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Abstract The characterization of uncertainties in geophysical quantities is an important task with
widespread applications for time series prediction, numerical modeling, and data assimilation. In this
context, machine learning is a powerful tool for estimating complex patterns and their evolution through
time. Here, we utilize a supervised machine learning approach to dynamically predict the spatiotemporal
uncertainty of near-surface wind velocities over the ocean. A recurrent neural network (RNN) is trained
with reanalyzed 10 m wind velocities and corresponding precalculated uncertainty estimates during the
2012–2016 time period. Afterward, the neural network's performance is examined by analyzing its
prediction for the subsequent year 2017. Our experiments show that a recurrent neural network can
capture the globally prevalent wind regimes without prior knowledge about underlying physics and learn
to derive wind velocity uncertainty estimates that are only based on wind velocity trajectories. At single
training locations, the RNN-based wind uncertainties closely match with the true reference values, and the
corresponding intra-annual variations are reproduced with high accuracy. Moreover, the neural network
can predict global lateral distribution of uncertainties with small mismatch values after being trained only
at a few isolated locations in different dynamic regimes. The presented approach can be combined with
numerical models for a cost-efficient generation of ensemble simulations or with ensemble-based data
assimilation to sample and predict dynamically consistent error covariance information of atmospheric
boundary forcings.

Plain Language Summary Machine learning is increasingly used for a wide range of
applications in geosciences. In this study, we use an artificial neural network in the context of time series
prediction. In particular, the goal is to use a neural network for learning spatial and temporal uncertainties
that are associated with globally estimated wind velocities. Three well-known wind velocity products
are used for the time period 2012–2016 in different training, validation, and prediction scenarios. Our
experiments show that a neural network can learn the prevailing global wind regimes and associate
these with corresponding uncertainty estimates. Such a trained neural network can be used for different
applications, for example, a cost-efficient generation of ensemble simulations or for improving traditional
data assimilation schemes.

1. Introduction
The combination of Earth sciences and machine learning is a rapidly growing research area, focusing on
novel applications in geosciences (Lary et al., 2016), meteorology and oceanography (Hsieh & Tang, 1998),
and climate sciences (Monteleoni et al., 2013). Artificial neural networks (Rosenblatt, 1958) build one branch
of machine learning methods, which can be trained and utilized for various purposes, for example, time
series prediction, pattern recognition, numerical model emulation, or data assimilation and inversion. In
many ways, machine learning has already become a powerful instrument that can augment traditional
statistical and numerical approaches for analyzing and interpreting the plethora of available geoscientific
data (see also Reichstein et al., 2019). In the research context of our study, neural networks were success-
fully used to estimate and recover subgrid processes of oceanic, atmospheric, and climate states (Bolton &
Zanna, 2019; Brenowitz & Bretherton, 2018; Rasp et al., 2018). Further, neural networks were trained to
emulate parametrizations that are applied to climate models (e.g., O'Gorman & Dwyer, 2018). Cintra and
Velho (2014) and Cintra et al. (2015) exchanged a data assimilation scheme of an atmospheric general cir-
culation model with a neural network to perform the analysis step, and Wahle et al. (2015) performed a
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neural network-based data assimilation in a numerical model of ocean waves. Irrgang et al. (2019) utilized an
artificial neural network as a nonlinear inversion scheme to recover global ocean heat content estimates
from spaceborne tidal magnetic signals.

The machine learning approach of our study is nested between the topics of time series prediction and recov-
ery of subgrid processes (downscaling). The overall goal is to set up an artificial neural network that is able to
estimate and predict spatiotemporal uncertainties of near-surface wind velocities over the open ocean. As a
data basis we use currently available state-of-the-art atmospheric reanalysis products. These products result
from data assimilation systems, combining numerical models with corresponding measurements from var-
ious Earth observation systems (e.g., Hersbach et al., 2018). In all applications of reanalyses products, for
example, sensitivity and intercomparison studies, hindcasts and forecasts of geophysical variables, or the
usage as boundary forcing for numerical models, the estimation of respective uncertainties is an essential
component and subject to broad research activity (e.g., Chaudhuri et al., 2016; Decker et al., 2012; Jakobson
et al., 2012; Kim & Alexander, 2013; Schneider & Fogt, 2018). Here, we focus on reanalyzed near-surface
wind velocities as they are readily used in the form of wind stresses as boundary forcing for ocean general
circulation models (e.g., Thomas et al., 2001) and were found to contain nonnegligible mismatches that can
be projected onto the ocean model state (Chaudhuri et al., 2013). Further, knowing and correcting forcing
uncertainties often is a crucial component in successful ocean data assimilation systems (e.g., Irrgang et al.,
2017; Saynisch et al., 2014).

The goal of our study includes two premises: (1) The neural network should be able to estimate uncertain-
ties in space and time just from a temporal sequence of wind velocities during a time period of interest.
(2) The neural network should be able to generalize beyond its training data and, for instance, provide accu-
rate uncertainty estimates in regions that are excluded from the training process. In combination, a trained
neural network that fulfills these requirements can be a valuable stand-alone tool for predicting uncertainty
characteristics of wind velocity products (or other variables of interest). Moreover, such a tool could be com-
bined with numerical models or data assimilation systems, to enhance their individual capabilities or to
reduce computational demand. For instance, utilizing an adaptive online uncertainty estimation would be
a major advance for ocean assimilation systems, where forcing uncertainty estimates and error covariances
often are assumed static during the time period of interest. In the following, we will demonstrate how an arti-
ficial neural network can be set up to achieve these goals and show its performance in a series of consistent
experiments. In section 2, we describe the used wind velocity reanalyses and the estimation of associated
uncertainties. Further, we outline the machine learning methodology and the neural network training rou-
tine. The results of all performed experiments are presented and discussed in section 3. Lastly, a summary
of this study's findings and final conclusions are given in section 4.

2. Materials and Methods
2.1. Atmospheric Wind Reanalyses: Data and Uncertainty
For this study, three atmospheric reanalyses are used: ERA5 ((C3S), 2017; Hersbach et al., 2018) from the
European Centre for Medium-Range Weather Forecasts (ECMWF), CFSv2 (Saha et al., 2014) from the
National Centers for Environmental Prediction (NCEP), and JRA-55 (Kobayashi et al., 2015) from the Japan
Meteorological Agency (JMA). From these three data products (hereafter denoted ERA, CFS, and JRA),
zonal and meridional 10 m wind velocities are selected for the 6-year time period from 2012 to 2017. The
wind velocity data are bilinearly interpolated to a common 1◦ × 1◦ grid and selected at 6-hourly (0, 6, 12,
and 18 hr) time steps for the purpose of unification and computational demand (see section 2.2). In the
following, we will focus on the zonal component u of the wind velocity over the ocean as the quantity of
interest, but we will see that the study design and the results can be directly transferred to the meridional
component v.

We utilize a commonly chosen multimodel ensemble approach (e.g., Irrgang et al., 2016; Saynisch et al.,
2017) to approximate and quantify the range of uncertainty of the used wind velocities. Ensembles utilize
the assumption that a multiple representation of a geophysical quantity serves as a more robust quantifi-
cation of that variable compared to one individual representation alone. Additionally, we assume that all
three reanalysis products are equally valid representations of actual wind velocities over the ocean. In this
sense, the ensemble spread, taken as the cross-ensemble variation, provides a measure for the uncertainty.
Here, we estimate the wind velocity uncertainty from the standard deviation 𝜎 of the (ERA, CFS, JRA)
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Figure 1. Seasonally averaged uncertainty 𝜀u, that is, cross-ensemble (ERA, CFS, JRA) standard deviation, of the zonal 10 m wind component during the
validation year 2017. The four maps show seasonal uncertainty estimates for January–March (upper left), April–June (upper right), July–September
(lower left), and October–December (lower right) of 2017.

ensemble, which varies in both space and time. For a given location (𝜑, 𝜗) over the ocean and for a time
point t0, we calculate the uncertainty 𝜀u for the zonal wind component as

𝜀u
(
𝜑, 𝜗, t0

)
= 𝜎

(
uERA(𝜑, 𝜗, t0), uCFS(𝜑, 𝜗, t0),uJRA(𝜑, 𝜗, t0)

)
. (1)

The seasonally averaged spatial distribution of 𝜀u for the Year 2017 is shown in Figure 1. These values will
serve as targets that we aim to predict with an artificial neural network that is trained with wind velocity
data from the five previous years 2012 to 2016 (see section 2.2).

To quantify the investigation of the machine learning performance by means of different training situations
(see section 2.2), we derived an a priori estimation of the wind uncertainties in 2017 without machine learn-
ing, which will serve as a baseline for the evaluation of the machine learning performance. We follow the
same approach that the true uncertainty of the Validation and Prediction Year 2017 is unknown and needs
to be estimated based on the previous and known wind velocity records from the training time period. This
canonical estimation approach is often used in data assimilation studies, where model error covariance
matrices are calculated from temporal variances of the respective state variables during representative time
periods (see, e.g., Evensen, 1994; Irrgang et al., 2017; Saynisch & Thomas, 2012). Thus, the a priori uncer-
tainty estimates are calculated as climatological mean values over the entire training time period from 2012
to 2016. The resulting relative mismatch to the true uncertainties of 2017 (Figure 1) is shown in Figure 2.
Positive and negative deviations are visible over the entire ocean area and indicate the inability of the mul-
tiyear averages to reproduce the actual seasonal variations of the wind velocity uncertainties in 2017. In
particular, a distinctive underestimation of the 2017 uncertainty range is visible in widespread regions with
mismatch values of more than 20% (see also Figure A4 in Appendix A). This a priori uncertainty mismatch
will serve as a reference to examine whether the proposed machine learning approach can outperform the
widely used uncertainty estimation based on climatological averages over the time period of interest. Note
that quantitatively similar mismatch values occur (although more balanced between positive and negative
values) if just a single training year is used to derive a priori wind velocity uncertainties (not shown).
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Figure 2. Relative mismatch between an a priori uncertainty estimation of the zonal 10 m wind component in 2017 and the true uncertainty estimates as in
Figure 1. The a priori uncertainty values are derived from the 2012–2016 climatological cross-ensemble standard deviation. Negative (blue) values indicate
underestimation; positive (red) values indicate overestimation. The four maps show seasonal mismatch values for January–March (upper left), April–June
(upper right), July–September (lower left), and October–December (lower right) of 2017.

2.2. Machine Learning: Setup, Training, and Prediction
The machine learning architecture used in this study is realized with the open source framework Tensorflow
(Abadi et al., 2016) and the superimposed deep learning library Keras (Chollet, 2015). Using this framework,
we set up a recurrent neural network (RNN; e.g., Rumelhart et al., 1986). Like simple feed-forward neural
networks (Rosenblatt, 1958), RNNs have the ability to emulate an unknown, and possibly strongly non-
linear, functional mapping between input and output values. In addition, RNNs can perform conditional
predictions based on temporal sequences of the considered input variables, which renders them as versatile
tools for time series applications (Che et al., 2018; Connor et al., 1994). Here, we utilize this feature with
the aim that the trained RNN can estimate the zonal wind velocity uncertainty at a given location and time
based on a past sequence of the actual zonal wind velocities at that location and also derive predictions for
the imminent future.

The RNN contains two hidden layers with 32 artificial neurons (processing nodes) in the first layer and 64
artificial neurons in the second layer. In this setup, we utilize gated recurrent units (GRU, Cho et al., 2014),
which are a variant of the long short-term memory (LSTM) architecture (Hochreiter & Schmidhuber, 1997)
that solves the vanishing gradient problem inherent in conventional RNNs (Pascanu et al., 2013). LSTM
nodes contain a memory cell for storing information and different gates that control how data are passed
through the neuron and whether the memory cell is updated with new information. The neurons' ability to
remember information renders RNNs especially useful for time series applications. We utilize Keras' default
configuration, in which a reset gate is applied in GRU node to control its ability to forget past information
(Cho et al., 2014). Additionally, the Rectified Linear Unit (ReLU, Hahnloser et al., 2000) activation function
is used, which is computationally efficient and further helps to prevent vanishing gradients in the training
process. General and recurrent dropout rates of 0.1 and 0.5, respectively, are applied. In total, the setup of this
RNN translates into 22,241 trainable parameters. The final network topology and the hyperparameters were
selected from a larger set of different test configurations by optimizing the trade-off between network size,
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Figure 3. Sketch of the two-phase study design. In the training phase (extending over the time period 2012 to 2016), the recurrent neural network (RNN) is
trained with 1-week long samples of 6-hourly zonal wind velocities at a given location as input and the standard deviation across the three reanalyses as output.
During the training process, the synaptic weights between the individual neurons are adjusted and the RNN is continuously validated against new data
excluded from the training set (January–June 2017; see also Figure 4). In the second phase after the training, the synaptic weights are fixed and the RNN is used
to predict new uncertainty estimates for unknown wind velocities that were neither part of the training nor the validation sets (July–December 2017).

network performance, and computational demand. In particular, it is noted that larger networks, that is,
networks with more than two hidden layers or with more artificial neurons in the two layers configuration,
did not improve the performance. In fact, larger networks exhibited serious overfitting and were discarded.

We follow a supervised learning routine to train the RNN, which is illustrated in Figure 3. The goal of the
learning routine is to iteratively change and correct the trainable parameters of the RNN (the weights of the
neural connections) in such a way that the RNN emulates a mapping  between samples of wind velocities
at a given location and the corresponding wind velocity uncertainty, that is,


(

u{ERA,CFS,JRA}(𝜑, 𝜗, t−N,… ,0)
)
→ 𝜀u(𝜑, 𝜗, t−N+m,… ,m) =

1
N + 1

m∑

i=−N+m
𝜀u(𝜑, 𝜗, ti) . (2)

In particular, the RNN is exposed to wind velocity samples at location (𝜑, 𝜗) that reach 1 week into the past
from time point t0 (summing up to N + 1 = 28 time steps at a 6-hourly time step). The corresponding target
output is given as the weekly averaged cross-product standard deviation according to equation (1). With this
training routine, we direct the neural network toward the recovery of long-term variations of the uncertainty.
In addition, the averaging window of the weekly averaged output is moved 1 day (m = 4 time steps) into the
future. As a consequence, the RNN is trained (1) to derive realistic wind velocity uncertainties alone from
prior knowledge of wind velocities and (2) to predict the change of the wind velocity uncertainty during the
next day, which is a commonly requested property in data assimilation.

Five experiments were carried out for this study, all of which include identical (but independent) RNN setups
and training routines. The experiments only differ in the number of training locations (see Table 1). As such,
the RNN performance resulting from the different training scenarios is examined in a robust way and can
be quantitatively compared to the a priori uncertainties (Figures 2 and A4 in Appendix A). In the following,
the experiments are denoted E-A (one training location A), E-B (one training location B), E-AB (two training
locations A and B), E-10 (10 training locations), and E-19 (19 training locations). In all experiments, the
6 years of reanalyses data described in section 2.1 are split into training, validation, and prediction sets.
The training set contains the 5-year long time period of 2012 to 2016. Considering the 6-hourly temporal
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Table 1
Summary of the Recurrent Neural Network Training Experiments

Experiment Number of training locations Skill score Generalization skill
A priori — 42.6 Figure 2
E-A 1 54.8 Figure 6
E-B 1 39.0 Figure 7
E-AB 2 51.2 Figure A1
E-10 10 62.7 Figure A2
E-19 19 81.7 Figure 8

Note. For the definition of the skill score see details in section 2 and in Figures A4 and
A5. The bold value visually indicates the best performing experiment with the highest skill
score value.

resolution of the reanalyses, the 5-year training set comprises 7,308 input-output pairs for each training
location (i.e., 138,852 training pairs for E-19). The validation and prediction sets contain the first and second
halves of 2017, respectively. We used a training run time of 50 epochs and measured the learning process
during the epochs with a mean square error loss function between the RNN predictions and the actual target
values from the training and validation sets (e.g., Figure 4 in section 3). After the training, the RNN skill is
tested by estimating wind velocity uncertainties for the prediction time period that was excluded from the
RNN training routine. Additionally, the generalization skill of the RNN is examined by predicting the wind
velocity uncertainty not only at the individual training locations but globally on a 1◦ × 1◦ grid.

In the next section, the performance of the trained RNN is analyzed by comparing scatter plots and time
series of the predicted versus the true wind velocity uncertainty at training locations. To test the large-scale
performance of the RNN, we examine global maps showing absolute and relative mismatches of the RNN
during the prediction time period July–December 2017. Additionally, skill scores are derived for the individ-
ual experiments that measure the global areal fraction in which the RNN performs best in terms of relative
mismatches (see Table 1). As such, the skill scores allow classifying the global machine learning perfor-
mance in terms of the conducted experiments and with respect to the a priori baseline in a comprehensible
way (Figure 2)

Figure 4. Performance of the recurrent neural network (RNN) in experiment E-A at training location 180◦E, 60◦S
(see black dot in Figure 6). (left panel) Loss improvement, that is, misfit between the RNN prediction and the true
values from the training (orange) and validation (blue) set, during the 50 training epochs. Solid lines indicate the overall
trend of the training progress (weighted least squares curve). (right panel) Estimated versus true zonal wind velocity
uncertainty during the validation (January–June 2017, blue) and prediction (July–December 2017, red) time periods.
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Figure 5. Time series prediction skill of the recurrent neural network (RNN) in experiment E-A at training location
180◦E, 60◦S (see black dot in Figure 6). (top panel) True versus RNN-based wind velocity uncertainty during the
validation time period (January–June 2017). (bottom panel) True versus RNN-based wind velocity uncertainty during
the prediction time period (July–December 2017).

3. Results and Discussion
The E-A results demonstrate the performance of the RNN at one single training location (Figure 4). The left
panel shows the training progress over time (training epochs) with continuously decreasing misfit between
the RNN prediction and the true target values of the zonal wind velocity uncertainty. During each training
epoch, the entire training data set is passed through the neural network and the neural weights are adjusted
accordingly to minimize the loss function. After each training epoch, the network is tested against the val-
idation data. In particular, this plot highlights that the RNN training is not overfitting toward the training
data, since both the loss curves for the training and the validation data are steadily decreasing during the
training. Furthermore, the RNN is able to reproduce the validation data with misfit values below 0.1 m s−1.
Note that due to the dropout regularization of the neural network during the training phase, the returned
loss of the validation data is lower than the loss of the training data. The right panel of Figure 4 shows the
scattered RNN-based (horizontal axis) and true (vertical axis) wind velocity uncertainties during the valida-
tion and prediction periods of Year 2017. As desired, most values are gathered closely around the diagonal
(perfect match), indicating an accurate prediction skill of the RNN. A high correlation of 0.97 was achieved
between the estimated and true uncertainty values during the prediction time period (red dots). A slight
skewness is visible, that is, the RNN underestimates and overestimates extreme values close to the upper
and lower value boundaries, respectively. The corresponding RNN-predicted time series of the wind velocity
uncertainty are shown in Figure 5. In accordance with the results in Figure 4, the RNN-derived time series
of the wind velocity uncertainty closely follow their respective true target values and accurately reproduce
the monthly variability. Again, it should be noted that the target uncertainty time series (denoted Truth
in Figure 5) were not part of the RNN training and, thus, were completely unknown to the RNN. In addi-
tion, the previously described skewness of the RNN prediction skill is visible in the time series prediction as
small mismatches between the RNN-based and the true wind velocity uncertainty (e.g., around Time Step
200 in the bottom panel of Figure 5). Nevertheless, the RNN is capable of reproducing the majority of local
maximal and minimal error values.

So far, we have examined the prediction skill of the RNN at a single location that was also used for the train-
ing process. Now, we add a second layer of complexity and test the RNN's ability to transfer its knowledge to
different regions that were not part of the training routine. The trained neural network and its parameters
remain unchanged and are used together with wind velocities at new locations to derive respective uncer-
tainty estimates. Hereafter, this transfer is denoted generalization skill. Ideally, the RNN should have both a
good prediction skill and a good generalization skill. The combination of both skills allows accurate global
wind velocity uncertainty estimates to be provided, considering only few localized regions for the training
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Figure 6. Absolute (RMS, top) and relative (bottom) mismatch of the recurrent neural network (RNN) prediction in experiment E-A with one training location
at 180◦E, 60◦S (left) July–September 2017; (right) October–December 2017. Percentage values indicate the ability to predict the seasonally averaged true zonal
wind velocity uncertainty (compare Figure 1). Negative (blue) values indicate underestimation; positive (red) values indicate overestimation.

routine and, thus, minimal computational effort. This skill combination makes the trained RNN especially
suitable for applications with sparse or scattered data that might occur due to limited observation availabil-
ity. In the following, the generalization skill is quantified in terms of root-mean-square (RMS) errors and
relative mismatch values between the neural network prediction and the true target values; that is, small
mismatch values are associated with a strong generalization skill and vice versa.

The generalization skill of the RNN in experiment E-A is shown in Figure 6. As in Figure 2, the lower
maps show the relative mismatch (as seasonal mean values of the of 6-hourly uncertainties) between the
RNN-predicted uncertainty values and the true uncertainty values during July–December 2017. The black
dot at location 180◦E, 60◦S indicates the training location used in E-A. The training location is set in the
region of the Antarctic Circumpolar Current (ACC), where strong eastward wind velocities and large tempo-
ral variations occur (e.g., Lin et al., 2018; Trenberth et al., 1990). Especially during the Southern Hemisphere
winter, also high corresponding wind velocity uncertainties are present (see Figure 1 and Chaudhuri et al.,
2013). Due to the single training location, the RNN is trained to these extreme conditions in the Southern
Ocean. Thus, the RNN generalization skill is particularly high in regions with wind conditions similar to
those of the training location (compare Figures 1 and 6). Most prominently, the zonal band between −40◦N
and −80◦N shows consistent low mismatch values around ±5% during both seasons of the prediction time
period, which are also lower than in the a priori uncertainty estimation (compare Figures 2 and 6). In this
band, absolute errors amount to RMS values up to 0.1 m s−1 north of 60◦S with regional peak values around
0.3 m s−1 below 60◦S (upper maps of Figure 6). Equally low mismatches are visible in regions of prevail-
ing westerlies in the Northern Hemisphere (with RMS values below 0.1 m s−1), for example, over the North
Atlantic and North Pacific Oceans (Figure 6). The skill score for Experiment E-A amounts to 54.8, which is
larger than for “no-knowledge” a priori uncertainty estimation (see Table 1 and compare Figures A4 and A5).
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Figure 7. Absolute (RMS, top) and relative (bottom) mismatch of the recurrent neural network (RNN) prediction in experiment E-B with one training location
at 180◦E, 10◦N (see black dot). (left) July–September 2017; (right) October–December 2017. Percentage values indicate the ability to predict the seasonally
averaged true zonal wind velocity uncertainty (compare Figure 1). Negative (blue) values indicate underestimation; positive (red) values indicate
overestimation.

At the same time, the single training location is leading to a significant bias toward large wind velocity
uncertainties during the RNN training. The biased training particularly excludes easterly wind conditions,
trade winds, and their respective uncertainties. As a consequence, the RNN is overestimating the target
values in almost all midlatitudes and close to the equator with mismatch values of more than +20%
(RMS values between 0.1 and 0.2 m s−1). In these regions, the mismatch values are larger than in the a priori
uncertainty estimation (compare Figures 2 and 6). In conclusion, the RNN in E-A has an accurate prediction
skill within its knowledge horizon but a deficient generalization skill.

The findings from experiment E-A were reassessed by selecting a different single training location in exper-
iment E-B that is located in a northeasterly wind regime at 180◦E, 10◦N, where much smaller wind velocity
uncertainties are present (compare Figures 1 and 7). As expected, the RNN training in E-B is oppositely
biased compared to E-A, which results in a general improvement of the RNN mismatch of northeasterly and
southeasterly trade wind uncertainties with values below 15% (0.05 m s−1) in widespread regions. Below
60◦S, however, the RNN significantly underestimates the true wind velocity uncertainties in both seasons
with mismatch values between −20% and −30% (up to 0.5 m s−1) and, thus, also performs worse than the
a priori uncertainty estimation (compare Figures 2 and 7). The strongest underestimation is found dur-
ing the Southern Hemisphere winter season in the ACC region (left panel of Figure 7), where the largest
uncertainties of respective eastward wind velocities occur that cannot be reproduced by the RNN in E-B.
Additionally, comparing the skill scores of E-A (54.8) and E-B (39.0) further indicates the bias offset between
the performance of the respective RNN's generalization capability (see Figure A5).

To improve the RNN generalization skill while maintaining an accurate prediction skill, we successively
expanded the training routine and included additional training locations from various regions and wind
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Figure 8. Absolute (RMS, top) and relative (bottom) mismatch of the recurrent neural network (RNN) prediction in experiment E-19 with 19 different training
locations (see black dots). (left) July–September 2017; (right) October–December 2017. Percentage values indicate the ability to predict the seasonally averaged
true zonal wind velocity uncertainty (compare Figure 1). Negative (blue) values indicate underestimation; positive (red) values indicate overestimation.

regimes on the Earth. In experiment E-AB, this concept is examined by combining both training locations
from E-A and E-B into the RNN training (Figure A1 in Appendix A). Although there is still a significant
overestimation of midlatitude wind velocity uncertainties with mismatch values of 15% and more, the RNN
is able to attenuate the strongest mismatch values visible in E-A and E-B (compare Figure A1 with Figures 6
and 7). RMS errors are diminished and limited accordingly, especially the peak values in the ACC region
that remain below 0.2 m s−1. The generalization skill is additionally quantified by a skill score of 51.2
(see Table 1 and Figure A5), which is a similar performance as in E-A (54.6).

The previous experiments suggest that a well-trained RNN can have a strong generalization skill, provided
that the training comprises the majority of the globally occurring wind velocity range and its correspond-
ing uncertainty estimates. Consequently, we selected a coarse global grid of training locations for the next
experiment E-19, that covers polar, midlatitudinal, and equatorial regions. The training grid consists of 19
locations, which are set at longitudinal coordinates 5◦E, 90◦E, 180◦E, 270◦E, and 330◦E, and at latitudinal
coordinates 60◦S, 30◦S, 0◦N, 30◦N, and 60◦N. As such, it is still assumed that the true uncertainty and its
spatial distribution is not known. Rather than preselecting specific training locations by considering physi-
cal patterns in the different wind regimes, this regular training grid was chosen to prevent a selection bias in
the neural network training. Note that this coarse grid training setup particularly renders E-19 a downscal-
ing task in addition to the pure time series prediction. The resulting generalization skill and the underlying
training locations are shown in Figure 8. Small mismatch values are visible in almost all regions and in both
seasonal plots, indicating that the predicted seasonal wind velocity uncertainties closely resemble their cor-
responding target values. RMS values mostly remain below 0.05 m s−1 and below 0.15 m s−1 in the ACC
region. The RNN is capable of reproducing the true wind velocity uncertainty with a mismatch of less than
5% in more than 80% of the areal coverage (see also Table 1 and Figure A5). In terms of the skill score (81.7),
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Figure A1. Absolute (RMS, top) and relative (bottom) mismatch of the recurrent neural network (RNN) prediction in experiment E-AB with two different
training locations at 180◦E, 60◦S and 180◦E, 10◦N (see black dots). (left) July–September 2017; (right) October–December 2017. Percentage values indicate the
ability to predict the seasonally averaged true zonal wind velocity uncertainty (compare Figure 1). Negative (blue) values indicate underestimation; positive
(red) values indicate overestimation.

the RNN's skill in E-19 almost doubled compared to the a priori tests (see Table 1 and compare Figures A4
and A5). Thus, it can be concluded that the trained neural network in E-19 has captured spatiotemporal
characteristics of the wind velocity uncertainty budget and is able to derive accurate predictions from new
wind velocity trajectories that were not part of the training process. Most surprisingly, only very few training
locations are necessary to teach the RNN the distribution and evolution of the globally prevalent uncertainty
dynamics. However, the training setup of E-19 is a minimal requirement to achieve the shown performance
of the RNN. Using less training locations, that is, a coarser training grid, leads to an immediate deterioration
of the generalization skill (see results of experiment E-10 in Table 1 and Figures A2 and A5 in Appendix A).
One reason for the remaining mismatch lies in the intentionally regular training grid that includes locations
close to the doldrums in the equator region and in the transition zone between easterly and westerly winds
around 30◦N and 30◦S. Adding further training locations to the E-19 setup, specifically in regions of high
remaining mismatch values, could help to further increase the generalization skill. Prominent candidate
regions, where the RNN still overestimates the true wind velocity uncertainty, are located close to land, for
example, west of Peru and Chile, north of Madagascar, and west of Central Africa. Increasing the number
of training locations without prior knowledge only leads to a marginal improvement of the RNN in terms
of mismatches and skill score (not shown). Due to the available computational resources, the asymptotic
behavior of the RNN prediction and generalization skills with respect to the number of training locations
could not be investigated.

Besides the presented results in the context of time series prediction, using machine learning as a tool to esti-
mate uncertainty dynamics of a geophysical quantity provides several further applications. First, an RNN
that is trained as described above can be used to sample uncertainty characteristics from just a single data
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Figure A2. Absolute (RMS, top) and relative (bottom) mismatch of the recurrent neural network (RNN) prediction in experiment E-10 with 10 different training
locations (see black dots). (left) July–September 2017; (right) October–December 2017. Percentage values indicate the ability to predict the seasonally averaged
true zonal wind velocity uncertainty (compare Figure 1). Negative (blue) values indicate underestimation; positive (red) values indicate overestimation.

Figure A3. Relative mismatch of the recurrent neural network (RNN) prediction in experiment E-19 with 19 different training locations (see black dots).
(left) July–September 2017; (right) October–December 2017. In contrast to Figure 8, the percentage values indicate the ability to predict the seasonally averaged
true meridional wind velocity uncertainty. Negative (blue) values indicate underestimation; positive (red) values indicate overestimation.
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Figure A4. A priori mismatch histograms for the year 2017. The blue bins aggregate the respective grid points visible in Figure 2. Numbers on top of the bins
are percentage values with respect to the total number of ocean grid points. Orange numbers indicate the areal proportion of the globe, where mismatch values
are within the ±5% interval (the respective largest seasonal value is labeled as skill score in Table 1).

set or reanalysis. After the successive training with different reanalyses data, the RNN has learned not only
the connection between input and target output but also information about the range, variability, and cross
relation between the different input data, which are stored in the neural weights. This information can be
resampled with new or modified input trajectories, which can significantly diminish the need to employ
an entire ensemble of different realizations of a geophysical quantity. This application is especially use-
ful for time periods where no ensemble data are available or when computational resources are limited.
Similarly, the trained RNN could be coupled to a numerical model to generate a spatiotemporally highly
resolved ensemble spread for single-model trajectories. Second, the trained RNN can be incorporated into
ensemble-based data assimilation routines and be used for the dynamic evolution of uncertainty through
time. Especially in ocean data assimilation, effective corrections of the model state depend on corrections of
the atmospheric boundary forcing (Irrgang et al., 2017; Saynisch et al., 2014). The temporal prediction skill
of the neural network is useful for this application, as boundary forcing uncertainties could be adaptively
preprocessed in advance of the model step and be used to correct the model ensemble span. This combi-
nation would be particularly useful for the boundary forcing of a numerical model that is not propagated
through time by the model and, thus, needs an external description of associated uncertainties. Third, unlike
a numerical model, it is a virtue of artificial neural networks to detach the physics of a geophysical quan-
tity from its actual spatiotemporal patterns. As such, a trained RNN can be directly transferred and used
for variables with comparable amplitudes and variations in space and time, given the assumption that the
uncertainty trajectories contain similar statistical properties as in the training data. For instance, the RNN
trained to estimate the uncertainty of the zonal wind velocity component can be used without further train-
ing to predict the respective values for the meridional component of the wind velocity, while maintaining
the previously seen high prediction and generalization skills (Figure A3).
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Figure A5. Recurrent neural network (RNN) mismatch histograms for the prediction time period July–December 2017
of all experiments. The blue bins aggregate the respective grid points visible in Figures 6–8 and A1–A3. Numbers on
top of the bins are percentage values with respect to the total number of ocean grid points. Orange numbers indicate
the areal proportion of the globe, where mismatch values are within the ±5% interval (the respective largest seasonal
value is labeled as skill score in Table 1).
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4. Summary and Conclusion
In this study, we describe a machine learning-based approach for estimating and predicting the uncertainty
of near-surface wind velocities over the ocean. A RNN is set up and is trained with 10 m wind velocity
data from an ensemble of three different global atmospheric 1◦ × 1◦ reanalyses with a 6-hourly temporal
resolution. The RNN training comprises the years 2012 to 2016, while the year 2017 is used for validation and
prediction scenarios. In particular, the RNN is trained to derive spatially and temporally varying uncertainty
estimates only from temporal samples of the respective wind velocity time series.

We carried out a set of experiments that differ in terms of the RNN training routine, ranging from single
training locations to a coarse global grid of training locations. This setup allowed us to examine the perfor-
mance and prediction skill of the RNN in a consistent way, as well as to test the generalization skill of the
RNN for regions where no specific training data were considered. Our results demonstrate that the RNN
is able to capture the prevailing wind regimes over the ocean during the 2012–2016 time period and can
reproduce the corresponding wind velocity uncertainty through space and time. Additionally, accurate pre-
dictions were derived by the neural network for the year 2017, which was unknown to the network, that is,
excluded from the training routine. In particular, the RNN outperforms common-sense a priori uncertainty
estimates for 2017, which were derived from climatological mean values during 2012–2016, by a factor of
∼ 2. Furthermore, we highlight that only very few training locations are necessary for deriving globally
reliable uncertainty estimates, which makes this method a computationally cheap tool with versatile appli-
cations. Besides the pure application to estimate the uncertainty of a geophysical quantity, an RNN trained as
described above could be nested and used in combination with numerical models or data assimilation tech-
niques. In these applications, a trained RNN can assume different tasks, for example, generating dynamic
ensembles of a boundary forcing of a numerical model and evolving respective error covariance information
through time.

Appendix A: Additional Results of the Recurrent Neural Network
Generalization Skill
We provide additional results, that is, absolute and relative mismatches, for the machine learning exper-
iments E-AB (Figure A1), E-10 (Figure A2), and E-19 (Figure A3). Furthermore, we show mismatch
histograms for the a priori wind velocity uncertainty estimation (Figure A4) and for the machine learning
experiments E-A, E-B,E-AB, E-10, and E-19 (Figure A5).
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