A G ) s

SPACE SCIENCE

Geophysical Research Letters @

RESEARCH LETTER
10.1029/2019GL086615

Key Points:

« Weinvestigate the performances of a
binary classifier predicting
slip-event imminence in analog
models of megathrust seismic
cycling

e A 70-85 km-wide coastal swath is
the region producing the most
important information for the
imminence classification

« Length of time that we consider an
event imminent plays a primary role
in tuning the performances of a
binary classifier predicting the
imminence of analog earthquakes

Supporting Information:
« Supporting Information S1

Correspondence to:
F. Corbi,
fabio.corbi3@gmail.com

Citation:

Corbi, F., Bedford, J., Sandri, L.,
Funiciello, F., Gualandi, A., &
Rosenau, M. (2020). Predicting
imminence of analog megathrust
earthquakes with machine learning:
Implications for monitoring subduction
zones. Geophysical Research Letters, 47,
€2019GL086615. https://doi.org/
10.1029/2019GL086615

Received 10 DEC 2019
Accepted 9 MAR 2020
Accepted article online 12 MAR 2020

©2020. The Authors.

This is an open access article under the
terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in any
medium, provided the original work is
properly cited.

Predicting Imminence of Analog Megathrust Earthquakes
With Machine Learning: Implications for
Monitoring Subduction Zones

F. Corbi'?3 (2, J. Bedford® (2, L. Sandri* (), F. Funiciello® (2, A. Gualandi’ {2/, and M. Rosenau®

1Department of Earth Sciences, Institute of Geological Sciences, Freie Universitit Berlin, Berlin, Germany, 2Dip. Scienze,
Laboratory of Experimental Tectonics, Universita “Roma TRE”, Rome, Italy, *Helmholtz Centre Potsdam - GFZ German
Research Centre for Geosciences, Potsdam, Germany, “Istituto Nazionale di Geofisica e Vulcanologia, Bologna, Italy,
5Department of Geology and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA

Abstract subduction zones are monitored using space geodesy with increasing resolution, with the aim
of better capturing the deformation accompanying the seismic cycle. Here, we investigate data
characteristics that maximize the performance of a machine learning binary classifier predicting slip-event
imminence. We overcome the scarcity of recorded instances from real subduction zones using data from a
seismotectonic analog model monitored with a spatially dense, continuously recording onshore geodetic
network. We show that a 70-85 km-wide coastal swath recording interseismic deformation gives the most
important information on slip imminence. Prediction performances are mainly influenced by the alarm
duration (amount of time that we consider an event as imminent), with density of stations and record length
playing a secondary role. The techniques developed in this study are most likely applicable in regions of
slow earthquakes, where stick-slip-like failures occur at time intervals of months to years.

Plain Language Summary Machine learning, a group of algorithms that produce predictions
based on past “experience,” has been successfully used to predict various aspects of the earthquake
process, including slip imminence. The accuracy of those algorithms depends on a variety of data
characteristics, for example, the amount of data used for building the “experience” of the model. We focus on
this point using a scaled representation of a seismic subduction zone and a monitoring technique similar to
Global Navigation Satellite System. We identify the most useful surface regions to be monitored and the
parameter that most strongly influences prediction accuracy for the timing of upcoming laboratory
earthquakes. The routine implemented in this study could be used to predict the onset and extent of

slow earthquakes.

1. Introduction

The preparatory phase of large subduction earthquakes can be depicted as a period of slow, continuous stress
accumulation caused by the frictional interaction between converging plates (e.g., Hyndman et al., 1997).
However, as geodetic (Global Navigation Satellite System [GNSS]) observation networks have matured, it
has become apparent that there are significant variations of interplate locking before and/or after large
earthquakes. These include transient slow slip events, indicating sub seismic-cycle scale, short (days to
months) variations in the rates of stress accumulation/release (Heki & Mitsui, 2013; Loveless &
Meade, 2016; Mavrommatis et al., 2014; Melnick et al., 2017). Such variations result in nonsteady (transient)
surface motions measurable with space geodesy. Stress variations prior to large earthquakes may manifest as
a series of foreshocks gradually unzipping the plate interface—as in the case of the 2014 Iquique M 8.1 earth-
quake (Schurr et al., 2014)—or as accelerating aseismic creep—as suggested for the 2011 Tohoku M 9.0
earthquake (Kato et al., 2012; Mavrommatis et al., 2014). The recognition of these pre-earthquake transients
raises the potential for using them as a diagnostic tool for earthquake imminence. However, the scarcity of
recorded instances hinders understanding whether and which transient signal may be used as a reliable
indicator for earthquake prediction.

Machine learning (ML) represents a group of algorithms efficient in identifying indicators and
not-so-obvious (“hidden”) patterns in large data sets (“big data”). The possibility to train an algorithm and
use it for making accurate predictions based on the “past experience” is one of the complex tasks that ML
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can achieve (e.g., Bergen et al., 2019). Recently, the earthquake research community has demonstrated such
capability of ML to draw inferences about fault physics: The acoustic signal emitted by rock samples sheared
in a direct shear apparatus has been used for predicting the onset time of laboratory earthquakes
(Rouet-Leduc et al., 2017), for estimating the instantaneous fault analog friction (Rouet-Leduc et al., 2018),
and for predicting earthquake slip mode (Hulbert et al., 2019). Changing scale from laboratory to nature, ML
has been used to identify a tremor-like signal emitted by Cascadia's megathrust that tracks the instantaneous
displacement rate measured by a GNSS station (Rouet-Leduc et al., 2019).

Accordingly, we have possibly entered a new era of seismological discovery in which the full spectrum of
transient signals from seismogenic faults is identified with ML and in which ML might diagnose imminence
of events such as slow slip or even earthquakes. In other words, ML might be able to recognize and classify a
set of processes or a characteristic pattern diagnostic of the imminence of fault failure. To gather the
maximum benefit from such a novel approach, some technical points regarding the type and characteristics
of data to use should be addressed in advance. For geodetic networks, the key questions would be as follows:
Which region of the subduction margin is the most diagnostic? How important is the space-time data
coverage? How far in advance can coseismic slip be predicted?

To address these questions, we experiment here with ML binary classifiers for predictions of earthquake
imminence using GNSS-like surface deformation data from seismotectonic scale (analog) modeling
(Rosenau et al., 2017). Analog modeling allows us to experimentally overcome the lack of long time series
from real subduction zones, with a smaller physical model mimicking a multicentury history of seismic
cycling in a few minutes in the lab (see Hubbert, 1937, for theory of scaling in analog modeling). Such analog
model reproduces the basic features of earthquakes and seismic cycles, namely the elastic loading and
release of a frictional fault embedded in an elastic medium. Indeed, our model is strongly simplified with
respect to the natural prototype, where additional factors such as pore fluid pressure (e.g., Moreno et al., 2014;
Moreno et al., 2018) or off-megathrust fault networks (e.g., Wang & Bilek, 2011) might control seismicity.
Nevertheless, similar models have been shown to successfully reproduce complexity by means of the intrin-
sic variability of, for example, recurrence and slip patterns of natural systems to first order (e.g., Corbi
et al., 2013; Corbi et al., 2017; Rosenau et al., 2010, 2019). As in Corbi et al. (2019a), we here use the surface
deformation time series of such a model for ML-based analysis. ML provides a versatile tool for testing how
various data characteristics influence prediction performances. With respect to a previous study by Corbi
et al. (2019a), we here impose the following modifications:

1. Instead of framing the scientific problem with regression of time to failure, here we step toward binary
classification of alarm state—that is, the ML predicts whether a given deformation field is characteristic
of the few seconds that precede slip onset or not. Binary classification has the advantage of easy to inter-
pret metrics for evaluating the prediction performances.

2. Instead of using an ideal, uniformly spaced GNSS network extending all the way to the trench, here we
exclude data coming from above the analog offshore seismogenic zone to mimic limitations in geodetic
coverage at subduction zones (i.e., we use only data from above the inland aseismic zone). Hence, we
assume that the base of the seismogenic zone coincides with the coastline (Ruff & Tichelaar, 1996;
Saillard et al., 2017; Figure 1a).

We show that ML can be used for identifying the most informative region of the convergent margin regard-
ing imminent asperity failure and provides a useful indication of how many measurement points are needed
on the surface as well as the optimal record length.

2. Data, Method, and Metrics

Data used in this study are derived from a seismotectonic analog model that represents a subduction zone
characterized by two asperities of equal size and friction (Figure 1a; Corbi et al., 2017; details on the setup
are in Supporting Information S1). The model produces analog earthquakes equivalent to magnitude Mw
6.2-8.3 when scaled to nature, with a coefficient of variation in recurrence intervals of 0.5, similar to real
subduction zones (Williams et al., 2019). Here we use the data of Corbi et al. (2019a) that are available open
access in Corbi et al. (2019b). Data consist of a 400 s recording of incremental surface displacement (trench
parallel and orthogonal components; Figure 1b) capturing 40 seismic cycles. Displacement is measured with
a precision of few tens of um (i.e., few tens of m when scaled to nature) and at a resolution of few mm spacing
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Figure 1. Three-dimensional sketch of the analog model (panel a). The deformation measured at several points on the model surface (black points) is used for
building a predictor data set (colored lines in panel b). Trench orthogonal displacement, trench orthogonal component of velocity, and alarm state for one

target point (panel c). Synthetic GNSS stations selected by the sequential feature selection algorithm (panel d). A model with 5 s alarm duration, 200 s training, and
72 stations per dm” is shown. Black points and red circles highlight whether the trench normal or trench parallel components of the velocity field are selected,
respectively. Magenta circles highlight the position of the selected target points. Two-dimensional histogram with color coded number of stations counts (panel e).

between virtual GNSS stations (i.e., ~7 km when scaled to nature) using Particle Image Velocimetry PIV
(Sveen, 2004). PIV data can be considered equivalent to a spatially dense, continuous GNSS network.

Data are organized in a matrix of predictors X (3,000 rows by 1,508 columns) where each column corre-
sponds to “displacement measured at a synthetic GNSS station” and rows correspond to time steps (incre-
ments). We use exclusively the trench orthogonal and trench parallel components of the displacement
field as input features because they have been shown to be the most informative (among surface deformation
descriptors) for this model (Corbi et al., 2019a). For our target variables, we select nine target points distrib-
uted along the margin (Figure 1a) for which we identify the slipping time of analog earthquakes (i.e., experi-
mental time at which displacement rate exceeds 0.01 cm/s) and the slip onset ty,. Then, for each event, we
assign the label “alarm” at those time steps that are comprised between ts,-At and ty, (where At indicates
alarm duration) and “no alarm” at the remaining ones (Figure 1c). This procedure is applied at each target
point, so that the output is made of nine response vectors Y. Data are split into training and testing sets. We
use the supervised learning Random Undersampling RUSBoost ensemble algorithm running under Matlab
(Seiffert et al., 2008), which, in the training phase, “learns” the relationship between the displacement field
and the alarm state of each target point. The algorithm is then fed with testing data and predicts if, at a
specified time, a portion of the margin is in alarm given the current displacement field (Figure S1).

RUSBoost selects (subsamples) a random fraction of the most represented class (no alarm) in order to have a
balanced data set. This allows RUSBoost to be particularly effective in classifying an imbalanced data set as
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in our case, where alarms represent 3-27% of the observations, depending on alarm duration and selected
target point. After this initial step, RUSBoost proceeds, as in the Adaptive Boosting approach (e.g., Freund
& Schapire, 1997), with sequentially building an ensemble of binary decision trees where nodes are displace-
ments measured at various points on the model surface. For each tree, the algorithm computes the weighted
classification error and then increases weights for observations misclassified at a given step and reduces
weights for observations correctly classified, so that the following tree is trained with updated weights.
This procedure is repeated to progressively improve the classification performances (Supporting
Information S2).

Binary classification algorithms produce “positive” or “negative” outcomes depending on the identified
system state (i.e., alarm and no alarm). An event may occur or not (we truly have a slip event or not).
Based on the correctness of the predicted outcome, four cases are possible, as summarized by the confusion
matrix (Figure S2): true positive TP, true negative TN, false positive FP, and false negative FN. Precision and
recall are two basic evaluation measures for binary classifiers. Precision is defined as TP/(TP + FP) and tells
us how many times the raised alarm is correct over the total times we raised an alarm. Recall is defined as
TP/(TP + FN) and represents the number of analog earthquakes that have been forecasted by alarms over
the total number of earthquakes (both correctly forecasted and missed). The receiver operating curve
ROC and the precision-recall curve PR are two other useful indicators of model performance. The ROC is
a representation of recall against the false positive rate at various cutoff values used by the algorithm to
separate between alarm and no alarm and informs on how well the classifier separates the two classes.
The PR shows the trade-off between precision and recall and provides information about how effective a
classifier is without raising too many false alarms. The areas under ROC and PR curves (AUC-ROC and
AUC-PR) provide single measures of the classification performances ranging from 0 to 1, with 1 representing
a perfect classifier. Here we report all above-mentioned metrics and highlight that, in our case, AUC-PR is
more informative than the ROC, being independent from the larger fraction of no alarms of our time series
(Saito & Rehmsmeier, 2015).

3. Results
3.1. Sequential Features Selection to Identify the Most Informative Region of the Margin

In ML, feature selection (FS) is an important step that precedes model training, especially when a data set
has a number of features larger than observations. In our case, where the features to observations ratio
can be >1, FS discards less useful and redundant features to improve the model performance and avoid over-
fitting. FS, by reducing the number of features to interpret, also increases the interpretability of the ML
results. To perform FS, we used the Matlab algorithm sequentialfs on training data. sequentialfs considers
the interaction of features and selects a subset of them by sequentially adding one feature while keeping
track of the misclassification rate and features index. The minimum of the misclassification error is used
as stopping criterion. This way, sequentialfs identifies the most relevant features for classification. Since
the features that build our X are synthetic GNSS time series of known coordinates, sequentialfs highlights
the most diagnostic region of the margin. This approach implies that additional stations located outside
the region highlighted by sequentialfs would be surplus to requirements for predictions.

Figure 1d shows the location of the synthetic GNSS stations selected by the algorithm for each of the nine
target points. Except for Target Point 1 where trench normal and trench parallel components are of
equal importance (probably due to boundary effects), the trench normal component appears to be more
informative than the trench parallel one. The most informative synthetic GNSS stations generally face the
offshore asperity where the selected target point is located. We merged the nine groups of selected stations
into a 2-D histogram counting the number of times a synthetic station is selected in a given portion of the
margin. The histogram highlights a 10-12 cm-wide (or equivalently 70-85 km when scaled to nature) region
parallel and adjacent to the analog coastline as the most diagnostic area to monitor for successful
predictions, especially regions adjacent to the two asperities (Figure 1e).

3.2. The Role of Training Window Length, Density of Stations, and Alarm Duration

After FS, the ML algorithm is fed only with the most informative features. Our procedure then consists in
building and updating a predictive model three times using a shifting training window (Figure S3). The
number of updates has a minor influence on predictions (Figure S4). This procedure is repeated for each
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Figure 2. ML results. Comparison between observed and predicted alarm state as a function of time and space (i.e., for various tar§et points; panel a). The model
with best prediction averaged over the nine target points is shown (i.e., 5 s alarm duration, 200 s training, and six stations per dm®). A red line moving up in
panel a indicates an imminent analog earthquake occurring at that target point. Blue lines moving down indicate predicted alarms. The lack of blue lines indicate
the correct classification of no-alarm periods. Observed alarms longer than 5 s indicate two events occurring within the alarm duration window. A variety of
metrics describe the performances of the prediction (panels b—e). ROC and PR curves for each target point, respectively (panels f and g). Areas under PR and ROC

curves (panel h).

target point; the prediction model is thus an aggregate composed of nine time series. We compare the
predictions with observations as a function of space (i.e., at various target points) and time (Figure 2a). A
red line moving up highlights an observed alarm. If the corresponding blue line moves downward
simultaneously, it indicates the classifier correctly interpreted the current deformation field as leading to
failure in the near future. Different scenarios appear. Looking at the first 50 s of Target Point 2, for
example, we observe predicted alarms appearing with a delay with respect to observations, almost
perfectly on time, or when there is no alarm at all. This variation in model performance can be quantified
as follows: ML predicted correctly the 80% of alarms (i.e., precision), and 90% of no-alarm predictions
were reliable (i.e., negative predictive power; Figures 2b- 2h). Predictions for target points located above
the barrier (i.e., Target Points 4-6) display relatively worse performances, with precision decreasing to
~50% due to the smaller number of instances available for the training if compared to target points
located above the asperities.
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We repeated the above procedure 80 times, exploring the role of training window length (i.e., record length),
density of stations, and alarm duration, following a 3-D grid search approach (Figure 3a). In particular, we
varied the training window length in the 100-200 s range, or equivalently for 2-10 analog seismic cycles
depending on the training window length and target point; density of stations from 4 to 72 stations per
square decimeter, or equivalently 6 to 107 stations per 100 km? (see Supporting Information S1 for
information about scaling); and alarm duration from 1 to 5 s, or equivalently 0.05 to 0.25 the average seismic
cycle duration (a rough estimation of the ratio between slip and stick phases in nature is in the order of 10®
for large subduction earthquakes and 10" for slow earthquakes; see section 4.2). For each aggregate we
report AUC-PR averaged over the nine target points as a single parameter describing the prediction
performance of the aggregate. Independently from alarm duration, we generally observe that models with
longer training have higher AUC-PR than models with a short training. Such improvement appears more
evident for models with higher alarm durations (Figure S5). The effect of station density in the explored
range shows AUC-PR oscillating with unclear trends. In general, the effect of station density and training
window length on prediction performances for a given alarm duration is smaller than 10%. The highest
average AUC-PR value has been recorded for the longest record (i.e., 200 s) and a relatively sparse (i.e.,
six stations/dm?) network. A clear increase of average AUC-PR emerges upon comparing models with
increasing alarm durations (Figure 3a).

4. Discussion

4.1. Implications for Monitoring Subduction Zones

We have used GNSS-like data from an analog model reproducing multiple subduction megathrust seismic
cycles to feed a ML algorithm that predicts the imminence of a slip event. We have identified the most
important features to feed into this algorithm and have tested influence of training data size, imminence
duration, and measurement spatial density on the performance of the binary classifier.

From feature selection, we found that the region bringing the most important information is located along a
10-12 cm-wide (or equivalently 70-85 km when scaled to nature) swath parallel and adjacent to the
coastline, where the highest displacements are measured. This finding supports a scenario where signs of
imminent failure come from the downdip edges of asperities, being the closest to the coastline, in agreement
with regions of highest shear stresses found in mechanical modeling studies (Biirgmann et al., 2005; Moreno
et al., 2018). The trench-normal component of displacement appears more informative than the trench
parallel one, likely due to its larger signal caused by trench perpendicular convergence. Unfortunately, we
had no access to vertical deformation, and it would be interesting to test whether these data could further
improve the predictions. It would also be beneficial to test whether the width of the informative swath scales
with the width of the seismogenic zone. The recent development of seafloor geodetic observations in some
margins affords us better updip resolution of interplate coupling (e.g., Yokota et al., 2016) and coseismic slip
(e.g, Romano et al., 2012). Because in our approach ML primarily tracks the loading and unloading history of
the forearc (Corbi et al., 2019a), we tested to what extent offshore kinematic observation would improve the
prediction. To do so, we first checked which region would be highlighted by sequentialfs assuming the avail-
ability of a dense network of stations both onshore and offshore. In this case, the vast majority of informative
stations would be offshore, centered above the asperities along strike and with a preferential elongation of
the network along the dip (Figure S6). Since implementing such a dense offshore network would be too
expensive, we thus tested the effect of the availability of only two stations centered above the asperities or
an array of nine offshore stations aligned along the margin, in addition to onshore stations. Taking an
onshore network of roughly one station every 50 km as a reference, we observed an improvement (between
3% and 73% depending on alarm duration and network configuration) of the predictions performances for
both tested configurations (Figure S7). In particular, we found that for the short alarm durations, the nine
stations configuration provides the best result, while upon gradually increasing the alarm duration, the
two stations configuration has the best performances. These findings strengthen the idea that having access
to the outer wedge deformation would be advantageous for future discoveries while also showing that the
optimal configuration to use depends on the investigated target.

We have also shown that, under the studied configuration and with the adopted technique, a short duration
(roughly 0.05-0.10 the duration of analog seismic cycles) prediction is unfeasible—even if a dense network
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with a record of up to 10 cycles is available. This is due to our framing: The large number of stations creates a
wide X with many features (i.e., columns) and few observations (i.e., rows) that are controlled by number of
events and alarm duration (at least in the investigated range of training window length and earthquake
recurrence time). Therefore, ML has too few data for classification so that a given deformation can be
interpreted either as an alarm or a no alarm. On the contrary, if we ask ML for a less focused prediction
(e.g., 0.15-0.25 times the duration of analog seismic cycles), the training has a larger number of instances,
because at longer alarm duration corresponds a longer X and the algorithm can better classify the deforma-
tion field. Increasing the alarm window also increases the chance of getting a slip event in the given window.
Therefore, an improvement of prediction performances is expected. We show that the improvement we get is
more significant than what would be expected by chance using error diagrams (Figures 3b- 3f). Error
diagrams plot the fraction of alarm time versus the fraction of failures to predict (i.e., 1- fraction of events
correctly predicted), and they are considered a useful earthquake predictability measurement
(Kagan, 2007). In these diagrams an optimal prediction would correspond to a point near the diagram origin
at (0, 0), while a random forecast would fall along the diagonal connecting (0, 1) and (1, 0). We labeled a
predicted event if at least one declared alarm falls within the observed alarm window. Each point on the
graph represents the prediction at a given target point for different training window lengths and density
of stations. Comparing various models with increasing alarm durations, we observe that the cloud of points
moves progressively toward smaller values of fraction of failure to predict with only a minor shift toward
large fractions of alarm time, as highlighted by the downward shift of centroids (i.e., the arithmetic mean
position of all the points in the figure) of the points in error diagrams. This indicates that models with longer
alarm durations are more precise while requiring almost the same number of declared alarms as models
with short alarm durations (Figure S8).

Also apparent from our results is that the availability of data with high spatial resolution is less important
than having access to long time series in which the investigated phenomena repeat several times (e.g., 10
times). The observation that a better classification is achieved for models with longer alarm durations raises
the additional argument of the impact of sampling rate, because sampling interval together with alarm
duration contribute to the number of data with alarm labels. To test the role of sampling interval, we run
seven additional models with fixed parameters (i.e., alarm duration of 5 s, training window length of
200 s, and density of stations equal to 6/dm?) and varying sampling intervals in the 0.13-3.25 s range. We
found that, with exception of the smallest interval, classifications become progressively more reliable redu-
cing the acquisition interval (Figure S9). This suggests that possibly, a better classification may be achieved
also for short duration alarms by monitoring the experiment with higher frequency. This observation
supports a scenario where GNSS, given the higher acquisition frequency, is more useful than InSAR when
attempting to export the proof of concept tested in this study to natural subduction zones.

4.2. Unlocking the Possibility to Predict the Onset of Slow Earthquakes

Our analysis showed that, in reconstructing the spatiotemporally complex forearc loading history, ML can
predict the timing and size (tracking simultaneous alarms at various target points) of analog megathrust
earthquakes under given circumstances of relatively long alarms and a relatively long observation record.
Laboratory models represent the ideal candidates for attempting this type of prediction given their ability
to produce the necessary observational data and to repeat a given process several times (e.g., Corbi
et al., 2019a; Rouet-Leduc, 2018). Here we have investigated the impact of data space-time distributions on
the ability of a ML-based technique to predict the onset of analog earthquakes using geodetic-like observa-
tions. We found that, having access to the deformation history of about 10 cycles at a limited number of sta-
tions, ML can reach a precision generally larger than 0.7 (0.5 minimum value over the nine target points;
Figure 2b) and with very few false alarms (false positive rates <0.1; Figure 2e). In nature we do not have
access to geodetic time series including multiple large subduction earthquakes to test this method.
However, so-called slow events, with slip durations of few tens of days (Obara, 2002), are potential candidates
to test our approach on. Cascadia is one of those subduction zones where roughly once per year (depending
on the latitude) the megathrust hosts slow slip episodes and where the geodetic record is more than 10 years
long (e.g., Michel et al., 2019). Given the similarity in space-time recurrence behavior (with partial ruptures
alternating with larger events) and deformation pattern (with alternating trenchward and landward surface
velocities), we suggest that ML could be applied to predict the onset and the extent of slow slip in this area.
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5. Conclusions

We investigated the role of space-time coverage and alarm duration on the performance of analog earth-
quake prediction. We found that alarm duration plays a primary role in tuning the performances of a binary
classifier. A sharp, accurate analog earthquake prediction is unfeasible with the algorithm used in this study,
even in a simplified system with a perfectly designed monitoring network. But alarm periods become in rea-
sonably good agreement with observed earthquakes when tens of seismic cycles have been recorded and
when the alarm duration is longer. These results can be further improved by tuning the network design
and acquisition rates. Given these findings, we propose that it might be possible to predict the onset and
extent of slow earthquakes in real subduction zones by applying similar ML approaches to those developed
in this study on GNSS time series.

5.1. Data and Material Availability

All data and materials used in the analysis are available through GFZ Data Services and published open
access in Corbi et al. (2019b).
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