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Abstract Private precaution is an important component in contemporary flood risk management and
climate adaptation. However, quantitative knowledge about vulnerability reduction via private precautionary
measures is scarce and their effects are hardly considered in loss modeling and risk assessments. However,
this is a prerequisite to enable temporally dynamic flood damage and risk modeling, and thus the evaluation of
risk management and adaptation strategies. To quantify the average reduction in vulnerability of residential
buildings via private precaution empirical vulnerability data (n = 948) is used. Households with and without
precautionary measures undertaken before the flood event are classified into treatment and nontreatment
groups and matched. Postmatching regression is used to quantify the treatment effect. Additionally, we test
state‐of‐the‐art flood loss models regarding their capability to capture this difference in vulnerability. The
estimated average treatment effect of implementing private precaution is between 11 and 15 thousand EUR per
household, confirming the significant effectiveness of private precautionary measures in reducing flood
vulnerability. From all tested flood loss models, the expert Bayesian network‐based model BN‐FLEMOps and
the rule‐based loss model FLEMOps perform best in capturing the difference in vulnerability due to private
precaution. Thus, the use of such loss models is suggested for flood risk assessments to effectively support
evaluations and decision making for adaptable flood risk management.

Plain Language Summary Private precautionary measures such as adapted building use, sealing
basements and purchasing flood barriers reduce flood damage to residential buildings. Using an empirical
dataset consisting of 948 flooded households in Germany, we estimate that the average loss reducing
effect of implementing private precautionary measures is 11‐15 thousand EUR per household. This is
approximately equal to 27% of the average building loss suffered by the flooded households (48000 EUR).
Despite this significant risk mitigation effect, these precautionary measures are hardly considered in flood
risk assessment modelling. This results in biased flood loss predictions being used for evaluating risk
management strategies. Hence, we compare state‐of‐the‐art flood loss models in respect to their ability to
account for building loss reduction due to private precaution. From all tested flood loss models, the expert
Bayesian Network based model BN‐FLEMOps and the rule‐based loss model FLEMOps are best able to
capture the damage reducing effect of private precaution. These models can be valuable for evaluating
adaptable flood risk management strategies.

1. Introduction

An integrated approach toward flood risk management is conceptualized and accepted in many countries
worldwide (Merz, Kreibich¸ et al., 2010). These concepts consider that flood defenses might fail and thus
complement flood protection with nonstructural solutions, for example, private precaution, land use
planning, and insurance (Bubeck et al., 2017; Kreibich et al., 2015; Kunreuther et al., 2009). Burby et al.
(1988) revealed that floodplain management is able to divert development away from floodplains and reduce
potential flood damage. According to section 5 of the German Federal Water Resource Act, it is the
obligation of every person who is prone to flood risk to undertake appropriate actions that are reasonable
and within one's means (Rolfsen, 2009). Reliable flood risk and cost‐benefit analyses are essential for
efficient risk management, since they support optimum investments in adaption measures. Cost‐benefit
analyses need to consider all suitable risk mitigation measures, associated costs, and expected flood losses,
since incomplete accounting of costs and benefits, for example, only structural measures considered, will
lead to a deviation from the global optimum in the analyses (Kreibich et al., 2014). The economic damage
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from floods has been increasing over the last decades, mostly due to societal factors such as increased stan-
dard of living, real per capita wealth, and population increase (Barredo, 2009; Mechler & Bouwer, 2015), and
this trend is likely to continue (Intergovernmental Panel on Climate Change (IPCC), 2012; Jongman et al.,
2014). Assessments need to account for this dynamic nature of risk to be able to detect relevant changes in
risk and initiate appropriate adaptation to changes (Kreibich et al., 2014). Thus, there is a need to accurately
estimate flood risks over long time periods. To be able to capture temporal dynamics in flood loss and risk,
which is also a prerequisite to enable evaluations of risk management and climate adaptation strategies, loss
models that are able to account for differences in vulnerability, for example, due to private precaution, are
necessary.

Flood risk is influenced by a broad range of characteristics and processes, which can be categorized into
hazard, exposure, and vulnerability (IPCC, 2012). Understanding the role of these components for changes
in risk is essential for effective adaptation. Few studies are available, which investigate the role of vulnerabil-
ity, using modeling (Jongman et al., 2015; Mechler & Bouwer, 2015) or empirical (Kreibich, Botto, et al.,
2017) approaches. There are various definitions of vulnerability, and many vulnerability concepts consider
a quite broad context (e.g., Brooks et al., 2005; Kelly & Adger, 2000; Turner et al., 2003). Additionally, there
are suggestions to complement the concept of vulnerability with resilience, which adds considerations of
recovery (Bruneau et al., 2003; de Bruijn, 2004; Fekete et al., 2014). For our study, we follow the natural
sciences oriented approach, which defines vulnerability as the characteristic of a system that describes its
potential to be harmed (Gouldby et al., 2005; IPCC, 2012). Thus, vulnerability is the susceptibility of a house-
hold to flooding, which is altered by precautionary measures as well as by changes in household or building
characteristics (Few, 2003).

Precautionary measures that are commonly implemented among private households to reduce residential
building loss include waterproof sealing, flood adapted use, and flood adapted interior fitting (Kreibich
et al., 2005, 2015). It is generally assumed that precautionary measures are effective in mitigating flood losses
(De Moel et al., 2014; Dutta et al., 2003; Holub & Fuchs, 2008), and also some empirically based quantitative
information is available: The positive effect of private precautionary measures was revealed by loss reduc-
tions of 35% and up to 50% between two similar flood events in 1993 and 1995 at the Meuse and the
Rhine Rivers, respectively, where many households had undertaken precautionary measures after the flood
in 1993 (Bubeck et al., 2012; Wind et al., 1999). Some studies quantified the damage‐reducing effect of indi-
vidual precautionary measures and identified the most effective ones: These include scientific studies based
on empirical damage data (e.g., Hudson et al., 2014; Kreibich et al., 2005; Poussin et al., 2015) as well as prac-
tical studies based on expert judgment and/or a rather not transparent database (e.g., ABI, 2003; Defra, 2008;
ICPR, 2002). A study in France identified elevating the ground floor to be the most effective measure in redu-
cing the damage to buildings by up to 5,500€ and to home contents by up to 6,500€ (Poussin et al., 2015).
Studies in Germany identified the measures flood adapted use and flood adapted interior fitting as the most
effective precautionary measures with building loss reductions of about 50% or in terms of absolute loss
reductions of over 10,000€ (Hudson et al., 2014; Kreibich et al., 2005). On the other hand, cost‐benefit ana-
lyses revealed low‐priced measures like elevating the boiler and securing the oil tank as the most cost‐effective
ones (Kreibich et al., 2011, 2012; Poussin et al., 2015). Depth‐damage curves were developed for different
types of flood proofing adaptations through flood and exposure simulations (Dawson et al., 2011).

Estimating the damage‐reducing effect of precautionary measures from observed flood loss data should con-
sider the possible bias due to confounding variables. One approach was to estimate the difference in average
flood loss experienced by households with precaution and households with no precaution, while controlling
for similar inundation depth (Kreibich & Thieken, 2009) or inundation depth and building characteristics
(Kreibich et al., 2011). This approach to analyze controlled household groups faces two challenges: (1) con-
trolling for hazard and building variables results in small samples that can be used for further analysis and
(2) controlling the influence of a large number of variables is not feasible. In order to overcome these chal-
lenges, Poussin et al. (2015) developed a regression‐based method to determine the effectiveness of indivi-
dual precautionary measures by controlling for the effects of potential flood risk variables. Another
suitable approaches to control for confounding variables are matching techniques, since they tests causal
inference with fewer assumptions than typical regression models, using a smaller, preprocessed data set
(Rosenbaum&Ruby, 1983). For instance, Aldrich (2012) used five different methods of matching on propen-
sity scores, that is, kernel, radius, nearest neighbor, nearest neighbor with replacement, and Mahalanobis

10.1029/2018EF000994Earth's Future

SAIRAM ET AL. 236



matching, to investigate the influence of social capital on the pace of population recovery following the 1923
Tokyo earthquake. Allaire (2016) tested the effectiveness of online information and social media in enabling
households to reduce disaster losses using propensity score matching (PSM); that is, nearest neighbor and
kernel matching was undertaken followed by a postmatching regression analyses. That is, the average treat-
ment effect (ATE) was estimated using the matched sample to run postmatching regression of the outcome
on covariates that are associated with flood losses, but not necessarily the likelihood of using social media.
Hudson et al. (2014) implemented expert‐selected PSM to quantify the treatment effect of different precau-
tionary measures on building and content losses. This method is able to control for an extensive set of vari-
ables, that is, all variables that are likely to introduce selection bias. Our study builds on these approaches to
determine the ATE of private precaution in general (not focused on individual measures) by matching based
on confounders of private precaution and applying postmatching regression controlling for variables
describing flood hazard, warning, and emergency measures.

Various flood loss models have been developed for estimating direct economic loss to buildings (Carisi et al.,
2018; Merz, Hall, et al., 2010; Schröter et al., 2014; Smith, 1994). Many models represent the loss in terms of
relative loss, which is the ratio between costs of loss and the value of asset at the time of the event. A standard
approach is depth‐damage functions that model the loss as a function of one variable, that is, inundation
depth, commonly differentiated according to the building type or use (Grigg & Helweg, 1975; Penning‐
Rowsell et al., 2005; Smith, 1994; White, 1964). Recently, multivariable flood loss models have been devel-
oped. For instance, FLEMOps+r (Elmer et al., 2010) is a rule‐basedmodel to estimate flood loss to residential
buildings based on five different classes of water depth, three individual building types, two classes of build-
ing quality, three classes of flood frequency, three classes of contamination, and three classes of private pre-
caution. Further, more complex models, based onmachine learning algorithms and covering various aspects
of flood damage processes, are being developed. Examples are multivariable tree‐based models (Hasanzadeh
Nafari et al., 2016; Kreibich, Di Baldassarre, et al., 2017; Merz et al., 2013). They do not require any special
treatment for discrete and continuous variables and no specific prior assumptions about the distributions of
variables. Bagging decision tree is an ensemble approach with a number of individual trees. The loss esti-
mate is then determined using the mean as the prediction of the ensemble of trees. Also, Bayesian networks
are used in flood loss estimation (Schröter et al., 2014; Vogel et al., 2014; Wagenaar et al., 2018). Bayesian
networks are Directed Acyclic Graphs (DAG) constructed from assertion of dependencies and principle of
conditional independence (Heckerman, 1998). They have the advantage of inherently quantifying uncer-
tainty associated with the loss estimation. Thus, a variety of models with varying complexities and working
concepts are currently available, and it is not trivial to decide which one to use for a specific application
(Apel et al., 2009; de Moel et al., 2015; Figueiredo et al., 2018). Several studies have tested and compared var-
ious flood loss models in respect to their predictive accuracy and reliability (e.g., Cammerer et al., 2013; Gerl
et al., 2016; Hasanzadeh Nafari et al., 2016; Jongman et al., 2012). In contrast, to the best of our knowledge,
no study so far has examined the ability of loss models in capturing differences in vulnerability due to private
precaution. However, loss models with this ability are necessary to enable temporally dynamic flood damage
and risk modeling and thus the evaluation of risk management and adaptation strategies.

Hence, our study aims at quantifying the average loss‐reducing effect of private precaution, by taking into
account possible biases due to confounding variables, and to assess howwell different types of flood loss esti-
mation models are able to represent this difference in vulnerability.

2. Data and Methods
2.1. Description of Data Set

The data set contains flood loss data collected via cross‐sectional telephone surveys of private households
that had suffered from losses due to floods in 2002, 2005, 2006, 2010, 2011, or 2013 mainly in the Elbe and
Danube catchments in Germany (Table 1). On basis of flood reports, press releases, and flood masks derived
from satellite data (www.zki.dlr.de), lists of inundated streets were compiled separately after one or two
flood events. On basis of these lists, property‐specific random samples of potentially affected households;
that is, their telephone numbers were selected from the public telephone directory. Property‐specific means
that only one household was interviewed per address. Computer‐aided telephone interviews were underta-
ken in independent campaigns in April/May 2003, in November/December 2006, in February/March 2012,
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and in February/March 2014 (Table 1). In 2003, households from the list of telephone numbers were
sampled randomly. In the following campaigns, comprehensive surveys were conducted; that is, all the
researched telephone numbers were contacted. Each interview was focused on one specific flood event. At
the beginning of the interview, it was asked if the household had suffered losses due to the specific flood
event; the interview was only continued if this was the case. Thus, the data set does not contain cases,
where the precautionary measures fully prevented loss. This limitation of the data set is considered when
interpreting the results. At the beginning of the telephone call, the person on the phone was asked who in
the household has the best knowledge about the flood event and the incurred economic losses. Then the
interview was undertaken with this person. The questionnaires for all the survey campaigns contained
about 180 questions including aspects of hazard (e.g., inundation depth, duration, and velocity), flood
experience and awareness, early warning, emergency and precautionary measures, building and socio‐
economic characteristics, and building and content losses. Building loss includes all costs (e.g., costs of
wages and material) that are associated with repairing the damage caused by floods to the building
structure. Damage may be due to moisture penetration as well as cracks, pushed in doors and windows,
subsidence, or deformation of walls and ceilings, etc. Repair works may include, for instance, plastering,
laying bricks, replacing construction components, or broken windows. Building losses are adjusted to
prices as of 2013 (inflation) by adjusting the reported loss estimates given at the time of the events by the
building cost index (DESTATIS, 2013). The losses reported by the surveyed households were believed to
be reliable, since most people had restored their building by the time of the survey (except for after the
2002 flood; Kienzler et al., 2015) and had claimed their losses either from government funds or from their
insurers. The responses from the survey after the 2002 flood was confirmed by comparing it with official
loss data provided by the Saxon Bank of Reconstruction, which looked after providing governmental
disaster assistance after the 2002 flood in the federal state of Saxony (Thieken et al., 2005). Nevertheless,
data collected via surveys is associated with uncertainty, which is however difficult to quantify since
hardly alternative means to measure these variables exist. The building loss ratio was calculated
consistently for all surveys as follows: the absolute losses reported by the surveyed households are divided
by the building values as at the time of the flood event. Actuarial valuation method VdS guideline 772
1988‐10 (Dietz, 1999), which is commonly used in the insurance sector for Germany was used to estimate
absolute values of residential building in terms of replacement costs (in contrast to depreciated values). In
order to apply this valuation, some attributes from the survey responses such as total floor space, basement
area, number of storeys, and roof type are used. In respect to precautionary measures people were asked
about the kind of measure (check list and additional open answers possible and multiple answers possible)
and the time of realization (check list: undertaken before the flood, after the flood, planned within the next
6 months, and not intended). The check list contained among others the following building precautionary
measures: adapt interior fitting, adapt use, and adapt building structure. Adapting interior fitting involves
using less expensive fittings that are easily replaceable or preferably water proof fittings in lower floors;
adapting usage to floods means for instance to use the flood endangered floors in a low‐value way;
Adapting building structure to floods include structural measures like sealing the basement. These measures
are also sometimes referred to as passive preparedness measures (Cumiskey et al., 2018) undertaken often
after flood events during the reconstruction phase, however, always much before an event. Thus,

Table 1
Flood Surveys: Computer‐aided Telephone Interviews With Private Households Who Suffered Flood Loss

Characteristics Surveys

Date of survey: April/May 2003 November/December
2006

February/March 2012 February/March 2014

Flood(s): August 2002 August 2005, April 2006 August 2010, January 2011 June 2013
Affected regions Elbe and Danube

catchments
Elbe and Danube

catchments
Elbe, Oder, and Rhine

catchments
Elbe, Danube, Rhine, and Weser

catchments
Number of households
interviewed:

1697 461 658 1652

Response rate 15% 18% 16% 17%
Sampling type random comprehensive comprehensive comprehensive
References Thieken et al. (2007) Kreibich et al. (2011) Kienzler et al. (2015) Kreibich, Di Baldassarre, et al. (2017)
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precautionary measures are not dependent on event forecast and early warning information, in contrast to
emergency measures. The questionnaire included also questions that reveal the perception of the
interviewee regarding aspects like effectiveness of precautionary measures, usefulness of early warning
information, and the quality of their building. People were asked to assess these qualitative variables on a
scale from 1 to 6; the meanings of the end points of the scales were given to the interviewee. Indicators
were developed for some variables such as flood experience, emergency measures, and warning
information. Variables used in this study are described in Tables 2 and 3. The corresponding questions,
possible options for answers, and score computation for indicators are included in supporting information
S.I.1 (S.I.1.1 ‐ S.I.1.3). Further details about the development and calculation of indicators are given in
Thieken et al. (2005) and Elmer et al. (2010). More information about the individual flood events, the
surveys, and their results were published in Thieken et al. (2007), Kreibich et al. (2011), Kreibich, Botto,
et al. (2017), and Kienzler et al. (2015). A total of 4,468 interviews were completed, of which 2,671
interviews furnished building loss in EUR. If one or more of the precautionary measures are not
practically applicable for a particular household, this data set is not included in the analysis. For example,
households with no basement/cellar are not potential candidates for all structural adaptation measures
(e.g., sealing the basement). Hence, the households with no basement are removed from the analysis.
Since the methodology does not deal with missing variables, households with incomplete data are
removed. Thus, data consisting of 974 households with complete observations are available for the analyses.

Table 2
List of Potential Confounders of Private Precaution

Categories Attributes Type Attribute explanation‐range, unit

Building characteristics Building quality ordinal 1 – very good; 6 – very bad
Building characteristics may induce limitations
or technical feasibility to be able to undertake
some precautionary measures (Cumiskey et al., 2018).

(bq)
Building area continuous [24,299997] sq. meters
(ba)
Single‐family house dichotomous 0 – no, 1 ‐ yes
(bt1)
Multi‐family house dichotomous 0 – no, 1 ‐ yes
(bt2)
Building value corrected for
inflation 2013

continuous [98496, 10411183] EUR

(bv)
Number of flats in the building continuous (1,45) flats
(nfb)

Socio‐economic attributes Ownership – Apartment dichotomous 0 ‐ tenant, 1 – apartment owner
(own_1)People from varying socio‐economic groups vary

in aspects like sense of responsibility, willingness to
respond and ability to invest in mitigation measures
(Bubeck et al., 2012; Cumiskey et al., 2018).

Ownership – building dichotomous 0 – not building owner, 1 – building owner
(own_2)
Age of the interviewee continuous [16,99] years
(age)
Household size continuous [1,20] persons
(hs)
Household monthly net income
indicator

ordinal 11 = below 500 EUR to
16 = 3,000 EUR and more

(inc)
Flood experience and awareness Knowledge about flood hazard dichotomous 1 – Has sufficient knowledge,

0 – Has no knowledge• Flood experience and strong social networks improve
awareness about hazard and coping appraisal
(Atreya et al., 2017; Bubeck et al., 2013;
Kreibich et al., 2005; Parker et al., 2007).

(kh)
Flood experience ordinal 0 – no flood experience,

9 – recent flood experience(fe)
Neighborhood preparedness
programs

dichotomous 1 – participated in neighborhood programs,
0 – not participated in neighborhood programs

(neigh_ind)
Flood insurance dichotomous 1 – Has flood insurance,

0 – Has no flood insurance(ins_ind)
Perceived effectiveness of private
precaution

ordinal 1 = very efficient to 6 = not efficient at all

(epre)
Event nominal Flood events in 2002, 2005, 2006, 2011, and 2013
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2.2. Difference in Vulnerability Between Households With Respect to Private Precaution
2.2.1. ATE Considering Selection Bias
A dichotomous indicator (0/1) is used to distinguish private households into low/high vulnerability with
respect to implementation of precautionary measures (pre). Private precautionary measures considered
are adapt interior fitting, adapt use, and adapt building structure. The indicator for private precaution takes
a value of 1 for households with one or more of these precautionary measures implemented before the flood
(treatment group) and 0 for households with none of these measures implemented before the flood (control
group). Actually, many of the households have undertaken several precautionary measures, which differ in
their way how they mitigate flood damage to the building structure and function jointly in the case of a
flood event.

The average effect of private precaution in reducing building structure losses in EUR, referred to as the ATE,
contributes to the differences in vulnerability between the two groups. ATE is estimated using the Roy‐
Rubin model (Roy, 1951; Rubin, 1974):

ATE Tð Þ ¼ E Y T ¼ 1ð Þ−Y T ¼ 0ð Þ½ � (1)

where T is the treatment—implementation of one or more private precautionary measures (1/0). Y is the
outcome that is influenced by the treatment, that is, the reported building loss in EUR.

Considering the heterogeneity among the households with respect to building characteristics, socio‐
economic attributes, flood experience, and awareness, the observed difference in losses between the two
groups may not be necessarily only due to the effect of private precaution. This is due to the fact that the
households from treatment and control groups have different probabilities of undertaking private precau-
tion. The attributes that influence a household to undertake private precaution are the confounding vari-
ables or confounders of private precaution (Table 2). The bias in ATE caused due to the effect of
confounding is called selection bias. Matching households from treatment and control groups based on
the sufficient set of confounders provides an appropriate solution to get rid of selection bias. It is important
to only include pretreatment variables to the list of confounders, whose measurement is not altered by the
implementation of private precaution (Pearl, 2009). Equation (1) is altered to equation (2), where the build-
ing loss estimate is conditioned on the treatment variable, that is, private precaution, as well as the set of con-
founding variables.

ATE preð Þ ¼ E lossjpre>0;Xð Þ−E lossjpre ¼ 0;Xð Þ (2)

where ATE(pre) is the treatment effect of implementing private precaution; loss is the reported building loss
of households (EUR), and X is the set of confounding variables.

From direct answers to interview questions and derived indicators described in section 2.1, we choose 16
attributes that potentially influence whether a household undertakes private precaution (Table 2). These
attributes are potential pretreatment confounders. They are categorized into building characteristics,
socio‐economic attributes, flood experience, and awareness. In order to remove hidden bias due to unac-
counted variation in the characteristics of different flood events that lead to selection bias, we include event
as a nominal covariate in the set of confounders.
2.2.2. Matching Distances and Methods
There are a number of matching methods and distance estimates that can be used to eliminate selection bias
and obtain amatched data set. We test the suitability of two distance estimates: (1) PSM and (2) Mahalanobis
distance matching (MDM).

PSM has been used widely in socio‐economics and medical studies (Dehejia & Wahba, 1999; Vincent et al.,
2002). Propensity score is the probability that a particular household will undertake precautionarymeasures,
conditioned on the set of confounding variables (equation (3)).

pi≡P Ti ¼ 1jXð Þ ¼ 1
1þ eXiβð Þ (3)

where pi is the propensity score of ith household in the data set obtained through linear logistic regression, T
is the private precaution indicator (Treatment),X is the set of confounding variables, β is the set of regression
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coefficients, and base e denotes the exponential function. The distance between matched households from
the two groups is estimated as the scalar difference between their propensity scores. The common support
for propensity scores is determined using equation (4). Only households that lie in the range of common sup-
port are considered for matching.

Common Support ¼ max min Pt;Pcð Þð Þ; min max Pt;Pcð Þð Þ½ � (4)

where Pt and Pc are propensity scores of households with private precaution and with no precaution,
respectively.

MDM is a covariate matching method. It uses the Mahalanobis distance as the distance estimate. The
Mahalanobis distance matrix is furnished using the distance estimates between pairs of households from
the two groups, with the set of confounders as covariates (equation (5)).

M Xi;Xj
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xi−Xj
� �T

E−1 Xi−Xj
� �h ir

(5)

where M(Xi,Xj) is the Mahalanobis distance estimate between two households i and j based on the set of
confounders X, Xi and Xj represent column matrices of values of confounders from treatment and control
households, (Xi − Xj)

T denotes the transpose of the matrix (Xi − Xj) resulting in a row matrix, and E−1 is
the inverse covariance matrix. This results in M × N Mahalanobis distance matrix (where M and N are the
numbers of households in treatment and control groups from the original population).

Once the distance estimates are obtained, different methods of matching (Ho et al., 2007) are tested: (1) near-
est neighborhood (NN) with/without replacement, with/without caliper; (2) inverse probability treatment
weighting; and (3) genetic matching algorithm (Diamond & Sekhon, 2006).

Small pruning threshold/caliper is required to reduce bias while matching. We consider 1/4th standard
deviation of the PSM and Mahalanobis distances as the caliper to remove unsuitable matches, since it
reduces the imbalance by at least 90% (Rosenbaum & Rubin, 1985). From the two distance estimates and
six matching methods, 12 potential matched data sets are obtained.
2.2.3. Quality of Matching
Two tests are performed to assess imbalance in individual confounders after matching: the two sample
weighted t test and the standardized differences test. The potential matched data sets that pass the two tests
for all confounders are chosen for the estimation of ATE.

The two sample weighted t test evaluates whether the distributions of confounders belonging to treatment
and control households are significantly different (Rosenbaum & Rubin, 1985). In the standardized differ-
ences test (equations [(6a)] and [(6b)]), an absolute value of standardized difference less than 10% for each
of the confounders belonging to treatment and control households is considered to be an accurate match
(Austin & Mamdani 2006). It is a point estimate with no significance limits attached to it.

Standardised difference continuousð Þ ¼ xT−xCð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
s2Tþs2Cð Þ

2

q (6a)

where x is the covariate mean of treatment (T) and control (C) groups; s is the covariate standard deviation of
treatment (T) and control (C) groups.

Standardised difference dichotomousð Þ ¼ pT−pCð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pT 1−pTð ÞþpC 1−pCð Þ½ �

2

q (6b)

p is the sample prevalence (proportion of TRUE (value = 1) in the sample of a dichotomous variable) of the
covariate in treatment (T) and control (C) groups.
2.2.4. Postmatching Regression and Sensitivity Analysis
Postmatching regression/model fitting is performed in order to control for the bias in treatment effect intro-
duced by aspects that influence the outcome (building loss) but do not potentially influence the treatment
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(implementation of private precaution). Varying flooding intensities across different households influence
the degree of damage experienced. Further, emergency response measures such as pump out water, use
sandbags/barriers, and switch‐off electricity and gas also potentially reduce flood damage. Unlike
precautionary measures, the implementation of emergency measures are highly dependent on event
forecast and early warning. Hence, in addition to the matching procedure, which controls for the
pretreatment variables (Table 2), potential bias due to flooding situation, emergency measures, and
warning information (Table 3) is removed via postmatching regression. The choice of postmatching
regression model depends on the ability of the model to account for the influence of flooding scenario,
early warning and emergency measures on incurred loss. A standard linear regression model is commonly
used to remove bias in postmatching. In addition to linear regression, bagging decision trees (ensemble of
1,000 regression trees) are used as the postmatching regression model due to its ability to predict losses
with least errors compared to standard linear regression models (Merz et al., 2013). Bagging decision trees
are an ensemble of regression trees built on bootstrapped samples of the data such that model
dependency and overfitting are reduced. Bagging decision trees approximate nonlinear regression to
heterogeneous data. Using the matched samples that pass the quality check, regression models (linear
and bagging decision trees), is built for predicting building loss (in EUR) using the treatment variable
(private precaution ‐ pre) and predictors from Table 3. Two intervention scenarios—treatment (pre = 1)
and control (pre = 0)—are applied to the model and the loss estimates (in EUR) are determined for each
scenario. The difference between the two groups of model estimates result in ATE of private precaution.
The survey questions and score computations corresponding to the variables for postmatching regression
are included in supporting information S.I.1 (S.I.1.4).

The ATE estimate may still be sensitive to the choice of confounders (Caliendo & Kopeinig, 2008). Since the
list of confounders is chosen through expert knowledge, there is a possibility that some aspects of confound-
ingmay bemissing or unmeasured. Thematchingmethodology cannot eliminate potential bias due to unob-
served or missing confounders. Potential unobserved or missing confounders that the analysis does not
control for may be specific building or contents characteristics, which may favor or hamper certain building
precautionary measures or differences in the ability of households to undertake measures. Rosenbaum's sen-
sitivity analysis (Rosenbaum, 2002) using Hodges‐Lehmann point estimate quantifies the robustness of the
causal relationship between treatment (precaution) and outcome (building loss) to the presence of bias intro-
duced by missing confounders (DiPrete & Gangl, 2004).

Two households, which are matched based on the set of confounders, may vary in the probability of under-
taking private precaution by at most a factor of Γ (sensitivity parameter). If Γ = 1, the two groups of
matched households have the same probability of undertaking precaution (no hidden bias). If Γ = 2, the
matched households in the treatment group may have at most twice the probability of undertaking precau-
tionary measures when compared to the households in the control group. When Γ is increased from 1.0, the
bounds of Hodges‐Lehmann point estimate (Rosenbaum's bounds) widen and the certainty with which we
estimate the treatment effect decreases. The robustness of the estimate is represented by the value of Γ,

Table 3
Attributes for Postmatching Regression

Attributes Attribute Type Attribute explanation ‐ range, unit

Inundation depth continuous [−245,674] cm
(wst)
Duration of inundation continuous [0,1440] hr
(d)
Contamination ordinal 0 – no contamination to 2– heavy contamination
(con)
Velocity of water dichotomous 0: v = 0,
(v) 1: v > 0
Emergency measures ordinal 1 = no measures undertaken to 17 = many measures undertaken
(em)
Warning information ordinal 0 = no helpful information to 12 = many helpful information
(wi)
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when the Rosenbaum's bounds extend further from the positive effect of treatment and bracket to zero
(Keele, 2010).

2.3. Ability of Flood Loss Estimation Models to Capture Differences in Vulnerability Due to
Private Precaution
2.3.1. Flood Loss Estimation Models
A range of flood loss estimation models are applied to the matched data set to test to which extend the mod-
els are able to capture differences in vulnerability due to private precaution. The models are of varying com-
plexities from deterministic rule‐based models to probabilistic Bayesian network‐based models. All these
models estimate the relative building loss (brloss) for private household buildings using multivariable pre-
dictors from the surveys. The brloss values range between 0 (no loss) and 1 (total loss). From the brloss esti-
mates, the absolute losses are computed by multiplying with the building value of the respective private
buildings (in EUR) corrected to 2013 inflation.

FLEMOps+r (Elmer et al., 2010; Thieken et al., 2008) estimates relative building losses based on defined
rules associating seven input variables (Table 4) to relative building loss. FLEMOps+r works in two steps:
first, relative flood loss is estimated on basis of water level and building characteristics (i.e., building type
and building quality); second, the estimate is refined by a scaling factor which considers contamination
(in three classes, i.e., no, medium, and heavy), precaution (in three classes, i.e., little, medium, and strong),
and recurrence interval (in three classes, i.e., 1–9 years, 10–99 years, and from 100 years onward). In this
model, private precaution takes a value of 0 for little precaution, 1 for medium precaution, and 2 for
strong precaution.

Tree‐based models (Kreibich, Botto, et al., 2017; Merz et al., 2013), that is, regression trees (RT‐FLEMOps)
and bagging decision trees (BT‐FLEMOps), are grownwith seven variables (Table 4). RT‐FLEMOps is grown
with a minimum of 60 households in each leaf, resulting in 25 leaves (Figure 1a). In RT‐FLEMOps, the pre-

cautionary measure indicator appears only once in the bottom of the tree,
and hence, the variable does not hold an important role in estimating rela-
tive building losses. BT‐FLEMOps is an ensemble approach consisting of
1,000 trees. The variable importance plot (Figure 1b) shows that private
precaution has a relatively low importance. The tree based algorithms
are developed using Statistics and Machine Learning toolbox.

BN‐FLEMOps (Wagenaar et al., 2018) is a discrete Bayesian network
model, which is constructed with seven variables (Table 4). The continu-
ous variables in the model were discretized on the basis of bins with equal
frequency with inundation depth (wst) and relative building loss (brloss)
in 10 classes, return period (rp) and inundation duration (d) in five classes,
and building area (ba) in three class. The network structure (Figure 2)
describing the conditional dependencies between the variables is learnt
using 500 iterations of score‐based local search algorithms—Fast‐IAMB
(Tsamardinos et al., 2003) and a hill‐climbing approach using the
Bayesian Dirichlet Equivalent (Heckerman et al., 1995). The set of net-
work structures and all arcs that occurred at least in 80% of all iterations

Table 4
Summary of the Flood Loss Estimation Models

Model Variables Type

FLEMOps+r
(Elmer et al., 2010)

Inundation depth, return period, building value, building type,
building quality, precautionary, and contamination indicators

Point estimate

Regression Trees: RT‐FLEMOps
(Merz et al., 2013)

inundation depth, return period, duration of inundation, flood
experience, precautionary measure, building area, and building type

Point estimate

Bagging Decision Trees: BT‐FLEMOps
(Kreibich, Botto, et al., 2017)

inundation depth, return period, duration of inundation, flood
experience, precautionary measure, building area, and building type

Point estimate
(ensemble approach)

Bayesian Networks: BN‐FLEMOps
(Wagenaar et al., 2018)

inundation depth, return period, duration of inundation, flood
experience, precautionary measure, building area, and building type

Distribution function

Figure 1. (a) Regression tree with seven variables and 25 leaves (RT1). (b)
Feature importance of flood loss predictors for Bagging decision trees BT
with seven variables and an ensemble of 1,000 trees.
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provided the basis to define the network used. Relative building losses are
estimated as the medians of the conditional probability distributions of
the brloss node in the network. The discrete Bayesian network is derived
using bnlearn package, R version 3.3.1 (R Core team, 2016; Scutari, 2009).
2.3.2. Model Performance‐Loss Estimation and
Vulnerability Differences
The performance of the tested flood loss estimation models are evaluated
using (1) accuracy of the models in estimating flood losses to buildings
and (2) vulnerability differences due to private precaution accounted by
the models.

Two point estimate accuracy indictors—root‐mean‐square error and
mean bias error) from 1,000 bootstrap iterations of the overall sample of
households are used for assessing accuracy in loss estimation. The influ-
ence of vulnerability differences due to private precaution on the model
outcome is captured by introducing an intervention for private precau-
tion, that is, forcing the model to consider two scenarios: (1) pre > 0: all
households have implemented one or more private precaution measures
(treatment), and (2) pre = 0: all households have no precaution (control).
The scenarios are applied to determine the model loss estimates for the
matched households. The differences between the averages of the loss
estimates obtained from the two scenarios are the differences in vulner-
ability due to private precaution, captured by the models.

Difference in vulnerability accounted by loss models preð Þ
¼ E loss estimate jpre>0ð Þ−E loss estimatejpre ¼ 0ð Þ (7)

where pre represents the precautionary measure indicator of respective models.

3. Results and Discussion
3.1. Matching Households With and Without Private Precaution

In order to determine the effectiveness of private precaution in mitigating building loss, the data are con-
trolled for heterogeneity due to potential confounding variables. We use pretreatment variables pertaining
to the households (Table 2) for removing selection bias from the survey data set and then perform post-
matching regression using variables pertaining to the flooding and response scenarios (Table 3). 948 house-
holds with no missing confounding variables undergo the matching procedure. Households with propensity
scores in the common support region (equation (4)) [0.07, 0.93] between treatment and control groups are

Figure 2. Structure of the Bayesian network: BN‐FLEMOps (Wagenaar
et al., 2018).

Table 5
PS ‐ Summary of Overall and Matched Data Sets

Data Set
Criterion

(Precaution)
Sample
size Min Median Mean Max

Overall Treatment 454 0.07 0.64 0.61 0.99
Control 494 0.05 0.31 0.36 0.93

Households in common support Treatment 425 0.07 0.61 0.58 0.92
Control 491 0.08 0.32 0.36 0.93

PSM‐NN with caliper (households in matched data set) Treatment 248 0.07 0.46 0.46 0.92
Control 248 0.09 0.45 0.46 0.93

PSM‐NN with caliper and with replacement
(households in matched data set)a

Treatment 352 0.07 0.56 0.56 0.92
Control 203 0.08 0.55 0.56 0.93

PSM‐genetic matching (households in matched data set)a Treatment 425 0.07 0.61 0.58 0.92
Control 197 0.08 0.59 0.56 0.90

aEstimates are adjusted for weights created during matching.
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considered for matching. This results in 32 households outside the common support and 916 households
within the common support, which are considered for PSM.

PSM and MDM distance estimates for selection bias combined with six different methods of matching
(section 2.2.2) result in 12 potential matched data sets. The following three data sets pass the quality
checks for suitable matches (<10% standard error and insignificant bias, as described in section 2.2.3):
(1) PSM‐NN with caliper and no replacement, (2) PSM‐NN with caliper and with replacement, and (3)
PSM‐genetic matching.

The summary statistics of propensity scores of households from the overall data set, common support, and
suitable matched data sets are provided in Table 5. In supporting information S.I.2 (Table S.I.2.1), the imbal-
ance in covariates before and after matching is summarized.

3.2. Differences in Vulnerability Due to Private Precaution‐Empirical Estimate

Vulnerability reduction of households due to private precaution is estimated as the ATE of private precau-
tion undertaken. The ATE estimates with standard deviation in brackets for all three suitable matched data
sets are provided in Table 6. A scenario with no postmatching regression and a simple linear model are also
included for reference. It is evident that Bagging decision trees provide a better estimate of ATE with least
standard deviations than using a linear model for postmatching regression or no postmatching regression
at all. Thus, our best estimate of ATE of private precaution is between 11,238 and 15,053 EUR. Detailed
results of postmatching regression along with the regression tables and feature importance plots from
Bagging decision trees are provided in supporting information S.I.3. (Table S.I.3.1 and Figures S.I.3.1,
S.I.3.2). Despite the fact that building loss of households with and without private precaution and ATE
estimates are based on empirical data controlled for pretreatment confounders and posttreatment loss influ-
encing variables, there might still be alternative explanations for precautionary measures being associated
with reduced building losses. Building loss may differ due to damage that a frequently affected household
had not repaired after a previous flood. Also, bias may still be present due to specific building characteristics
for which the approach has not controlled for. However, Rosenbaum's sensitivity bounds for robustness of the
estimated ATEs confirm that ATE of private precaution is unlikely to be sensitive to unobserved confounders
(Table 7). The monetary loss reduction of 11,238–15,053 EUR is equal to approximately 27% of the average
losses across all the households (47,769 EUR). An average 27% loss reduction due to general private precau-
tion is lower than the reported 50% reduction in median residential building loss comparing the 1993 and
1995 Rhine floods, which was attributed to a considerable general increase in the implementation of private
precautionary measures (Bubeck et al., 2012). It is also in the lower range of loss reduction due to wet and
dry flood proofing presented in the review of Kreibich et al. (2015). However, these studies hardly controlled
for confounding variables. The generalized effectiveness of private precaution of 11,238–15,053 EUR is com-
parable with the average treatment effects of individual private precautionary measures reported by Hudson

Table 6
ATE Estimates From Matched Data Sets

Postmatching regression models

ATE estimate from matched data sets in EUR

PSM‐NN with caliper PSM‐NN with caliper and with replacement PSM‐genetic matching algorithm

No postmatching regression model −26097 (6372) −29305 (6639) −16474 (5304)
Linear regression −17025 (5713) −21850 (5750) −14330 (4541)
Bagging decision trees −12217 (2608) −15053 (2947) −11238 (2348)

Table 7
Rosenbaum's Bounds for ATE of Private Precaution

Matched Data Set Γ where ATE becomes statistically insignificant (p value > 0.05) Γ where ATE brackets to zero (treatment effect = 0)

PSM‐NN with caliper 2.4 2.0
PSM‐NN with caliper and with
replacement

2.4 2.0

PSM‐genetic matching algorithm 2.0 1.8
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et al. (2014): 14,385 EUR for flood adapted use and 11,302 EUR for flood adapted interior fitting. However,
due to the survey design, we do not have households, where the precautionary measures fully prevented loss,
for example, water barriers, which hindered water to reach the building. Hence, the contribution of flood
barriers to the generalized effectiveness of private precaution is not quantified in the analysis.

3.3. Assessment of Flood Loss Models

The comparison of flood loss models described in section 2.3.1 is provided in Table 8. All tested models per-
form relatively similar in predicting building loss, with the Bagging decision tree model (BT‐FLEMOps)
showing the lowest root‐mean‐square error and mean bias error and the Bayesian network model BN‐
FLEMOps showing the highest errors. To test the ability of themodels to capture differences in vulnerability,
we evaluate how close the model‐based ATE estimates are to the empirical ATE estimate by comparing the
model results obtained for both the vulnerability groups using equation (7).

Only two of the models result in a significant ATE for the implementation of private precaution. The ATE
estimates from FLEMOps+r and BN‐FLEMOps are 12,185 EUR and 14,687 EUR, respectively (Table 8),
which fall within the range of the empirical estimates (11,238–15,053 EUR). Both models have been
developed through a combination of expert knowledge and analysis of empirical data and explicitly take
into consideration the direct influence of private precaution (Elmer et al., 2010; Wagenaar et al., 2018).
The rule‐based model FLEMOps+r considers precaution in the second model step together with contam-
ination and recurrence interval. BN‐FLEMOps has private precaution indicator (pre) in the Markov blan-
ket of relative building loss (brloss; Figure 2). This implies that in BN‐FLEMOps, predictions of building
relative loss are directly influenced by private precaution. The treatment and control interventions of pri-
vate precaution in tree‐based models do not result in significant differences in loss estimations between
vulnerability scenarios for households. The tree‐based models are developed exclusively based on
association inferences from empirical data, not using expert knowledge. In RT‐FLEMOps, the
precautionary measure indicator appears only once in the bottom of the tree, and also, the variable
importance plot of BT‐FLEMOps reveals a low importance of precaution. Hence, the influence of private
precaution on the estimation of building loss is superseded by the effect of other, more important
variables. Thus, the building loss estimates of the tree‐based models result in an insignificant difference
in losses between the two groups of households.

4. Conclusions

We provide robust evidence from a rigorous statistical analysis of a large empirical data set that implemen-
tation of private precaution reduces residential building loss with an ATE of 11,238–15,053 EUR currently in
Germany. More generally, this confirms previous results that undertaking private precaution is an effective
means to reduce vulnerability of households against floods. Our methodology implements matching con-
founders of private precaution using two distance estimates and six matching methods. From this, three
matched data sets are obtained with no significant bias between covariates of households with/without pri-
vate precaution. Each step in the implemented methodology is customized and tested for its appropriateness
for matching flood loss predictors influencing private precaution.

Table 8
Comparison of Flood Loss Models

Flood loss
models

ATE estimate from matched data sets in EUR* (Vulnerability reduction due to private precaution) Relative loss estimation accuracy

PSM‐NN with caliper
PSM‐NN with caliper;
with replacement PSM‐genetic matching Mean RMSE MBE

FLEMOps+r −13,497 (4,202) −11,997 (4,188) −11,060 (4,307) −12,185** 0.122 0.001
RT‐FLEMOps −742 (3,806) −763(3,486) −657 (4,127) −721 0.122 0.000
BT‐FLEMOps −3,816 (3,448) −3,619 (3,149) −3,557 (3,867) −3,664 0.116 0.000
BN‐FLEMOps −14,502 (3,744) −15,142 (3,609) −14,416 (4,239) −14,687** 0.130 0.002

*Standard errors corresponding to the ATE estimate are provided in brackets **Significant ATE estimate (p value ≤ 0.05).
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Dynamic risk assessments that account for the differences in vulnerability are necessary for efficient
climate‐based adaptation in flood risk management. Since flood loss estimation models are crucial to quan-
tify risk, it is important that these models appropriately capture differences in vulnerability, including pri-
vate precaution. Only two of the tested models are able to capture these differences; these are the rule‐based
FLEMOps and the expert Bayesian network‐based BN‐FLEMOps models. In comparison with the tree‐
based data mining models, the accuracy with which these models predict flood losses are lower. The esti-
mate of ATE and model performances is limited to Germany. Hence, one direction for further research
could be assessing data‐ and model‐based quantification of vulnerability due to private precaution in a spa-
tial transferability scenario. It is also evident from the assessment of flood loss models that further research
to account for the aspects of dynamic risk without compromising on prediction accuracy is required.
Possible other directions in research would include developing better graphical models based on expert
knowledge complemented by machine learning algorithms (Chipman et al., 2010). These models should
represent causal relationships among potential flood loss estimators and also provide model based scenarios
of flood vulnerability.
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