissions and increased denitrifying gene
abundances in soil with grass

In our study, N2O emissions were reduced even though
denitrification genes increased under grass. Recovery of
N by crops is usually somewhat less than 50% (Fageria &
Baligar, 2005). In our study, the high N recovery rate of
ryegrass (�50% ARN) indicates that the incubation con-
ditions (60% WFPS, 25�C day temperature and 12�C
night temperature) were favourable for plant growth. The
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ARN agrees well with the emission factors of bare soil
and soil with ryegrass, which were 1.4%–1.8% and 0.5%–
0.8%, respectively. Our results indicate that for soil N2O
production, the availability of mineral N was a more
important factor than the population size of denitrifiers.
It should be mentioned that, due to the limitation of the
experimental design, soil samples and gas samples were
not taken from the same pots, and N2O emissions were
highly variable. Therefore, it was not possible to correlate
N2O emissions and NO3

− concentrations in this study.
In soil with grass at the 20 g N m−2 fertilizer level, soil

NO3
− concentrations were not depleted by plant uptake

and, concurrently, cumulative N2O emissions at this level
were more than twice as high as those at the 10 g N m−2

fertilizer level, suggesting that an N input that exceeds
the plant's needs can exponentially increase soil N2O
emissions. Previous field studies have shown congruent
results (Groenigen, Velthof, Oenema, Groenigen, &
Kessel, 2010; Philibert, Loyce, & Makowski, 2012;
Shcherbak et al., 2014). The much lower cumulative N2O
emission levels in soil with grass, as compared to bare
soil, at the 5 and 10 g N m−2 fertilizer levels, were most
likely to be due to plant uptake of soil mineral N.

It was recently suggested that soil NO3
− availability

affects denitrifying communities (Deiglmayr et al., 2006;
Saggar et al., 2013; Tang et al., 2016). However, our data
revealed no link between fertilizer level and denitrifica-
tion genes. The reason may be the limitation of available
C in both bare soil and planted soil. In planted soil, inten-
sive cutting may have limited C input from root exudates
into the soil. It should be noted, however, that this obser-
vation requires further study, because denitrifiers were
only quantified at the end of our experiment. Therefore,
potential changes in microbial communities during the
course of our experiment may have remained undetected.
Our study aimed to explore the potential of ryegrass to
reduce soil N2O emissions under laboratory conditions.
We considered the homogenization of the soil as impor-
tant for a comparable starting point for the development
of the soil microbial community. Our incubation study
used sieved soil, which altered the soil structure and is
likely to have affected the microbial community as com-
pared to the field conditions. The incubation temperature
used in the present study was higher than that expected
under field conditions, which may have caused greater
ammonia (NH3) volatilization (Bremner, 2007; Forrestal
et al., 2016) and higher nitrification and denitrification
rates (Bremner, 1997; Saggar et al., 2013). Furthermore,
NO3

− loss by leaching was absent in our study because
the incubation pots were not drained. These methodolog-
ical drawbacks may have led to an overestimation of soil
N2O emissions in our study as compared to field

conditions. Follow-up field studies should be carried out
to explore the full potential of ryegrass under field condi-
tions and in different soils.

5 | CONCLUSION

Our incubation experiment compared N2O emissions and
population sizes of denitrifying bacteria in soil planted
with ryegrass and in bare soil under different N fertilizer
levels. We found that 50% of fertilized N was recovered in
plant tissues and emissions of N2O were lower in soil
with grass than in bare soil, although the proliferation of
denitrifying bacteria in soil with grass was stimulated.
We infer that soil mineral N is more related to N2O emis-
sions than soil denitrifying genes. However, because of
the higher potential of denitrification in soil with grass,
the risk of high N2O emissions should also be noted,
especially when N fertilizer exceeds the requirements of
plants. Altogether, we conclude that ryegrass serving as a
cover crop holds the potential to mitigate soil N2O emis-
sions in soils with moderate or high NO3

− concentra-
tions. Future studies should focus on how different plant
species and their root exudates affect soil N2O emissions
and related soil microorganisms under field conditions
and in different soils.
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