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Direct-Push Color Logging Images Spatial Heterogeneity
of Organic Carbon in Floodplain Sediments
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!Center for Applied Geoscience, University of Tiibingen, Tiibingen, Germany, *Department of Monitoring and
Exploration Technologies, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany

Abstract In soils and sediments, large amounts of total organic carbon (TOC) mark reducing conditions.
As dark sediment colors are good predictors for high-TOC zones, they indicate hot spots of
biogeochemical turnover and microbial activity. Traditionally, obtaining the sediment color or TOC at depth
requires costly core sampling, resulting in poor horizontal resolution and related uncertainty caused

by interpolation. We suggest using a direct-push tool for optical screening of the sediment color to acquire
multiple high-resolution vertical color profiles and demonstrate its applicability to a biogeochemical
transition zone in floodplain sediments, dominated by tufa. We use Gaussian mixture models for a cluster
analysis of 35 color logs in the International Commission on Illumination (CIE) L*a*b* color space to
identify three colorfacies that differ in lithology and TOC content: a dark colorfacies that agrees well with
peat layers, a gray colorfacies associated with clay, and a creamy-brown facies made of autochthonous
carbonate precipitates. We test different approaches either to infer the TOC content from color

metrics, namely, the lightness and chroma, across all facies, or to identify TOC ranges for each colorfacies.
Given the high variability in TOC due to organic carbon specks in the tufa, the latter approach appears
more realistic. In our application we map the 3-D distribution of organic matter in a floodplain in distinct
facies over 20,000 m? down to 12 m depth. While we relate the sediment color only to the TOC content,
direct-push color logging may also be used for in situ mapping of other biogeochemically relevant properties,
such as the ferric-iron content or sedimentary structure.

Plain Language Summary Geologists can say a lot about soils and loose materials in the ground
by looking at their color. Dark materials normally contain dead plants, called organic carbon, which

are food for bacteria and cause chemical reactions. To get the color of the soil, geologists normally need soil
samples, but getting them from depth takes time and money. We test a method of pushing a camera

into the ground and recording the color therein. From the recorded color we can say which type of geological
material is at which depth and how much organic carbon is there without taking samples

everywhere. This can be done very quickly, so that we can do it over a large area and down to the depth of the
loose material in the ground, where most of the groundwater flows.

1. Introduction

Organic carbon is one of the most important electron donors in soils and sediments. Zones of high total
organic carbon (TOC) content are hot spots of denitrification, iron, manganese, sulfur reduction, and metha-
nogenesis (Bauer & Kappler, 2009; Korom, 1992; Rivett et al., 2008), with further implications on trace metal
cycling (Glodowska et al., 2020; Kalbitz & Wennrich, 1998; Lawson et al., 2016; McArthur et al., 2004). In
biogeochemical studies, the TOC content of soils and sediments may be predicted through its
well-established relationship to dark colors (Blume & Helsper, 1987; Konen et al., 2003; Steinhardt &
Franzmeier, 2008; Viscarra Rossel et al., 2006b; Wills et al., 2007). Sediment color in turn is one of the most
basic, yet highly informative parameters in geoscience. It is one of the first properties described in classical
field geology and sedimentology and used for soil classification in soil science. Color may indicate sediment
features (Dorador & Rodriguez-Tovar, 2016), climatic and seasonal cycles in limnology and marine geology
(Nederbragt & Thurow, 2001; Peterson et al., 2000; Zolitschka et al., 2015), soil fertility (Adamchuk
et al., 2004; Liles et al., 2013), redox conditions (Lyle, 1983), and other soil and sediment properties
(Gholizadeh et al., 2020; Hartemink & Minasny, 2014; Spielvogel et al., 2004; Viscarra Rossel et al., 2009;
Waiser et al., 2007). In this study, we record the in situ sediment color by direct-push color logging to
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demonstrate its suitability to detect and map deeper subsurface features with high TOC content (i.e., peat
layers) potentially relevant to biogeochemical cycling, microbial activity, and pollutant turnover processes.

TOC measurements are commonly done on samples, taken either with a manual soil sampler or from dril-
ling cores. While topsoil samples may be taken at high spatial resolution over large areas, gathering deeper
subsurface samples by drilling is time consuming, costly, and labor intense. In most cases, only a limited
number of cores, often at substantial distance to each other, can be taken. As a result, the continuity, con-
nectivity, and geometry of potentially relevant high-TOC features cannot be resolved. If the lateral extent
of the features is smaller than the distance between the cores, neither geostatistical analysis nor determinis-
tic interpolation to construct profiles of facies distributions or individual properties of the subsurface, such as
the TOC content, is possible.

A way to fill the gap between discrete sampling points and to obtain (semi)continuous information about the
subsurface is by geophysical surveying. Ground-penetrating radar (Comas et al., 2017; Corradini et al., 2020),
geoelectrical (Kettridge et al., 2008; Kowalczyk et al., 2017; Slater & Reeve, 2002), and electromagnetic sur-
veys (Silvestri et al., 2019) are not sensitive to TOC directly yet have been applied to map thicknesses and
layer contacts of peats and other geophysical facies with high TOC determined on core samples. However,
the detectability of thin deeper layers, as well as their internal heterogeneity and stratification, suffers from
strong signal attenuation at sites with a thick, conductive top layer and from rapid decrease in vertical reso-
lution with depth (Comas et al., 2015). Alternatively, relating well-logging parameters to TOC content allow
a depth-independent high vertical resolution of carbon content in petroleum geoscience (Passey et al., 1990;
Zhu et al., 2020). This, however, requires costly boreholes and downhole equipment and is hence highly
impractical for spatial mapping of TOC in near-surface formations. For the detection of peat layers, the
use of cone penetration tests (CPT) is also suggested, as CPT results in high friction ratios and very low
tip resistances (Boylan & Long, 2012; Lunne et al., 2002; Tumay et al., 2013). However, the relationship
between the mechanical soil properties and TOC content is not necessarily unique, can be site specific,
and may be confronted with sensitivity issues of the CPT probe in reliably acquiring the very low tip resis-
tances expected for peat layers (Boylan & Long, 2012). That is, densely spaced in situ color profiles may be
the best option for a quick and highly resolved indirect imaging of TOC content independent of depth.

A common approach of measuring color in soil science is by means of spectrophotometers or near-infrared/
visual (NIR-VIS) spectral probes (Adamchuk et al., 2004; Moritsuka et al., 2019; Viscarra Rossel et al., 2006a).
The color of the soil is measured on grab samples in the lab, on outcrops, or on samples under field condi-
tions (Doetterl et al., 2013; Heil et al., 2020; Morgan et al., 2009; Zhang & Hartemink, 2019b). Alternatively,
optical imaging tools have been developed to acquire in situ soil color on the ground surface (Rodionov
et al., 2015), in fresh trenches of up to 20 cm depth (Aliah Baharom et al., 2015; Knadel et al., 2015), or by
probes pushed down to 120 cm into the ground (Poggio et al., 2015; Veum et al., 2018; Zhang et al., 2017).
The traditional color classification with Munsell color charts is hereby known to be rather subjective,
because it depends on the eyesight of the researcher and the surrounding light conditions (Melville &
Atkinson, 1985). Therefore, in recent years most studies report sediment color measurements from spectro-
photometers, core scanners, and NIR-VIS probes in the L*a*b* color space of the International Commission
on Ilumination (CIE) (Melville & Atkinson, 1985; Viscarra Rossel et al., 2006b). This color space can be
visualized in 3-D Cartesian coordinates with L* as the lightness axis ranging from 0 (black) to 100 (white),
the a* axis ranging from green (negative) to red (positive), and the b* axis ranging from blue (negative) to
yellow (positive) (CIE, 1978). The corresponding cylindrical system of coordinates expresses the a*b* values
as chroma C*, representing the color saturation and the hue angle h°.

Relationships of sediment color in the CIE L*a*b* color space have been reported for iron content (Barron &
Torrent, 1986; Heil et al., 2020), mineral composition (Barron & Torrent, 1986; Scheinost &
Schwertmann, 1999; Torrent et al., 1983), and TOC content (Aitkenhead et al., 2013; Viscarra Rossel
et al., 2006b). Most recently, cluster analyses of spectrophotometer measurements and even digital images
of a soil profile wall allowed delineating soil horizons and parameter zonation solely based on color
(Zhang & Hartemink, 2019a, 2019b). Promising as they are, these relationships are limited to color measure-
ments on available outcrops, grab and core samples, as well as to the shallow depths which can be reached by
the in situ probes. The ex situ approaches additionally bare color alterations during the coring, sampling, and
sample-processing procedures. Many studies reported an alteration of the sample color due to changes in
moisture content, mineral precipitations, or oxidation (Morgan et al., 2009; Wijewardane et al., 2020).
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We see a need of in situ subsurface characterization by color at greater depth than possible by the usual grab
samples and in situ probes and with higher spatial resolution than by few costly drilling cores. These require-
ments are met by direct-push in situ color logging, in which a rod with an outward oriented sapphire glass
window is continuously advanced into the ground by standard direct-push machines. A sensor in the probe
or in a surface processing unit records a defined wavelength or the entire visual spectrum of light reflected
from the sediments upon illumination by a white light or a laser (Ackerson et al., 2017; Bujewski &
Rutherford, 1997; Einarson et al., 2018; Hausmann et al., 2016; Kram et al., 2001; McCall et al., 2018).
Sounding locations can be spaced in the low decimeter range for high horizontal resolution and executed
along transects or grids with more than 100 m of probing per day (Einarson et al., 2018; Hausmann
etal., 2016; McCall et al., 2018). Dalan et al. (2011), Hausmann et al. (2018), and Rabiger-Vollmer et al. (2020)
used multiple vertical color logs along profiles to detect and map the geometry of archeological features
based on spatial and vertical color contrasts. Similar probes have been used to detect and map contaminants
and dye tracers in the subsurface (Einarson et al., 2018; Kram et al., 2001; McCall et al., 2018; Reischer
et al., 2020). The vertical resolution is in the centimeter range. In contrast to drilling methods, direct-push
color logging does neither suffer from alterations of the sediment color upon sampling nor from false depth
allocations due to incomplete core recovery or core compaction/expansion. Direct-push color logging there-
fore appears a promising approach to image the spatial distribution of sediment color over several meters
depth at a depth-independent resolution so far unmet by any other geophysical method.

In this study we use direct-push color logging to characterize the spatial color distribution of floodplain sedi-
ments over 165 m X 130 m X 12 m yet with a high vertical and spatial resolution. The sedimentary record
consists of lithofacies in three distinct colors (gray, brown, and dark). We target the distribution of dark
colored high-TOC features identified as peat lenses which are potentially relevant to the floodplain hydro-
geochemistry. Hence, we perform a cluster analysis of the obtained L*a*b* values from 35 color logs by a
Gaussian mixture model resulting in three colorfacies and construct profiles of the facies distribution.
Finally, we determine a site-specific relationship between the sediment color and the sediment TOC content
and assign ranges of TOC to the individual colorfacies.

2. Methods
2.1. Site Setting

We performed the direct-push color logging fieldwork in unconsolidated Quaternary floodplain sediments in
the Ammer valley near Tiibingen, Germany. Previous floodplain-wide distributed sediment coring indicated
a sedimentary succession typical for European Pleistocene to Holocene floodplains (Dabkowski, 2020; Fuchs
et al., 2011; Lespez et al., 2008; Newell et al., 2015; Z4k et al., 2002): up to 10 m thick clay-rich gravels at the
bottom, overlain by a 1-3 m thick silty clay, up to 8 m thick calcareous tufa sediments with abundant vegeta-
tion and organic-rich layers and an upper 2 m of silty clay alluvial cover (Martin et al., 2020). In many of these
cores we found up to 1 m thick peat layers at different depths within the tufa sequence. Tufa sediments gen-
erally indicate a spatially very variable swampy depositional environment with ponding waters and patchy
vegetation in warm climate (Dabkowski, 2020; Pedley, 1990). Therefore, we expected a high spatial variability
of peat lenses with high organic carbon content. In the Ammer valley floodplain, the tufa sediments function
as a confined regional aquifer with strong reducing conditions in the floodplain center (Martin et al., 2020).
Along the fringes, however, oxic water infiltrates from the surrounding hillslopes and causes a hydrogeo-
chemical transition zone along the floodplain boundary. As a result, we measured dissolved oxygen in mon-
itoring wells at the hillslope and floodplain perimeter yet no dissolved oxygen, low redox potential, and
elevated bisulfide concentrations in monitoring wells approximately 50 m toward the floodplain center.
The width of this transition zone along the floodplain fringe may hereby be strongly influenced by the pre-
sence and extent of TOC-rich peat layers and their electron donor capacity for microbial activity and solute
turnover processes.

2.2. Field and Lab Methods

We conducted the in situ measurements and core drillings with a Geoprobe 6610DT direct-push rig (Kejr,
Inc., USA) at 35 locations within a 165 m X 130 m area at the boundary of the floodplain. For in situ color
measurements to a depth of approximately 12 m, we used the soil color optical screening tool—SCOST
(Dakota Technologies Inc., USA) as direct-push color logging probe (Dalan et al., 2011). This tool records
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the visible light reflected from the sediments in XYZ color space with reference to the D65 white point of the
CIE 1964 10° supplementary Standard Observer (Hausmann et al., 2016). We set the color acquisition fre-
quency to two measurements per second; hence, the vertical resolution of the measurement depends on
the rate of advancement. The median of the vertical resolution was 1.12 cm. Prior to each probing, we cali-
brated the color logging tool with acrylic color in mars black and titanium white (Liquitex, Basics Acrylic)
with L* = 26.6 and L* = 99.67, respectively. For additional information on the tool, software, and internal
signal processing, we refer to Dalan et al. (2011) and Hausmann et al. (2016). For method comparison, we
also recorded vertical profiles of electrical conductivity and natural gamma radiation at one of the color log-
ging locations. At this location (X112), we also retrieved a sediment core to compare the in situ colors to lab
measurements and later took samples for TOC analysis. In the lab, we split off the upper third of the core
lengthwise to create a fresh surface and avoid contamination from smearing effects along the inside of the
plastic liner. We then covered the core with transparent plastic wrap and measured the sediment color with
a Pausch color 5d handheld spectrophotometer (Pausch Messtechnik GmbH, Germany) three times per 1 cm
depth interval to account for horizontal color variability. After these color measurements, we took 52 sam-
ples for subsequent TOC analysis. Again, the outer 1 cm of each sample was cut off to avoid cross
contamination. These 52 and additional 47 sediment samples from nearby cores were dried and milled for
homogenization. We then determined the TOC content of each sample by adding the TOC400 and ROC
results from Elementar SoilTOC cube (Elementar Analysesysteme GmbH, Germany) three-staged loss on
ignition measurements.

2.3. Data Processing

We translated the XYZ color data into the CIE L*a*b* color space. Subsequently, we fitted a Gaussian mix-
ture model with three components to the merged set of CIE L*a*b* data of all in situ profiles using the func-
tion fitgmdist of the statistics and machine learning toolbox of Matlab (McLachlan & Peel, 2004). A Gaussian
mixture model approximates the density of data points by the superposition of several multi-Gaussian dis-
tributions, each representing a cluster. In comparison to classical k-means clustering, Gaussian mixture
models allow identifying clusters of points with different compactness and orientation in the parameter
space. We give a more thorough explanation on the cluster analysis with Gaussian mixture models in Text
S1in the supporting information. The optimal number of clusters may be determined by application of infor-
mation criteria (see Figure S2 in the supporting information). In our application, however, we chose the
number of color clusters based on the best agreement with the lithological sequence reported for the
Ammer valley sediments (Martin et al., 2020), resulting in three consistent clusters that can be related to
a clay, peat, and autochthonous carbonate facies. That is, we dismissed a purely color-based distinction of
more clusters that may have been justifiable by information criteria but did neither reflect comprehensible
lithological differences nor improved the prediction of TOC content from the color classification. By fitting
the Gaussian mixture model to the data, we assigned a membership probability for each of the three clusters,
representing colorfacies, to each data point of each profile. For each data point we determined its most prob-
able cluster membership and also evaluated the uncertainty of its assignment based on the membership
probabilities for alternative clusters.

After cleaning the colorfacies profiles for outliers, we interpolated the contacts of the dominant colorfacies
between the color log locations to visualize the three-dimensional colorfacies distribution along vertical
cross sections. Finally, we fitted parametric functions to data from 99 sediment samples to predict their
TOC content either from sediment lightness or a combination of lightness and chroma. Additionally, we
separated the ranges of TOC content for each colorfacies and compared these to TOC ranges of lithofacies
identified on the core.

3. Results and Discussion

Figure 1 shows a comparison of direct-push color measurements to other direct-push and downhole
geophysical measurements, lithological descriptions, and handheld-spectrophotometer measurements on
a drilling core. We performed the core drilling and reference geophysical measurements within 50 cm dis-
tance from the direct-push color log. We resampled all measurements to a vertical resolution of 1 cm by
nearest-neighbor interpolation since the spectrophotometer measurements were performed in 1 cm inter-
vals. We could distinguish the main lithofacies in a sedimentological core description as expected from
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Figure 1. Example profiles of a floodplain sediment based on direct-push logging and sampling at location X112. From left to right: (a) lithology, (b) electric
conductivity, (c) natural gamma ray emission, (d) probability of colorfacies membership by clustering using a Gaussian mixture model, (e) full color,

(f-h) CIE L*a*b* channels (red: lab-based measurement on sediment core; blue: direct-push in situ measurement), (i) CIE chroma C*, (j) total organic carbon
content in samples (black bars) and ranges predicted by the colorfacies.

preceding drillings (clayey gravel, lower clay, tufa, and upper silty clay) and determined two subfacies of the
tufa, as well as three individual peat layers of 17, 40, and 22 cm thickness (Figure 1a).

The gray matrix-supported gravel at the bottom of the core contains mudstone clasts of up to 3 cm in an
otherwise clayey matrix and upward grades into the lower gray clay similar to the gravel matrix. A subse-
quent upward gradation in color and texture forms the lithologic contact between gray silty clay at the
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bottom and dark peaty silt on top at 7.43-7.2 m depth. This dark layer is the base of a 5.4 m thick calcareous
tufa section with two subfacies: brown tufa with sand-sized grains, white tufa with gravel-sized grains, and
peat. The brown tufa section contains an abundance of vegetation remnants between 7.2 and 2.92 m with
two very dark peat layers at 4.0-4.25 and 5.36-5.88 m depth and a brown peat layer at 4.76-4.89 m. It is domi-
nated by coarse sand to gravel-sized hollow cylinders of carbonates in a silty matrix. The upper section, the
white gravely tufa (2.92-1.73 m), is composed of well-sorted cream to white calcareous tufa gravels with
almost no vegetation remnants. Above, the upper clay shows a gray colored lower third between 1.73 and
1.2 m depth and a brownish upper section with roots and rare brick fragments in the uppermost 50 cm.
The electric conductivity profile (Figure 1b) shows higher values in the upper 2 m, as well as at around
6 m depth, but shows otherwise no clear pattern. The natural gamma radiation measurements of six logging
runs were averaged and reflect the abundance of radioactive “°K with higher counts in the upper and lower
clay and almost no signal within the tufa section (Figure 1c).

The in situ color measurement is presented in visual color as it would appear to an observer in Figure 1e and
shows three main parts: a grayish-reddish upper section (0-2.9 m), a light to dark brown midsection
(2.9-7.2 m), and a gray bottom section (7.2-9.6 m). The transition at 2.9 m is sharp, whereas the transition
at 7.2 m depth appears downward gradational from brown to gray. Hence, both transitions match the
described color changes of the core. Darker zones in the midsection are visible with relatively strong color
contrast to the surrounding colors, whereas the lower clay and mudstone gravel are not distinguishable in
the color log and hence are referred to as the lower gray section. The individual components of the CIE
L*a*b* color space (blue lines in Figures 1f-1i) show more detail of the in situ color log. The sediment light-
ness L* ranges between 26 and 60 with low a* and b* values in the gray sections and higher values in the
brown section. The tufa lithology generally matches highest lightness and chroma values with strong vertical
heterogeneity. Three box-shaped patterns are well distinguishable from 3.92-4.12, 5.2-5.85, and 6.96-7.15 m
depth and internally consistent in low lightness (shaded zones in Figure 1f).

We compare these in situ color measurements with spectrophotometer measurements on the core (red lines)
that show gaps where lost core hindered a continuous measurement. The general trend in sediment color
matches well between in situ and ex situ measurements with comparably higher lightness and color satura-
tion (chroma) measured under in situ conditions. However, the depth allocation and thickness of specific
sections mismatches, that is, the dark section at ~5.5 m depth appears 15 cm higher and thicker in the in situ
log than in the core and spectrophotometer log. Overall, these dark sections at 4, 5.5, and 7 m depth are
located up to 20 cm higher and are up to 40% thicker in the in situ color log compared to the spectrophot-
ometer measurements on the core. Finally, the 52 TOC samples from the core show relatively low values
in the clay-rich upper and lower lithofacies, a fairly heterogeneous TOC distribution in the tufa section,
and very high values in the peat layers (Figure 1j). Neither of the geophysical profiles correlates with the peat
layers described on the core. Hence, the results presented in Figure 1 demonstrate the advantage of a con-
tinuous in situ color log of the subsurface to determine internal heterogeneity and depth allocations with
high resolution where common in situ geophysical methods (i.e., electric conductivity and natural gamma
ray logs) are not sensitive to targeted sedimentary changes. The comparison of the in situ direct-push color
measurements to spectrophotometer measurements on the core validates the assumption that the probe was
not affected by smearing effects, since color changes are sharp and located at higher positions in the
direct-push color log. The peat layers were very soft and fully water saturated. Therefore, we interpret the
offset in depth allocation and the decreased peat thickness in the core as a result of sediment compaction
during the coring process. In addition, the lower lightness and chroma values on the core are probably
due to the exposure of the previously fully saturated sediments to air in the lab and resulting changes in
moisture content and chemical alterations. This is in accordance with studies showing a decrease in
lightness within the first hours of drying for various saturated sediments (Lobell & Asner, 2002;
Persson, 2005). Direct-push color logging hence minimizes common challenges in subsurface characteriza-
tion from cores such as erroneous depth allocation due to compaction and poor core recovery, as well as sedi-
ment color alterations.

3.1. Spatial Mapping of Colorfacies

A highly resolved color log visualizes the vertical sediment heterogeneity yet makes it challenging to identify
any other than the main lithological boundaries. In order to describe the 3-D subsurface architecture from all
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Figure 2. Cluster analysis of color profiles in CIE L*a*b* color space using a Gaussian mixture model. (a) All 35 original and (b) the resulting clustered color
profiles. (c-e) Cluster bounding surface in CIE L*a*b* color space and all 36,903 individual measurements associated to the (c) gray, (d) brown, or (e) dark
cluster. The colors in (b) differ from the mean L*a*b* values of the clusters, the scatter point shading in (c-e) shows the true measured sediment colors.

35 in situ color profiles, we focus on the main color contrasts and therefore assign all data points to either a
gray, brown, or dark colorfacies by cluster analysis using a Gaussian mixture model applied to the color data
in the CIE L*a*b* color space. We present a comparison of original and clustered color logs in Figures 2a and
2b and visualize the individual measurements per cluster in Figures 2c-2e. The supporting information
includes the coefficients of each cluster obtained by the iterative Expectation-Maximization method
(McLachlan & Peel, 2004) and the probabilities of each measurement point to belong to the individual
clusters.

We identified a dark cluster of lower lightness, a gray cluster of a wide range of lightness but low chroma,
and a brown cluster of a similar range of lightness yet higher chroma. In total, a fraction of 5.9% of the color
measurements were classified as dark, 52.7% as brown, and 41.4% as gray colorfacies. A thick dark layer in
6 m depth and thinner dark layers at ~4 and ~8 m depth were resolved in almost all logging locations. The
brown colorfacies is dominant between 2.5 and 9 m depth and bound by gray colorfacies on top and below.
At first glance, the upper and lower clay-rich lithologies correlate to the gray colorfacies and are differen-
tiated from both the tufa (brown) and peat (dark) sections. The upper gray section, however, also shows scat-
tered brown patches in several color logs (Figure 2b).
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Figure 3. (a) Interpolated colorfacies boundaries between all 35 color logs. (b) Probability cross section along the red transect to visualize the uncertainty in

cluster assignment within each log.

A more detailed comparison of the lithofacies and colorfacies in Figures 1a and 1d, respectively, shows that
the upper, white to cream colored section of the tufa is clustered into the gray colorfacies down to the strong
increase in chroma at 2.92 m depth. The color clustering obviously struggles with sediment colors plotting
near the bounding surfaces of the colorfacies in Figures 2c-2e. The brown peat layer, for example, was clus-
tered into the brown colorfacies since color logging is blind to sedimentary composition. The advantage of a
cluster analysis with a Gaussian mixture model is the determined probability of each data point to belong to
either of the individual clusters. Therefore, in contrast to assigning each data point to a unique colorfacies as
in Figure 2b, we visualize the cummulative membership probabilities of the individual clusters in Figures 1d
and 3b. This shows that most measurements were assigned a unique colorfacies with certainty (probability
~1) resulting in mostly sharp contacts between the different colorfacies. Especially the upper gray colorfacies,
however, additionally shows sections of nonunique cluster affiliations (0< probability <«1) where color mea-
surements could be assigned to more than one of the three clusters depending on the individual membership
probability. Measurements with an equal membership probability for two clusters plot on the bounding sur-
face between the clusters visualized in Figures 2c-2e and show both colors at the same depth in Figures 1d
and 3b. Significant membership probabilities for more than one colorfacies were assigned in the uppermost
soil zone, as well as within the cream colored tufa. Such uncertain colorfacies memberships cause the patchy
patterns in the upper 3 m of Figure 2b and need a careful interpretation with respect to their site-specific
relevance.

To visualize the 3-D colorfacies distribution between all 35 color logs, we interpolated the spatial distribution
of the main colorfacies over a 165 m X 130 m area in Figure 3a. We performed the direct-push color logs with
larger spacings of 10-20 m along two main transects and refined the spacing close to their intersection down
to 1.25 m between logging locations. The brown, tufa-related colorfacies is generally ~6 m thick and thins
out toward the south. The main target of color logging was the dark peat feature at ~6 m depth, which con-
tinued over at least 135 m in the west-east direction and more than 100 m in the south-north direction. Along
the diagonal and densely spaced transect, the main colorfacies contacts show similar depth allocations,
while the thinner dark layers in 4 and 8 m depth do not fully extent over the entire transect (Figure 3b).
As a result, we acquired a well-resolved image of the subsurface colorfacies distribution by direct-push color
logging and could adaptively refine logging spacings to resolve the spatial extent of individual colorfacies.
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Figure 4. Relationship between sediment TOC content and spectrophotometer. (a) Lightness and chroma. (b) Lightness only, both for all data, as well as for gray
and nongray colorfacies separately. (c) Median TOC value and ranges per colorfacies from the cluster analysis (CF) are comparable to those for lithofacies

described on the core (LF).

3.2. TOC Estimation Using Sediment Colors

The potential of geochemically relevant features to function as hot spots for biogeochemical turnover and
microbial activity depends on their spatial extent and TOC content. We thus analyzed a possible dependence
of TOC content on sediment color. We established site-specific relationships between TOC content and spec-
trophotometer measurements from 52 samples from core location X112 and 47 additional samples from
nearby core locations deriving different parametric functions. The TOC content of all samples ranged
between ~50% in darker and 0.9% in lighter sediments.

After plotting the TOC content of each sample (TOC) as function of the spectrophotometer lightness L and
chroma C (see Figure 4a), we fitted the following parametric surface to the data:

n

TOC(L =T l1——— 1
OC(L, C) OCmax( Lg‘o—l—L") +sxC, @

in which the maximum TOC content TOC,,,. at zero chroma, half-lightness Ls,, the exponent n, and the
coefficient s relating the chroma to the TOC content were the fitting parameters. There is no physical rea-
soning for the specific parameterization of Equation 1 beyond expressing a negative, nonlinear influence
of the lightness and a positive influence of the chroma on the estimated TOC content. The parametric fit is
visualized by the gray surface in Figure 4a and describes the data with a root-mean-square error (RMSE) of
6.5% TOC. However, we achieved a similarly small RMSE value of 6.7% TOC by fitting the simpler depen-
dency of TOC on the spectrophotometer lightness L only (Figure 4b, black dashed line) using the model:

Ln
TOC(L) = TOC 11— — 2
(1) = T0Cus (1= 355 5 ) @

implying only a weak relationship between chroma and TOC content. In addition we also followed the
suggestion of Liles et al. (2013) and tested independent parametric functions for preclustered samples.
As the samples of the dark cluster did not show any clear dependence of the TOC content on either the
lightness or the chroma, we merged it with the brown cluster, distinguishing now between gray and non-
gray samples. We fitted Equation 2 to the data points characterized as nongray (brown line in Figure 4b),
and an exponential function to the data points belongs to the gray colorfacies (gray line in Figure 4b):
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TOC(L) = TOCpax X €Xp (—%) , 3)

yet could not significantly improve the RMSE (6.5% TOC). Optimal values for the fitting parameters
TOC jaxon,Lsg, and s, as well as the correlation matrices and RMSE for each model, are given in the sup-
porting information.

Instead of directly translating the color measurements into sediment TOC content, we rather acknowledge
the uncertainty described by the RMSE and assign ranges of TOC content to each colorfacies. We present
these ranges for all three main lithofacies (LF) described on the sediment core (Figure 1a), as well as the
three colorfacies (CF) derived from the cluster analysis (Figure 1d) in Figure 4c. Median values and ranges
of TOC content within facies, as well as the difference to other facies, are comparable between a
lithology-based and a color-based classification. The few outliers mismatching in assigned colorfacies and
lithofacies are indicated by the outer and inner marker colors in Figure 4b, respectively. Note that the med-
ians and ranges of the box plots are also assigned to the full depth profile in Figure 1j.

The overall relationship between sediment color and TOC content described by the individual para-
metric functions is in accordance with the well-established relationship of higher TOC content in darker
colored sediments and soils (Blume & Helsper, 1987; Gholizadeh et al., 2020; Konen et al., 2003; Liles
et al., 2013). The reported fitting parameters for the chosen parametric functions, however, are very site
specific and sample specific. The color measurements hence allow a generally applicable qualitative clas-
sification of zones with relatively higher and lower TOC content by darker and lighter sediment colors,
respectively. Independent of the parametric model, however, the uncertainty in TOC prediction (RMSE
of >6% TOC) is significantly high for lighter samples with <10% TOC. Especially internally heteroge-
neous samples with a dark surface on mainly light colored sediment and vice versa introduce errors
since the color is only measured directly on the sample surface. Hence, centimeter-scale color changes
from roots or vegetation remnants might be overinterpreted as spatially extensive variability of color
and TOC content in the subsurface. Additionally, a direct translation from in situ colors to spectrophot-
ometer measurements to predict TOC content may introduce errors due to previously discussed color
alterations of the ex situ samples. We therefore rather assign ranges of TOC content to the previously
identified colorfacies which proved to be comparable to ranges of TOC content for the described litho-
facies. This allows a sound assessment of the potential relevance of individual spatially extensive color-
facies to microbial activity and pollutant turnover processes based on their median TOC content. In
contrast to a lithology-based site characterization from drilling cores, the direct-push color logging
method is quicker, less invasive, and more accurate in layer thickness and depth especially for the tar-
geted soft and TOC-rich peats.

4. Conclusions

Measuring in situ sediment color to depths of 12 m at densely spaced direct-push logging locations pro-
vides a so far unmet image of the subsurface structure and heterogeneity. We classified site-specific color-
facies and mapped their extent and contacts at a depth-independent centimeter-scale resolution over
160 X 135 m. The cluster analysis by Gaussian mixture models led to individual colorfacies agreeing well
with independently determined lithofacies. The in situ color logging is less invasive and much faster than a
site characterization based on few costly drillings and even more accurate when assessing thickness and
depth allocation of targeted color zones. In addition, the color logging results may serve as basis for a
subsequent excavation or coring campaign with precisely targeted sampling. For biogeochemical applica-
tions, the site-specific relationships between TOC content and sediment color from few cores allow a direct
mapping of the TOC distribution in the subsurface. Considering the uncertainty in predicting TOC content
for lighter samples, however, we recommend using ranges of TOC content for each colorfacies instead.
These ranges proved to be comparable to those of the associated lithofacies described from a drilling core.
Among the geophysical logs applied in this study, only color logging was indicative of the TOC content.
Considering literature reports on using CPT to identify peat layers (Boylan & Long, 2012; Tumay
et al., 2013) leads to the suggestion of comparing or combining CPT and color logs as proxy for the TOC
content in future work.
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