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Abstract

Large urban areas are typically characterized by a mosaic of different land uses,

with contrasting mixes of impermeable and permeable surfaces that alter “green”

and “blue” water flux partitioning. Understanding water partitioning in such hetero-

geneous environments is challenging but crucial for maintaining a sustainable water

management during future challenges of increasing urbanization and climate

warming. Stable isotopes in water have outstanding potential to trace the par-

titioning of rainfall along different flow paths and identify surface water sources.

While isotope studies are an established method in many experimental catchments,

surprisingly few studies have been conducted in urban environments. Here, we per-

formed synoptic sampling of isotopes in precipitation, surface water and groundwa-

ter across the complex city landscape of Berlin, Germany, for a large -scale

overview of the spatio-temporal dynamics of urban water cycling. By integrating

stable isotopes of water with other hydrogeochemical tracers we were able to iden-

tify contributions of groundwater, surface runoff during storm events and effluent

discharge on streams with variable degrees of urbanization. We could also assess

the influence of summer evaporation on the larger Spree and Havel rivers and local

wetlands during the exceptionally warm and dry summers of 2018 and 2019. Our

results demonstrate that using stable isotopes and hydrogeochemical data in urban

areas has great potential to improve our understanding of water partitioning in

complex, anthropogenically-affected landscapes. This can help to address research

priorities needed to tackle future challenges in cities, including the deterioration of

water quality and increasing water scarcity driven by climate warming, by improving

the understanding of time-variant rainfall-runoff behaviour of urban streams, incor-

porating field data into ecohydrological models, and better quantifying urban

evapotranspiration and groundwater recharge.
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1 | INTRODUCTION

Today, more than half of the world's population and more than 70%

of people in Europe live in urban areas (United Nations, 2019). Con-

sequently, many metropolitan areas face considerable challenges in

covering their increasing water demand, which often leads to the

overexploitation of local water resources and the need to import

water from remote areas (e.g. Good et al., 2014; Jago-On

et al., 2009). By 2050, it is expected that around 27% of the cities

worldwide could be facing a water demand that exceeds their sur-

face water availability while another 19% could face competing

interests between urban and agricultural water demands (Floerke,

Schneider, & McDonald, 2018). To secure a sustainable water supply

in the future, as well as to mitigate flood hazards from urban runoff

(e.g. Konrad, 2013) and to maintain dry weather flows to sustain

aquatic ecosystems and safely dilute waste water effluents

(e.g. Englert, Zubrod, Schulz, & Bundschuh, 2013; Gücker, Brauns, &

Pusch, 2006), integrated management of urban water resources is

crucial. This requires process-based understanding of water sources

in urban water bodies and insight into the interactions between

engineered hydrosystems in built-up areas and more natural hydro-

systems in urban green spaces (Gessner et al., 2014;

McGrane, 2016). It is well-known that urbanization has a significant

impact on catchment hydrology. Urbanization tends to increase

direct runoff from impervious areas and artificial storm drains during

rainfall events; reduce infiltration, groundwater recharge and base-

flow; and increase the influence of waste water effluents

(Endreny, 2005; Fletcher, Andrieu, & Hamel, 2013). However, other

studies show that imperviousness and reduced evaporation can

increase localized infiltration and, along with gains from underground

pipe leakage, increase groundwater recharge (Lerner, 2002;

Schirmer, Leschik, & Musolff, 2013). Although specific impacts of

urbanization on streams can differ between regions and climates

(Brown et al., 2009; Hale, Scoggins, Smucker, & Such, 2016), the

general patterns of flashier hydrographs, deterioration of water qual-

ity, increased nutrient loads, and degraded channel morphology –

which together lead to a loss of biotic richness – has been termed

the “urban stream syndrome” and observed in cities around the

world (Booth, Roy, Smith, & Capps, 2016; Walsh et al., 2005).

The heterogeneity of urban areas and their hinterlands, together

with a long history of engineering and environmental management,

often leads to evolving, complex hydrological systems that are frag-

mented, sparsely monitored and poorly understood. Useful, integrat-

ing tools to investigate water sources and fluxes in the hydrological

cycle are environmental tracers. Stable isotopes in water, for exam-

ple, are affected by meteorological inputs and provide characteristic

“fingerprints” of water's origin and flow paths (Clark & Fritz, 1997).

Unlike most chemical tracers, isotopes behave conservatively and

can provide integrated insights into the relative importance of differ-

ent water sources contributing to stream flow; the sources, timing

and location of groundwater recharge; hydraulic connections

between groundwater and surface water; as well as evidence of

evaporation and transpiration (Kendall & McDonnell, 1998). Their

potential to elucidate spatio-temporal patterns has recently been

highlighted as a means for understanding and managing anthropo-

genic impacts on the urban hydrological cycle (Ehleringer, Barnette,

Jameel, Tipple, & Bowen, 2016).

Previous isotope studies are surprisingly scarce in urban areas,

but have provided insights into stormwater-stream dynamics

(Jefferson, Bell, Clinton, & McMillan, 2015) and a basis for estimating

transit time distributions (Parajulee, Wania, & Mitchell, 2019; Soulsby,

Birkel, Geris, & Tetzlaff, 2015; Soulsby, Birkel, & Tetzlaff, 2014). Com-

bined with hydrochemical tracers and modelling, they have been used

to quantify the role of groundwater in urban water systems. For

example, Houhou et al. (2010) detected (ground-) water seepage into

an urban sewer system, showing infiltration “hot spots” in relation to

wastewater flow rates. Through spatio-temporal surveys in the urban-

ized Jordan River Basin in Utah, Follstad Shah et al. (2019) demon-

strated the important role of groundwater as a contributor to urban

surface waters, despite the influence of engineered water inputs like

wastewater effluents. Further, it was revealed that land use and infil-

tration rate can impact shallow aquifer systems affected by the urban

heat island (UHI) effect (Salem, Taniguchi, & Sakura, 2004). Ground-

water as an active component of the urban water cycle with rapid

recharge and significant discharge into urban streams has been identi-

fied by Meriano, Howard, and Eyles (2011) in the 75% urbanized Fre-

nchman's Bay study area in Canada. In central Ethiopia, spatial

isotopic variations have been successfully utilized to distinguish

groundwater systems with different lithologies, residence times and

anthropogenic influences (Demlie, Wohnlich, & Ayenew, 2008). Spa-

tially distributed isotopic landscape maps (isoscapes) have shown how

isotopic variations can be used in urban hydrology to investigate dom-

inant mechanisms of water transport and effects of evaporation/con-

densation (Bowen, 2010; Bowen et al., 2009). Such maps have helped

constrain drinking water sources in complex urban distribution net-

works, depending on seasonality, population density or water system

structure, both locally (e.g. Jameel et al., 2016; Tipple et al., 2017) and

at large scales (e.g. Bowen, Ehleringer, Chesson, Stange, &

Cerling, 2007; Landwehr, Coplen, & Stewart, 2014).

Whilst such studies demonstrate the potential of isotopes in

urban hydrology, there remain considerable research gaps. In particu-

lar, conducting field studies across the landscape of larger cities

remains challenging. This is because constraining water fluxes in com-

plex urban areas, with heterogeneity in land cover distribution, sub-

surface flow paths, recharge conditions and contaminant patterns

(Fletcher et al., 2013; Schirmer et al., 2013) requires monitoring exten-

sive spatio-temporal scales, which is hard to maintain by local authori-

ties or researchers. Furthermore, river flow generated upstream of the

built-up area often interacts with local streams and waste water dis-

charged from domestic and industrial users, but also with local

groundwater resources and sewer systems draining cities. In older

conurbations, the relative contributions of these different sources are

often not well-understood qualitatively and the identification of water

sources is needed to understand how anthropogenic impacts alter the

urban hydrological cycle as water moves through the urban system

(Ehleringer et al., 2016). As the need for more sustainable approaches
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to managing urban waters grows, such an understanding of how natu-

ral and engineered hydrological systems combine in cities is crucial to

the evidence-base for rational decision making (Follstad Shah

et al., 2019; Gessner et al., 2014; McGrane, 2016).

The overarching goal of this study is to use isotope-based surveys

in the city of Berlin to identify dominant seasonal water sources and

flow paths. Berlin, the 891 km2 large German capital has a population

of 3.64 million that is growing by around 1% per year (Amt für Stat-

istik Berlin-Brandenburg, 2019). It provides an exceptional setting for

this study as it is characterized by (a) a water management system

that is highly dependent on local sources of surface- and ground

water (Limberg et al., 2007; Limberg & Thierbach, 1997; Möller &

Burgschweiger, 2008), (b) low precipitation and evaporation as the

dominant flux of water, with an average annual “blue water flux” of

groundwater recharge being <155 mm (or <30% of precipitation;

Limberg et al., 2007), (c) a highly variable land use, with extensive

impermeable cover affecting over 60% of some areas of the city cen-

tre (Senate Department for Urban Development and Housing

[SenStadtWoh], 2017) and large areas of urban green spaces

(including forests), and (d) various anthropogenic impacts on its water

cycle, including a range of abstractions, waste water treatment plants

and industrial discharges. The specific objectives of this study are:

(a) to characterize Berlin's temporal isotope dynamics in precipitation

and streamwater over the course of 1 year, (b) to identify the spatio-

temporal patterns of isotopes in Berlin's surface and subsurface

waters during different seasons and wetness conditions and (c) to

integrate stable isotope and other hydrogeochemistry data to assess

how key urban processes like evaporation, storm water runoff and

effluent discharge interact in a time-variant way to influence

stream flow.

2 | STUDY SITE

Berlin is located in the Northern European glaciation plain and is char-

acterized by a flat topography (Figure 1a,b) resulting from the Pleisto-

cene glaciation. Around 95% of the surface geology comprises

Quaternary deposits (Stackebrandt & Manhenke, 2010).

F IGURE 1 (a) Location of Berlin within Germany, (b) Berlin's topographic structure and surface water system; (c) land use types including the
waterworks and sewage treatment plants in and around the city's boundaries (BWB, 2019a); and (d) geology. Data source basemaps: BGR (2007);
GeoBasis-DE/BKG (2013, 2019)
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These surficial deposits are predominantly sands and gravels in the

Berlin-Warsaw-Glacial Spillway orientated NW to SE, with the second-

ary Panke valley in the North (Limberg et al., 2007; Senate Department

for Urban Planning and the Environment [SenStadtUm], 2013a;

Figure 1d). The fringing plateaus of Barnim (North) and Teltow (South)

and the Nauen Plate are covered by subglacial till (Limberg et al., 2007;

SenStadtUm, 2013a; Figure 1d).

The city is underlain by a several hundred meter thick lower saline

aquifer and an upper freshwater aquifer of Tertiary to Holocene age with

average thickness of 150 m (Limberg & Thierbach, 1997). The freshwater

aquifer is sub-divided into layers of unconsolidated sands and gravels, sep-

arated by mud, clay, silt and till layers, with occasional hydraulic connec-

tion (Limberg et al., 2007; Limberg & Thierbach, 1997, 2002). Horizontal

groundwater flow is directed from the Barnim and Teltow plateaus and

the Nauen Plate towards the rivers Spree and Havel with velocities of

10–500 m per year (Limberg et al., 2007). Groundwater heads are high

and usually only up to 4 m below the surface (b.s.) in the glacial valley,

while they are >10mb.s. on the plateaus (Limberg et al., 2007).

Large areas of Berlin are covered by urban green spaces, including

forest (18.1%), public green space (12.2%) and agricultural areas (4.2%),

particularly towards the outer boundaries (Senate Department for the

Environment, Transport and Climate Protection [SenUVK], 2018;

Figure 1c). Almost 60% of the city is covered by buildings and roads

(SenUVK, 2018; Figure 1c), of which around 34% are sealed, especially

in the centre (SenStadtWoh, 2017).

Climatically, Berlin lies in a dry part of Germany. Mean annual

rainfall (1981–2010) of Berlin's weather stations run by the German

weather service (Deutscher Wetterdienst [DWD], see Figure 2) ranges

from 525 to 593 mm (DWD, 2019b). Mean annual air temperature

ranges from 9.3 to 10.0�C (1981–2010; DWD, 2019b). On average,

56% of rainfall is evapotranspired, 12% enter surface waters through

surface runoff and artificial drainage networks, 5% enter surface

waters via diffuse subsurface runoff and 27% become groundwater

recharge (Limberg et al., 2007). Despite low recharge, there are

numerous lakes and wetlands due to Berlin's complex glacial drift

deposits (Gerstengarbe et al., 2003).

Berlin's major surface water bodies are (a) the Spree, which enters

as the Müggelspree in the East, joining with the Dahme in the South-

east, before flowing westwards through the city, and (b) the south-

flowing Havel, which enters from the Northwest before joining the

F IGURE 2 Long-term discharge (SenUVK, 2019) and climate data (DWD, 2019a) in the study area with sampling locations of the seasonal
field campaigns: Major surface waters (maroon), effluent-impacted streams (orange), local wetland-impacted streams (light blue), local urban
streams (cyan) and groundwater (grey asterisk). Locations of weekly stream water and daily precipitation sampling are marked in the eastern
study area. Data source basemap: GeoBasis-DE/BKG (2013)
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Spree (Figure 2). Both rivers have low slopes and flow through wet-

lands (e.g. Spreewald) and lakes (e.g. Müggelsee; Jahn, 1998; Senate

Department for Urban Planning [SenStadt], 2004). The Spree drains a

catchment of �10,000 km2, >90% of this upstream of the city, includ-

ing the Dahme catchment of around 2,200 km2, and is subject to

anthropogenic abstractions, for example, for irrigation, industry and

lignite mining (Jahn, 1998; Limberg et al., 2007; SenStadt, 2004).

Within Berlin, �13% of the catchment is sealed and connected to

storm drains (SenStadtWoh, 2018; Table 1). Some artificial navigation

channels with intermediate discharge (Figure 2, Table 3) withdraw

water from the Spree and Dahme, including the Landwehrkanal,

Teltowkanal and the Berlin-Spandauer-Schiffahrtskanal. The Havel

drains a catchment of �3,500 km2 at the Spree confluence

(Jahn, 1998; SenStadt, 2004). Discharge rates of both rivers can be

low, especially during summer (Jahn, 1998; Limberg et al., 2007). Sev-

eral local tributaries enter the Spree from the north, including the

Panke, Wuhle and Erpe (Figure 2). These streams are characterized by

significantly lower discharge rates (Figure 2, Table 3), with catchments

of varying land covers and degrees of urbanization. Highly urbanized

streams include the Wuhle, for which �14% of the catchment in Ber-

lin is sealed and connected to stormwater drains, and the Marzahn-

Hohenschönhausener-Grenzgraben with an enterily urban and 30%

sealed catchment (Table 1). Others are less urbanized and can be

impacted by fen soils, for example, the catchments of the Tegeler

Fließ, Erpe, Fenngraben and the northern parts of the Panke

(SenStadtUm, 2015).

To provide Berlin's water supply, nine waterworks (Figure 1c)

abstract water mainly from groundwater pumping of the freshwater

aquifer (Limberg & Thierbach, 1997). Around 60% of this is generated

by well galleries near the riverbank that draw water from surface

water bodies through bank filtration (Limberg et al., 2007; Möller &

Burgschweiger, 2008). As a result, Berlin's drinking water supply is

highly dependent on the quantity and quality of streams like the

Havel, Spree and Dahme (Möller & Burgschweiger, 2008). At the same

time, urban storm water drainage, combined sewer overflows (CSO)

and the city's sewage treatment plants (Figure 1c) discharge water

into these streams (Möller & Burgschweiger, 2008; Riechel, 2009;

Weyrauch et al., 2010). Major recipients of stormwater drainage are

the Teltowkanal (long-term mean 13 Mio. m3 per year), the Wuhle

and the downstream part of the Panke (long-term mean inputs of

3 Mio. m3 respectively; SenStadtWoh, 2018). CSOs from the com-

bined sewer system that accounts for around 20% of the city's sub-

surface drainage area, especially in the centre, contribute around

7 million m3 of water per year to the Spree (Weyrauch et al., 2010)

and can account for up to 10% to its total volume during low flow

periods in the summer (Riechel, 2009). Streams strongly impacted by

treated sewage water released by Berlin's treatment plants (Figure 1c)

include the Nordgraben in the Northwest and the Teltowkanal in the

TABLE 1 Streams assigned to the sampling groups with their respective Sample IDs, number of seasonal sampling locations; and total
catchment size and catchment size within Berlin with % of the Berlin catchment sealed and connected to the drainage system, based on data

from SenStadt, 2004, and SenStadtWoh, 2018

Stream ID Sampling locations Catchment area (km2) Catchment in Berlin (km2) (% sealed)

Major surface waters

Dahme D 2 See below (spree)

(Müggel-) spree (M)S (2+) 5 10,105 174 (13)

Landwehrkanal L 1 26 26 (15)

Berlin-Spandauer-Schiffahrtskanal BS 1 n.a. n.a.

Lake Tegel LT 1 150 n.a.

Havel (a) H 2 3,500 n.a.

(b) 2 n.a.

Local wetland-impacted streams

Tegeler Fließ TF 3 172 80

Fenngraben F 1 n.a. n.a.

Panke (a) P 1 See below

Local urban streams

Wuhle W 7 101 57 (14)

Marzahn-Hohensch.-Grenzgraben MH 1 23 23 (30)

Effluent-impacted streams

Panke (b) P 2 198 47 (16)

Nordgraben N 2 34 32 (13)

Teltowkanal TK 4 243 166 (16)

Erpe — 1 (weekly) 222 14 (n.a.)

Note: Locations marked (a) at entry into the city area and (b) further downstream.
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South (Figure 2). Amounts of treated wastewater were quantified to

be up to 5% for the Spree, 18% for the Havel (after the Spree conflu-

ence), up to 50% in the Teltowkanal and around 89% in the Nor-

dgraben under normal flows; increasing to 100% in the Havel,

Teltowkanal, Nordgraben and Erpe and up to 30% in the Spree during

low flows (Drewes, Karakurt, Schmid, Bachmaier, & Hübner, 2018).

Similar observations were made by Massmann, Knappe, Richter, and

Pekdeger (2004).

3 | METHODOLOGY AND DATA

Daily air temperature and precipitation data was available from seven

DWD weather stations in Berlin (DWD, 2019a). Mean daily stream

discharge data was provided by the Senate Department for the

Environment, Transport and Climate Protection (SenUVK, 2019) and

daily discharge data of Berlin's treatment plants by the Berlin water-

works (Berliner Wasserbetriebe [BWB], 2019b).

Data collection focused on 1 year (October 2018–October 2019).

For temporal isotope dynamics in precipitation and streamwater,

high-resolution sampling was undertaken in eastern Berlin (Figure 2).

In Berlin-Friedrichshagen, daily precipitation isotope samples were

collected using a HDPE deposition sampler (100 cm2 opening;

UMWELT-GERÄTE TECHNIK GMBH). Overall, 35 daily and 35 bulk (inter-

val > 24 hours, e.g. weekends) samples where precipitation was

>1 mm (to limit evaporation effects) were collected. Stream samples

were taken weekly using a polyethylene collector lowered from brid-

ges at three sites: the Spree downstream of the Dahme confluence,

the urbanized Wuhle near its catchment outlet and the effluent-

impacted Erpe (Figure 2).

TABLE 3 Long-term (10 years) mean, percentiles, SD and coefficient of variation (CV) of daily discharge rates and mean discharge rates
3 months before the respective sampling campaigns calculated with data (SenUVK, 2019) from the discharge stations shown in Figure 2

Stream

Long-term discharge (m3/s) Mean daily discharge 3 months before sampling (m3/s)

Mean
Fifth
percentile

95th
percentile SD CV Jul-Oct 18 Nov-Jan 19 Feb-May 19 May-Jul 19

Major surface waters

Dahme 15.8 2.3 43.7 12.8 0.8 4.1 7.7 9.5 5.1

Müggelspree (a) 3.6 0.5 6.8 2.0 0.6 1.2 3.9 4.8 1.5

(b) 8.8 2.7 16.6 4.3 0.5 5.1 6.8 6.9 2.0

Spree 32.1 8.1 76.2 21.8 0.7 8.6 20.6 24.7 11.3

Landwehrkanal 2.6 1.0 4.9 1.3 0.5 1.7 1.6 2.7 2.6

Havel (a) 9.9 1.5 26.1 7.6 0.8 4.3 7.8 8.5 4.0

b) 44.2 7.7 105.0 31.4 0.7 8.6 24.9 31.5 11.6

Local wetland-impacted streams

Tegeler Fließ 0.5 0.1 1.0 0.3 0.6 0.1 0.3 0.2 0.1

Panke (a) 0.4 0.1 1.0 0.3 0.9 0.1 0.2 0.3 0.5

Local urban streams

Wuhle 0.3 0.1 0.7 0.2 0.7 0.1 0.2 0.2 0.2

Marz.-Hohensch.-Grenzgr. 0.1 0.0 0.4 0.4 4.2 0.01 0.1 0.1 0.1

Effluent-impacted streams

Panke (b) 0.8 0.2 1.8 0.5 0.6 1.1 1.4 1.0 0.9

Nordgraben 1.3 0.2 2.5 0.8 0.6 0.2 0.3 1.1 1.0

Teltowkanal 7.8 2.7 13.5 3.1 0.4 5.0 6.4 6.6 4.1

Erpe 1.0 0.4 2.0 0.5 0.6 0.4 0.8 0.9 0.5

Note: Locations marked (a) at entry into the city area and (b) further downstream.

TABLE 2 Mean air temperature and precipitation sums in the 3 months preceding the seasonal sampling campaigns calculated from daily data
of all seven DWD climate stations in and around Berlin (DWD, 2019a; see Figure 2)

Mean daily air temperature (�C) Sum of mean daily precipitation amounts (mm)

Jul-Oct 18 Nov-Jan 19 Feb-May 19 May-Jul 19 Jul-Oct 18 Nov-Jan 19 Feb-May 19 May-Jul 19

18.5 4.8 8.3 18.3 37.9 115.7 90.2 170.8
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To characterize the spatial isotope patterns of Berlin's surface

and subsurface waters, four synoptic field campaigns were under-

taken at pre-selected locations in October 2018 (31 sites) and in

January, May and July 2019 (37 sites). Surface waters were catego-

rized into four groups: major surface waters with high/intermediate

discharge, local wetland-impacted- and local urban streams with low

discharge, and effluent-impacted streams (Figure 2, Table 1). All sites

were sampled over 1 day in each survey and analysed for stable iso-

topes, major- and trace elements. From the second survey,

hydrogeochemical parameters were measured on-site using a WTW

MULTI 3,630 IDS Set for pH (SENTIX940, precision ±0.004), dissolved

oxygen (DO; FDO925, precision ±0.5% DO; ± 0.2�C temperature) and

electrical conductivity (EC; TETRACON925, precision ±0.5%). During the

first sampling, pH and EC were measured in the lab.

Additionally, groundwater wells managed by Berlin Senate were

sampled in the days following the surface water campaigns. The wells

were spatially distributed and close to the surface water sampling

points. Sampling included seven wells in different units of the fresh-

water aquifer system, primarily along the course of the glacial valley,

from the second sampling on; with additional wells on the Barnim and

Teltow plateaus (G2c,g; G3b) from the third sampling on (Figure 2).

Groundwater levels were measured using an electric contact gauge.

Depending on initial water level (range 2.4–4.8 m b.s. in the glacial

valley and 5.4–12.3 m b.s. on the plateaus), water was pumped with a

COMET GEO-DUPLOS PLUS submersible pump (for shallow water tables)

or a GRUNDFOS MP1 submersible pump (for water tables >7 m b.s.).

The pumped water was channelled through a polyethylene collector

for 15–30 minutes while monitoring hydrochemical parameters with

the WTW MULTI 3,630 until the composition stabilized before the

samples were taken. All samples were filtered on-site (0.2 μm), trans-

ported in a thermally isolated box and stored in the refrigerator until

analysis. Overall, 228 surface and 25 groundwater samples were

analysed.

For isotope analysis, samples were decanted into 1.5 ml glass vials

(LLG LABWARE) and analysed by Cavity Ring-Down Spectroscopy with

a L2130-i Isotopic Water Analyser (PICARRO, INC., Santa Clara, CA) using

four standards for a linear correction function and standards of the

International Atomic Energy Agency (IAEA) for calibration. After

quality-checking and averaging multiple analyses for each sample, the

results were expressed in δ-notation with Vienna Standard Mean

Ocean Water (VSMOW). Analytical precision was 0.05 ‰ standard

deviation (SD) for δ18O and 0.14 ‰ SD for δD.

Samples for dissolved Cl− and SO4
2− were taken in 2 ml

EPPENDORF tubes and analysed by ion chromatography (METROHM

COMPACTIC, conductivity detection after chemical suppression). For

analysis of Al, B, Ca, Fe, K, Mg, Mn, Na, P, S and Si, samples were

taken in in 15 ml CELLSTAR tubes, acidified with 150 μl of 2 M HCl and

analysed by inductively-coupled-optical emission spectroscopy (ICP-

OES, THERMO SCIENTIFIC iCAP 6300). Dissolved inorganic carbon (DIC)

samples were analysed with a SHIMADZU TOC-L Total Organic Carbon

Analyser. Analytical precision was <3%.

Data processing and plotting used R Studio Version 1.2.5019. For

the isotope samples, deuterium (d-) excess was calculated as d = δD –

8�δ18O (Dansgaard, 1964). A local meteoric water line (LMWL) was

calculated from daily samples by amount-weighted least square

regression (Hughes & Crawford, 2012). Evaporation lines (EL) for all

surface water samples were calculated by least-square regression.

Major ion concentrations were converted to equivalents (meq/L) and

samples with an ionic balance error > 10% were excluded from further

processing. Long-term mean stream discharge, its percentiles, SD and

coefficient of variation (CV) for the sampled streams as well as mean

discharge, air temperature and sums of precipitation 3 months prior to

sampling were calculated. The same was done for the precipitation

isotopes. For statistical comparison of seasonal isotope data, minimum

and maximum values, arithmetic means, medians and the fifth and

95th percentiles were calculated for the different stream groups. To

combine isotope and hydrogeochemical data, a principal component

analysis (PCA) was performed. Maps were created using ESRI

ARCGIS 10.7.

4 | RESULTS

4.1 | Temporal dynamics in precipitation and
streamwater isotopes

The start of sampling in October 2018 followed an unusually warm,

dry summer which was part of a major European drought. As a result

of low precipitation with <40 mm in the 3 months preceding the first

survey (Table 2), discharge the Spree was extremely low with a daily

mean < 10 m3/s (Figure 3, Table 3).

Discharge in all surface waters remained low until December, fol-

lowing relatively little rain. Some smaller rainfall events totalling

>100 mm by the second survey in January 2019 (Table 2) increased

most discharge rates (Figure 3, Table 3). More rainfall from February–

May 2019 resulted in the highest discharges of the year in the time

preceding the third survey. However, these values remained lower

than the long-term means for the Spree and most of the major surface

waters (Table 3). From May–October 2019, another dry summer

occurred. In contrast to the previous year, 2019 was characterized by

several heavy convective summer rainfall events with up to 55 mm on

the 11th of June (DWD, 2019a), contributing to a total amount of

�171 mm between May and July (Table 2). This led to a peak daily

discharges of 43 m3/s (12th of June) in the Spree (SenUVK, 2019;

Figure 3). However, as most rain fell in short events, discharge in most

major streams in July was only slightly higher than October 2018

(Table 3). Overall, seasonal changes in discharge were low in smaller

local and effluent-impacted streams (Table 3). In the three streams

sampled weekly, the more urbanized Wuhle showed a more marked

response to precipitation events than the more stable Erpe (Figure 3).

High frequency sampling showed that daily precipitation isotope

ratios in Berlin-Friedrichshagen ranged from −15.6 to −1.6 ‰ for

δ18O and from −118.1 to −8.3 ‰ for δD. There was a seasonal trend

with more depleted signatures in winter and more enriched signatures

in autumn 2018 and summer 2019 (Table 4). However, daily variability

was marked in both winter and summer.
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The LMWL (Figure 4, Figure 5) was close to the Global Meteoric

Water Line (GMWL; Craig, 1961):

δD=7:97�0:19 δ18O+11:37�1:59 R2 = 0:979
� �

:

As expected, stream water isotopes were much more damped

than precipitation isotopes. Between the three streams sampled

weekly, signatures were more enriched in the Spree with mean values

of −6.7 (±0.8) ‰ for δ18O and −50.6 (±3.7) ‰ for δD. Isotopes in the

Spree followed a damped seasonal trend with winter depletion until

April 2019, enriching thereafter (Figure 3). The Spree's EL shows a

high explanatory power (R2 = 0.99) and plots below the GMWL and

LMWL (Figure 4). In the Wuhle, isotopes were more depleted with

means of −7.9 (±0.98) ‰ for δ18O and −57.2 (±6.7) ‰ for δD. How-

ever, isotopes were more dynamic and varied considerably over short

time periods (Figure 3). The resulting EL of the Wuhle is less pro-

nounced (Figure 4). Consistent with the stable discharge, the effluent-

impacted Erpe was characterized by a more constant isotopic compo-

sition. Similar to the Wuhle, mean values were depleted with −8.2 ‰

for δ18O and −59.9 ‰ for δD. However, variations were lower

(SD 0.3 and 1.6 ‰ for δ18O and δD, respectively), especially in 2019,

where changes were only detected in response to heavier rainfall

(Figure 3).

4.2 | Seasonal synoptic isotope sampling: Spatial
patterns

Variations in climate, discharge and precipitation isotopes were also

reflected in seasonal sampling campaigns. Isotopic signatures of major

surface water bodies were most enriched during the warm, dry

periods of October 2018 and July 2019 with mean values of up to

−5.2 ‰ for δ18O, −44.3 ‰ for δD and negative mean d-excess down

to −2.4 ‰ (Table 4, Figure 5). In contrast, the most depleted isotopic

compositions were measured in May 2019 with mean δ18O of −6.7

‰, mean δD of −50.8 ‰ (Table 4). Effluent-impacted streams were

most enriched in October 2018 and most depleted in January. Sea-

sonal variations were low with mean δ18O ranging from −7.3 to −6.9

‰, mean δD between −54.4 and −52.5 ‰ and mean d-excess

between 2.4 and 4.4 ‰ (Table 4). The wetland-impacted local streams

showed the most enriched isotopic samples in July 2019 with mean

values of −5.2 ‰ for δ18O, −43.1 ‰ for δD and −1.8 ‰ for d-excess

(Table 4). The values in October 2018 were more depleted. In contrast

to major surface waters, the most depleted values in these streams

were measured in January 2019 with a mean δ18O of −7.1 ‰ and

mean δD of −54.4 ‰ (Table 4) when SDs were also high. The local

urban streams were more depleted and had lower seasonal variations.

Mean values ranged from −8.3 ‰ for δ18O and −58.2 ‰ for δD in

January to −7.4 ‰ for δ18O and −53.0 ‰ in May 2019. D-excess

was positive during all seasons with mean values between 4.5 ‰ in

July and 8.1 ‰ in January. The isotopic composition of groundwater

was similar to local urban streams, but even more depleted with mean

values between −8.1 and −8.5‰ for δ18O, −61.0 and −58.9‰ for δD

and 6.3–8.3 ‰ for d-excess (Table 4). Clear spatial or temporal trends

were not evident, although samples from the Barnim and Teltow pla-

teaus were slightly more depleted those from the glacial valley.

Plotting data from all seasonal sampling campaigns in the dual iso-

tope space (Figure 5) revealed distinct differences (persisting beyond

seasonal variations) between the more enriched major and local

wetland-impacted streams, and the more depleted local urban streams

and groundwater. Strongly effluent-impacted streams were intermedi-

ate. Surface water samples have an EL of δD = 4.85 ± 0.07 δ18O –

F IGURE 3 Precipitation
events with stable isotopic
composition of precipitation in
Berlin-Friedrichshagen (top) and
stream discharge (daily means,
SenUVK, 2019) with stream
water isotopic composition of the
Spree, Wuhle and the effluent-
impacted Erpe sampled on a

weekly basis (bottom)
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TABLE 4 Measured isotopic composition of precipitation in the respective 3 months preceding the seasonal sampling campaigns and
measured isotopic composition in the different stream types and groundwater during the four seasonal sampling campaigns

δ18O (‰ VSMOW) δD (‰ VSMOW) d-excess (‰ VSMOW)

Oct 18 Jan 19 May 19 Jul 19 Oct 18 Jan 19 May 19 Jul 19 Oct 18 Jan 19 May 19 Jul 19

Precipitation Berlin-Friedrichshagen

n 4 14 6 9 4 14 6 9 4 14 6 9

Min. −6.4 −12.7 −15.6 −10.7 −36.3 −91.9 −118.1 −73.5 7.7 4.3 6.4 −2.2

Fifth percentile −6.3 −12.5 −14.3 −9.8 −36.1 −89.5 −105.9 −65.4 7.9 7.6 6.8 −1.4

Mean −5.1 −7.8 −9.7 −5.3 −29.5 −51.4 −67.3 −34.6 11.6 11.4 10.4 7.6

Median −5.0 −7.6 −8.7 −5.0 −29.4 −50.8 −58.3 −35.5 11.8 11.3 10.2 7.6

95th percentile −4.2 −2.8 −7.1 −1.9 −23.1 −10.2 −47.4 −12.8 15.1 14.3 13.8 14.1

Max. −4.1 −2.7 −6.8 −1.6 −22.9 −8.3 −45.0 −11.4 15.2 14.3 13.8 14.6

SD 1.0 3.3 3.1 3.0 7.0 26.5 26.1 20.0 3.9 2.7 3.0 6.1

Major surface waters (Dahme, (Müggel-) Spree, Havel, Lake Tegel, Landwehrkanal, Berlin-Spandauer-Schiffahrtskanal)

n 14 16 16 16 14 16 16 16 14 16 16 16

Min. −5.8 −7.0 −7.2 −7.4 −47.0 −52.5 −54.2 −55.0 −4.1 −0.6 0.5 −3.0

Fifth percentile −5.8 −7.0 −7.1 −6.7 −46.9 −52.4 −53.4 −52.1 −3.5 0.2 1.2 −2.9

Mean −5.2 −6.4 −6.7 −5.9 −44.3 −49.3 −50.8 −47.3 −2.4 2.0 3.0 −0.5

Median −5.3 −6.6 −6.9 −6.0 −45.0 −50.7 −52.0 −48.8 −2.4 2.2 3.3 −0.3

95th percentile −4.6 −5.4 −5.8 −4.7 −39.5 −43.4 −44.7 −40.6 −0.6 3.4 4.4 3.9

Max. −4.5 −5.5 −5.8 −4.7 −39.3 −43.7 −44.9 −40.8 −0.5 3.4 4.2 1.9

SD 0.4 0.5 0.5 0.7 2.4 3.2 3.0 4.2 1.0 1.1 1.1 1.8

Local wetland-impacted streams (Tegeler Fließ, Fenngraben, Pankea))

n 4 5 3 5 4 5 3 5 3 5 3 5

Min. −8.7 −8.6 −6.8 −7.8 −60.4 −59.8 −50.2 −53.8 −3.6 −2.4 2.9 −5.9

Fifth percentile −8.4 −8.4 −6.8 −7.4 −59.3 −58.9 −50.1 −52.4 −3.3 −1.0 2.9 −5.8

Mean −6.6 −7.1 −6.6 −5.2 −51.0 −52.4 −49.3 −43.1 1.9 4.6 3.5 −1.8

Median −6.3 −7.2 −6.5 −4.4 −49.6 −52.3 −49.1 −40.8 1.1 5.1 3.3 −5.3

95th percentile −5.2 −5.4 −6.5 −3.7 −44.7 −44.5 −48.7 −35.5 8.1 8.5 4.2 6.5

Max. −5.1 −5.0 −6.4 −3.6 −44.4 −42.8 −48.6 −34.5 8.9 9.0 4.3 8.3

SD 1.6 1.3 0.2 1.7 7.2 6.3 0.8 7.5 5.6 4.3 0.7 6.1

Local urban streams (Wuhle, Marzahn-Hohenschönhausener-Grenzgraben)

n 7 7 8 4 7 7 8 4 7 7 8 4

Min. −8.3 −8.6 −7.9 −8.0 −59.3 −59.7 −56.3 −58.3 5.6 7.0 4.5 1.9

Fifth percentile −8.3 −8.5 −7.9 −8.0 −59.3 −59.7 −56.2 −58.1 5.9 7.2 4.9 2.2

Mean −8.1 −8.3 −7.4 −7.5 −57.8 −58.2 −53.0 −55.2 7.1 8.1 6.5 4.5

Median −8.2 −8.4 −7.8 −7.5 −58.5 −59.2 −55.0 −55.1 7.2 8.0 6.6 4.8

95th percentile −7.6 −7.8 −6.2 −6.9 −55.0 −54.0 −45.0 −52.5 8.0 9.0 7.5 6.4

Max. −7.5 −7.7 −5.9 −6.8 −54.1 −52.1 −42.5 −52.4 8.1 9.1 7.6 6.5

SD 0.3 0.3 0.9 0.6 1.8 2.7 5.9 3.0 0.8 0.7 1.2 2.1

Effluent-impacted streams (Teltowkanal, Nordgraben, Pankeb))

n 5 7 7 6 5 7 7 6 5 7 7 6

Min. −7.6 −7.7 −7.4 −7.8 −55.4 −55.9 −54.1 −56.8 0.9 3.2 3.7 1.9

Fifth percentile −7.5 −7.7 −7.4 −7.7 −55.4 −55.7 −54.0 −56.3 0.9 3.2 3.8 2.0

Mean −6.9 −7.3 −7.2 −7.2 −52.5 −54.4 −53.2 −53.7 2.4 4.2 4.4 3.5

Median −6.6 −7.4 −7.2 −7.3 −51.4 −55.0 −53.3 −54.9 1.4 4.3 4.5 3.9

95th percentile −6.4 −7.0 −7.0 −6.6 −50.7 −53.0 −52.1 −50.9 4.9 5.7 5.1 5.0

Max. −6.4 −7.0 −7.0 −6.6 −50.6 −52.9 −51.9 −50.9 5.1 5.9 5.1 5.5
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18.43 ± 0.50 (R2 = 0.9699) well below the GMWL and the LMWL.

Similarly, the majority of the groundwater samples plots along this EL,

though most cluster close to the LMWL.

Spatial variation in streamwater isotopes could be observed,

especially in the major streams during the warmer periods in October

2018 and July 2019 (Figure 6, Figure 7). In October 2018, the

enriched isotopic composition of the Spree and Dahme in the SE

became slightly more depleted as the Spree flowed westwards and

received water from more depleted streams like the Wuhle, Panke

and Erpe. Below the Spree confluence with the even more enriched

Havel, the Spree largely overprinted the signature of the Havel due to

its higher discharge rates (Figure 2, Figure 6).

All major and local wetland-impacted streams were characterized by

negative d-excess in October 2018 (Figure 7). While overall stream isoto-

pic composition was more depleted in both January andMay, Lake Tegel

and the Fenngraben still showed more enriched values and low d-excess

in January. In July, major streams became more enriched again (Figure 6).

The spatial patterns resembled October 2018, however, the waters were

not as enriched. The only exception was Tegeler Fließ, which showed

stronger enrichment andmore negative d-excess in July (Figures 6 and 7).

For local urban streams, groundwater and the effluent-impacted streams,

neither a spatial nor seasonal trend could be observed.

4.3 | Seasonal dynamics and spatial patterns in
water chemistry

Hydrogeochemical parameters (Table 5) provided additional insights

into the seasonal variability of Berlin's surface and subsurface waters.

TABLE 4 (Continued)

δ18O (‰ VSMOW) δD (‰ VSMOW) d-excess (‰ VSMOW)

Oct 18 Jan 19 May 19 Jul 19 Oct 18 Jan 19 May 19 Jul 19 Oct 18 Jan 19 May 19 Jul 19

SD 0.5 0.3 0.2 0.4 2.2 1.2 0.8 2.3 1.9 1.0 0.5 1.2

Groundwater

n 0 7 10 8 0 7 10 8 0 7 10 8

Min. n.a. −8.9 −9.1 −9.2 n.a. −63.5 −63.4 −64.7 n.a. 3.6 4.6 3.8

Fifth percentile −8.8 −9.1 −9.1 −63.2 −63.3 −64.3 4.0 5.2 4.1

Mean −8.1 −8.5 −8.5 −58.9 −59.5 −61.0 6.3 8.3 6.8

Median −8.2 −8.6 −8.7 −58.9 −60.8 −62.3 6.7 8.7 7.3

95th percentile −7.2 −7.4 −7.5 −53.9 −53.8 −55.7 8.0 10.3 8.7

Max. −7.0 −7.1 −7.2 −52.4 −51.8 −54.0 8.2 10.7 8.8

SD 0.6 0.7 0.7 3.7 3.7 3.6 1.6 1.8 1.9

Note: Locations marked (a) at entry into the city area and (b) further downstream.

F IGURE 4 Dual isotope plot of the weekly streamwater samples
compared to the global meteoric water line and local meteoric water
line from Berlin-Friedrichshagen

F IGURE 5 Dual isotope plot (centre) and box plots (left, bottom)
showing the isotopic composition of the different surface water types
and groundwater during the four seasonal sampling campaigns. global
meteoric water line and amount-weighted local meteoric water line

from precipitation samples in Berlin-Friedrichshagen (inset) are given
for reference
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The pH of all surface waters was circumneutral with mean values

between 7.5 and 8.2, with groundwater being slightly lower. EC was

more variable in surface waters, revealing pronounced differences

between seasons and sampling groups. In major streams, EC was low-

est with means between 767 μS/cm in January and 880 μS/cm in July.

Higher EC (1,073–1,175 μS/cm) was observed in effluent-impacted

streams. In local tributaries, EC was highest in October with mean

values of 1,050 μS/cm in wetland-impacted streams and 923 μS/cm

in urban streams. Mean groundwater EC was high and exceeded

1,000 μS/cm during all seasons. Surface water temperatures varied

F IGURE 6 Maps showing
the δD values measured in
surface water (circle) and
groundwater (asterisk) during the
different seasonal sampling
campaigns. Data source
basemap: Geoportal
Berlin (2018), GeoBasis-DE/
BKG (2013)

F IGURE 7 Maps showing the
d-excess in surface water (circle)
and groundwater (asterisk) during
the different seasonal sampling
campaigns. Data source basemap:
Geoportal Berlin (2018),
GeoBasis-DE/BKG (2013)
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TABLE 5 Measured hydrochemical parameters in the different stream types and groundwater during the four seasonal sampling campaigns

pH El. conductivity (EC) (μS/cm) Water temperature (�C) Dissolved oxygen (DO) (mg/L)

Oct 18 Jan 19 May 19 Jul 19 Oct 18 Jan 19 May 19 Jul 19 Oct 18 Jan 19 May 19 Jul 19 Oct 18 Jan 19 May 19 Jul 19

Major surface waters (Dahme, (Müggel-) Spree, Havel, Lake Tegel, Landwehrkanal, Berlin-Spandauer-Schiffahrtskanal)

n 14 16 16 16 14 16 16 16 n.a. 16 16 16 n.a 16 16 16

Min. 7.2 7.7 7.4 7.1 485 538 512 469 1.0 11.4 25.1 11.4 6.2 5.7

Fifth percentile 7.4 7.7 7.5 7.6 507 545 565 543 1.2 11.5 25.1 12.0 6.3 5.8

Mean 7.6 8.0 7.7 8.1 780 767 789 880 1.7 12.7 26.1 12.7 8.0 8.9

Median 7.6 8.0 7.7 8.1 813 818 838 940 1.7 12.8 26.1 12.8 7.8 8.8

95th percentile 7.7 8.1 8.0 8.6 960 901 906 1,114 2.5 13.9 26.9 13.2 10.0 12.0

Max. 7.7 8.1 8.3 8.7 939 912 912 1,286 2.5 14.1 27.0 13.2 12.2 12.8

SD 0.1 0.1 0.2 0.4 142 126 124 220 0.5 0.7 0.6 0.4 1.5 1.9

Local wetland-impacted streams (Tegeler Fließ, Fenngraben, Pankea))

n 4 5 4 5 4 5 4 5 n.a 5 4 5 n.a 5 4 5

Min. 7.6 7.8 8.1 7.8 965 827 954 693 0.2 9.9 21.4 10.4 9.7 1.2

Fifth percentile 7.6 7.8 8.1 7.8 970 851 955 713 0.3 10.1 21.9 10.4 9.9 1.6

Mean 7.7 7.9 8.2 7.9 1,050 963 969 882 1.3 11.0 24.6 11.2 11.1 5.0

Median 7.7 7.9 8.2 7.9 1,028 968 963 872 0.8 11.4 25.2 11.3 11.5 5.8

95th percentile 7.9 7.9 8.3 8.1 1,162 1,071 987 1,097 2.6 11.6 26.5 12.1 12.0 7.7

Max. 7.9 7.9 8.3 8.1 1,181 1,093 990 1,145 2.8 11.6 26.6 12.1 12.1 8.0

SD 0.2 0.1 0.1 0.1 95 95 19 168 1.0 0.9 2.1 0.8 1.2 2.7

Local urban streams (Wuhle, Marzahn-Hohenschönhausener-Grenzgraben)

n 7 7 8 4 7 7 8 4 n.a 7 8 4 n.a 7 8 4

Min. 7.4 7.4 7.7 7.4 773 463 740 684 0.4 6.4 20.3 8.0 5.5 1.2

Fifth percentile 7.4 7.5 7.7 7.4 798 536 759 697 0.5 6.5 20.6 8.0 5.5 1.8

Mean 7.7 7.7 7.8 7.6 923 807 928 815 1.5 7.4 22.2 10.8 7.5 4.7

Median 7.6 7.7 7.8 7.6 903 857 857 819 1.7 7.4 22.4 11.0 7.4 5.6

95th percentile 7.9 7.9 8.0 7.7 1,049 965 1,228 926 2.3 8.4 23.6 13.3 9.5 6.4

Max. 7.9 7.9 8.0 7.7 1,080 966 1,311 936 2.4 8.6 23.8 13.5 9.7 6.5

SD 0.2 0.2 0.1 0.1 98 175 222 111 0.7 0.8 1.5 2.3 1.9 2.4

Effluent-impacted streams (Teltowkanal, Nordgraben, Panke b))

n 5 7 7 6 5 7 7 6 n.a 7 7 6 n.a 7 7 6

Min. 7.3 7.5 7.4 7.4 1,046 900 916 1,045 3.3 13.0 21.2 7.2 5.2 4.7

Fifth percentile 7.4 7.5 7.4 7.4 1,050 912 934 1,060 3.4 13.0 21.9 7.8 5.6 4.8

Mean 7.5 7.7 7.6 7.6 1,134 1,073 1,138 1,175 4.9 14.1 24.0 9.7 7.2 6.3

Median 7.5 7.7 7.6 7.6 1,087 1,170 1,233 1,187 4 13.5 24.2 10.1 7.0 6.1

95th percentile 7.7 7.8 7.9 7.9 1,265 1,184 1,245 1,277 7.7 16.1 25.5 10.8 8.8 8.0

Max. 7.7 7.8 7.9 8.0 1,269 1,185 1,245 1,280 8 16.3 25.6 11 9.0 8.2

SD 0.1 0.1 0.2 0.2 100 132 142 85 1.9 1.3 1.4 1.2 1.3 1.3

Groundwater

n 0 7 10 8 0 7 10 8 0 7 10 8 0 7 10 8

Min. n.a. 6.8 6.8 7.2 n.a. 879 539 536 n.a. 10.5 10.6 11.0 n.a. 0.1 0.2 0.2

Fifth percentile 6.9 6.9 7.2 893 673 663 10.5 10.6 11.5 0.1 0.2 0.2

Mean 7.2 7.1 7.4 1,471 1,311 1,111 11.8 12.1 12.9 0.4 0.5 0.7

Median 7.1 7.1 7.3 1,497 1,139 980 12.2 12.3 13.3 0.3 0.3 0.5

95th percentile 7.4 7.4 7.5 2,233 2,250 1,622 13.1 13.3 13.7 0.8 1.3 1.7

Max. 7.4 7.4 7.5 2,500 2,500 1,660 13.2 13.4 13.7 0.9 1.5 1.9

SD 0.2 0.2 0.1 542 596 373 1.2 0.9 0.9 0.3 0.4 0.7

Note: Locations marked (a) at entry into the city area and (b) further downstream.
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seasonally. In both the major and local streams, means ranged from

1.3 to 1.7�C in January up to 22.2–26.1�C in July. In effluent-

impacted streams, means were higher in January (4.9�C) and May

(14.1�C). Groundwater temperatures were stable �11–13�C all year.

DO in surface water also varied seasonally (reflecting temperature

and biological productivity) and was highest in January with means of

9.7–12.7 mg/L. Except for major surface waters, lowest DO occurred

in July (4.7–6.3 mg/L). In groundwater, mean DO remained

below 1 mg/L.

Regarding the major ions, the major streams had a tendency

towards being Ca-SO4-type, while local streams and groundwater

were more of a Ca-HCO3 type and effluent-impacted streams had an

intermediate composition, which trended more towards a stronger

Na-Cl influence (Figure 8).

In the PCA integrating all analysed data (Figure 9), the selected

first five dimensions respectively accounted for 93% (October), 87%

(January and May) and 90.6% (July) of the variability. For the first PC,

EC (October), stable isotopes (January, May, July) and Ca-HCO3 (July)

were the main contributors. For the second PC, Na in combination

with Cl, Ca-HCO3, K, B and Cl were most important. Besides the cor-

relation with Na and Cl, the effluent-impacted streams showed ele-

vated K and NO3 during all seasons (Figure 9). Additionally, a positive

correlation with Boron could be observed in January and July. In the

local urban streams, a correlation with elevated Phosphorus was

observed, except in May. To some extent, the groundwater samples

seemed to correlate with a higher Silica content.

5 | DISCUSSION

5.1 | What are Berlin's isotope dynamics in
precipitation and streamwater over the course of
the year?

Surprisingly few studies have applied stable isotopes in urban hydrol-

ogy across scales, making this one of the first comprehensive isotope

surveys in a large city. Our weighted LMWL resembled the German

LMWL (Stumpp, Klaus, & Stichler, 2014) but deviated from their

LMWL for Berlin by a higher intercept. This probably reflects the

higher resolution of our sampling and the exceptional climate condi-

tions. Despite this, precipitation isotopes followed the general season-

ality of winter rainfall being more depleted in heavy isotopes than

summer rain (see Dansgaard, 1964), though day-to-day variation

could always be marked. In streamwater, these seasonal variations

were damped, but to a markedly differing extent in the three refer-

ence streams sampled weekly. While the Spree was dominated by

gradual, but pronounced seasonal change, the Wuhle was character-

ized by short-term changes in response to individual events and the

Erpe was stable throughout the year. These differences are consistent

with the contrasting sizes and prevailing anthropogenic influences in

the catchments. In larger catchments, flow regimes are mainly con-

trolled by the non-urban upstream catchment and travel time to the

urban centre (Yang, Bowling, Cherkauer, & Pijanowski, 2011). As the

Spree drains an extensive catchment upstream, regional-scale

F IGURE 8 Piper plot
showing the major ion
composition of the water samples
taken during the seasonal surveys
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hydroclimatic events control the flow regime and the isotopic compo-

sition of streamwater flowing into the city, though these are modu-

lated by the large volumes of stored water in Berlin's lake systems.

The effects of summer evaporative fractionation from open water

areas, enhanced by low discharge and high temperatures in summer,

overprint these inflows, causing samples to deviate from the MWL.

In contrast, in local urban rivers with smaller catchments like the

Erpe and Wuhle, the flow regimes rather reflect the degree of imper-

meable cover and the structure of the urban drainage and sewer sys-

tem (Roodsari & Chandler, 2017). This is consistent with recent

studies suggesting that percentage impervious area, coupled with

tree cover and connectivity of storm drain systems, are the major

controls on hydrologic response in urban areas (Bell, McMillan, Clin-

ton, & Jefferson, 2016; Miller et al., 2014). In such cases, urban cover

can reduce mean transit times of streamwater from several years to

few days (Soulsby et al., 2014) and increases the dominance of youn-

ger waters (Soulsby et al., 2015). Consequently, the Wuhle's more

variable behaviour in both discharge and isotopic composition occurs

as the stream responds more directly to precipitation events as

urban storm drains are activated and imperviousness and urban

drainage contribute substantial amounts of stream runoff. The more

constant behaviour of the Erpe indicates sources with relatively

unchanging isotopic composition. Most of the catchment is located

outside Berlin's boundaries (Table 1) and only 21% is urban, while

most land use is agriculture (65%) and forestry (14%;

SenStadtUm, 2013b). Therefore, it has less direct storm drain con-

nectivity. Given the freely-draining nature of the soils, together with

shallow lateral groundwater flow above low permeability moraine

(SenStadtUm, 2019), this leads to limited storm period response and

a naturally groundwater-dominated flow regime. Additionally, efflu-

ents from the Münchehofe treatment plant account for 94% of sum-

mer and 55% of winter flow of the Erpe in Berlin (cf. BWB, 2019b;

SenUVK, 2019), also explaining the stable discharge and isotopic

composition of this stream.

F IGURE 9 Principal component analysis comparing seasonal correlations between different measured and analysed parameters
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5.2 | What are the spatio-temporal isotope
patterns of Berlin's surface and subsurface waters
during different seasons and wetness conditions?

The short-term hydrological responses of the Spree, Erpe and Wuhle

provide a context for understanding the large-scale seasonal patterns

and changes revealed by the synoptic surveys. Summer 2018 was the

warmest recorded in NE Germany with a precipitation deficit of more

than 40% compared to the long-term mean (Imbery et al., 2018). Sam-

pling after such exceptional conditions, including a summer with

heavy convective rainfall events, provided a unique opportunity to

monitor the drought effects and subsequent recovery of hydrological

conditions over a large urban area.

The enriched isotopic composition of Berlin's major surface waters

in October 2018 and July 2019 was particularly striking and indicates

significant evaporative losses from lakes and river channels. The effects

of non-equilibrium fractionation are evident in the widely distributed

negative d-excess (Dansgaard, 1964). While flows had increased by

January, the “memory effect” of this summer evaporation was still evi-

dent in enriched isotope values in the major rivers, and was not reset

until May 2019, although d-excess was positive by January. The

wetland-impacted urban streams also showed evaporation effects dur-

ing the October and July surveys. Here, saturated wetlands and fen

soils within the catchments may contribute to strong evaporation

effects in streams (Sprenger, Tetzlaff, Tunaley, Dick, & Soulsby, 2017).

The observed fractionation signals can enhance understanding of land

surface – atmospherewater and energy exchanges in urban areas. They

provide the basis for quantitative evaporation estimates by mass bal-

ance approaches as they have, for example, been performed for

regional lake networks in northern Canada (Gibson & Edwards, 2002).

Maps of isotopic signals provided insights into spatially distrib-

uted processes and the interactions of waters within Berlin. They

showed the isotopic effect of more depleted groundwater from local

tributaries on the Spree, despite their relatively low flow, and the

moderation of the isotopic composition of the highly enriched Havel

downstream of the Spree confluence in the west, especially during

warm summers. This overprint of the Havel signature by the higher

discharge of the Spree is consistent with earlier observations in west-

ern Berlin of Massmann et al. (2004).

5.3 | How can integration of isotope and
hydrogeochemistry data help to assess how time-
variance of urban hydrological processes influences
the quantity and quality of stream flow?

Whilst isotopes clearly help in understanding and disentangling the

sources and dynamics of stream flow generation in urban areas, the

use of additional hydrochemical variables in the PCA helped to enrich

our insights and test hypotheses on the provenance of water sources.

Combining isotope and hydrogeochemical data helped elucidate the

often unknown and time-variant fractionation effects of various water

uses and/or wastewater treatment processes.

The Ca-SO4-dominated water type of Berlin's major surface waters

reflects the sulphate-rich water of the Spree. This results from extensive

lignite mining in the Lausitz area (upstream of Berlin) and is intensified by

wetland drainage, atmospheric deposition and agricultural fertilizers

(Gelbrecht, Cabezas, Hupfer, & Zak, 2016; Zak et al., 2016). The isotopic

similarity of more depleted local urban streams and groundwater can also

be observed in the hydrogeochemical similarity of this group, particularly

in summer, confirming groundwater as the primary water source of

streams like the Wuhle. The important role of groundwater as a surface

water source in urban areas, despite the impact of anthropogenic system

components, has recently been highlighted by Follstad Shah et al. (2019).

Rapid groundwater recharge and discharge responses, as they have been

reported byMeriano et al. (2011) are, however, less likely in Berlin. Topo-

graphic and hydraulic gradients are low, though seasonal patterns of

recharge and groundwater discharge clearly have an impact on the Spree

system and its urban tributaries. Elevated phosphorous contents in

urbanized streams like the Wuhle, as well as heavy metals, can originate

from stormwater drainage (SenStadt, 2004).

Previous studies have utilized distinct isotopic signatures of local and

imported waters from remote areas to identify urban supply source com-

ponents (Houhou et al., 2010; Jameel et al., 2016; Tipple et al., 2017), or

water fromaquifers of different lithology (Demlie et al., 2008). In our study,

a clear separation of groundwater and effluent impacts in Berlin's surface

waters was not possible using isotopes alone. The similarity of the isotopic

signatures of groundwater and treated effluents reflects the “closed”

nature of Berlinwater supplies that are derived from local aquifers and sur-

face waters and thus, retain a similar isotopic composition. However,

unlike the hydrochemical similarity of local urban streams to groundwater,

effluent-impacted streams like the Teltowkanal andNordgraben showed a

positive correlation with Na, Cl, K and NO3 during all seasons and a weak

positive correlation with Boron. Elevated N and P loadings are characteris-

tic of treated wastewater released into these streams (Möller &

Burgschweiger, 2008). Similarly, Boron is indicative of treatedwastewater,

as it is used in detergents and usually inefficiently retained by sewage

treatment plants (e.g. Fox et al., 2002).

5.4 | Wider implications

Despite numerous challenges in applying isotope tracers in large, het-

erogeneous urban areas, our study shows that isotopes can signifi-

cantly contribute to disentangling the complex suite of hydrological

processes sustaining urban streams and water resources. Though our

study presented here provides a more qualitative overview of the sit-

uation in Berlin, it highlights the effectiveness of our generic

approach, which can be applied in most other cities. Moreover, with

increased data availability of other “emerging” micropollutants in

urban waste waters (e.g. pharmaceuticals, personal care products,

caffine, nicotine etc.), there is great potential for further constraining

runoff sources (Stuart, Lapworth, Crane, & Hart, 2012). Conjunctive

use of isotopes with such “new” tracers will provide a stronger basis

for directing more intensive quantitative studies based around more

specific research questions.
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In Berlin, gauging stations continuously monitor climatic and

hydrometric data. While these measurements provide useful quantita-

tive information about specific water fluxes, our study provides more

integrated, qualitative information on urban water sources and par-

titioning. By combining isotopes with other hydrogeochemical tracers,

we can distinguish natural (precipitation, groundwater) and

engineered urban water sources (effluent discharge, storm drains),

which has recently been highlighted as a major research challenge in

urban hydrology (e.g. Gessner et al., 2014; McGrane, 2016). As our

weekly isotope sampling of urban streams like the Wuhle already indi-

cated short-term variations in both stream discharge and isotopes,

there is potential for higher-resolution sampling to assess the time-

variant role of rainfall-runoff processes from impervious areas and

urban drainage systems, especially after large storm events. This may

facilitate the distinction between water from direct storm drains and

the “urban karst,” and a more quantitative estimation of associated

water ages and contributions from water sources, including CSOs,

through mixing models. The potential of using isotope data in more

advanced, process-based ecohydrological models in urban areas has

recently been highlighted by Bonneau, Fletcher, Costelloe, and

Burns (2017). Whilst such intensive work was beyond the scope of

the current study, the preliminary results reported here provided evi-

dence for us to now undertake such (sub-daily) sampling on the

Panke, which will be reported in future. Additionally, synoptic isotope

sampling at a high spatial resolution at the river Erpe will complement

the weekly sampling presented here and provide quantitative con-

straints on groundwater and waste water effluent controls on the

spatio-temporal variations in stream water composition.

In many urban areas, there is an increasing trend to implement

decentralized urban drainage systems and integrate low impact devel-

opments (LID) into new or existing urban structures. Such LIDs will be

essential in adapting stormwater management strategies to changing

precipitation patterns (Pyke et al., 2011). Their efficiency depends on

runoff from impervious surfaces being directed towards pervious

areas for infiltration, storage and release as baseflow or evapotranspi-

ration (Miles & Band, 2015). While implementing such LIDs, isotope

data can help constrain models to quantify the reduction in storm run-

off generation and changes to groundwater recharge, together with

the potential risk of pollution. Recently, several studies have

highlighted the importance of local groundwater as a water source in

urban areas (e.g. Follstad Shah et al., 2019; Meriano et al., 2011;

Schirmer et al., 2013). Identifying groundwater as an important water

source for local tributaries like the Wuhle or Erpe in our study high-

lights the importance to sustainably and conjunctively manage both

urban surface and groundwater resources.

In this context, current trends of temperature increases and dry

periods call for a much better understanding of groundwater recharge

under different types of urban surfaces. This includes both leakage

through impervious surfaces, and water partitioning under different

types of urban green spaces. The diverse range of green spaces in urban

areas (gardens, verges, parks, woodlands) has an important role in sus-

taining groundwater recharge and runoff generation processes, espe-

cially in water-limited regions like Berlin. Additionally, combining the

effects of urban green spaces with evaporation from urban streams,

which has been observed in major and smaller, local streams in our

study (e.g. the Tegeler Fließ), is likely to have an important cooling miti-

gation on the UHI effect in cities like Berlin (e.g. Gunawardena,Wells, &

Kershaw, 2017; Hathway & Sharples, 2012). Therefore, a more quanti-

tative estimation of urban ET remains an essential research challenge

to close the urban water balance. This will be crucial to optimize water

use with other objectives and ecosystem services, especially when

urban green space is being irrigated, in order to understand the trade-

offs of such water subsidy (Gómez-Navarro, Pataki, Bowen, &

Oerter, 2019). Current work at an ecohydrological observatory in

Berlin-Steglitz aims to quantify water partitioning under different types

of urban green spaces using stable isotopes and ecohydrological

models (cf. Douinot, Tetzlaff, Maneta, Kuppel, & Soulsby, 2019; Smith,

Tetzlaff, Kleine, & Soulsby, 2020).

While isotopes are clearly a valuable tool to identify water sources,

our study shows that they also facilitate a better understanding of water

losses in urban areas. Exceptionally warm and dry climate conditions in

2018 and 2019, as they are projected to increasingly occur in the future,

resulted in significant evaporation losses and enriched isotope ratios in

the Spree and Havel, which provide a major water resource for Berlin.

These extensive evaporation losses are mainly determined at the large,

regional scale in the upstream catchment but had significant impacts

within the urban landscape that persisted for months after the climate

conditions had changed. The persistence of these “memory effects”

highlights the potential intensity of the impacts of climate warming on

urban water resources. To secure a sustainable water supply for large

urban areas like Berlin in the future, long-term and catchment-wideman-

agement strategies based on field data, linked with various kinds of

hydrological models, are needed at nested scales. To conceptualize both

the natural and engineered system components in more sophisticated

ways, isotope data may be used to validate models used by utilities to

monitor water mixing or evaporative losses in operating water networks

(Tipple et al., 2017). Our current study already benefits from the cooper-

ation between research institutions and local authorities, providing data

and assistance in the city-wide, time-limited sampling process. However,

understanding and managing large-scale changes in urban water

resources will require the collaboration not only with water managers in

the city itself, but also with authorities responsible for the upstream, usu-

ally more rural, catchments. Such collaboration will be essential for

nesting large-scale studies of urban areas and in the larger context of

their associated catchments.

6 | CONCLUSIONS

Stable isotopes have outstanding potential to trace water fluxes in

complex urban areas across different temporal and spatial scales.

Large urban rivers develop a damped response to the isotopic season-

ality of rainfall and require regional-scale seasonal climatic variability

to alter their isotopic composition. Effluent discharge to smaller urban

streams results in a relatively stable isotopic composition. In contrast,

local streams in highly urbanized areas which are connected to
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stormwater drainage systems show marked short-term responses to

precipitation events in both discharge rates and isotope ratios. Sea-

sonal maps of isotopes and d-excess across Berlin revealed large-scale

isotope patterns and interactions of major and local streams under dif-

ferent wetness conditions. Most notable were the extensive evapora-

tion losses in Berlin's major surface waters during the summer

months, which were, to some extent, diluted by the confluence of

local, more depleted groundwater- and effluent-impacted streams. By

combining stable isotopes with hydrogeochemical data, we were able

to distinguish between natural and engineered water sources, despite

similar isotopic signatures of effluents and local groundwater, thereby

overcoming the limitations of previous studies in urban areas relying

solely on distinct isotope signatures for source identification. Besides

demonstrating how isotope tracers can be used to capture a wide

range of urban hydrological processes across various temporal and

spatial scales, the exceptional climatic conditions during our study

provide a first insight into how urban waters might react to future cli-

mate changes. Ongoing research is needed, especially to assess the

time-variant rainfall-runoff behaviour of urban streams through high-

resolution sampling, incorporating field data into different kinds of

ecohydrological models, and to investigate the infiltration behaviour

under urban green spaces to better understand urban groundwater

recharge and obtain a more quantitative estimation of urban

ET. While individual observations are specific to Berlin's water system,

the approach used here can be usefully transferred to other metropol-

itan areas.
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