Charakterisierung eines für die Baustoffuntersuchung entwickelten NMR-Tomographen

Thilo Bintz¹, Sarah Nagel², Ludwig Stelzner², Sabine Kruschwitz^{1,2}

Messprinzip der Kernspinresonanz (NMR)^[a]

- ¹H Protonen richten sich an einem B_{0} Feld aus \rightarrow Magnetisierung M_{0}
- Protonen präzessieren um B_0 -Achse
- $M_0 << B_0$; M_{xy} im Mittel 0, da keine einheitliche Phase
- Elektromagnetischer Puls B_f baut M_n ab und synchronisiert Phasen \rightarrow Aufbau von M_{xv}
- $|\mathsf{M}|$ bleibt konstant $\rightarrow \mathsf{M}_{xy}$ ist eigentliches Messsignal \rightarrow Amplitude entspricht Wassergehalt
- Signalbestimmung mittels Spin-Echo

Temperatureinfluss

- Kurze Echozeit (70 μ s) erlaubt schnelle Pulsfolge \rightarrow hoher Energieeintrag
- Energieeintrag in Probe führt zu Temperaturanstieg
- Schnell wiederholende Messungen einer Wasserprobe mit 52 mm Spule
- Temperaturbestimmung nach jeweils 5 Messungen
- Mit steigender Wiederholung \rightarrow Temperaturzunahme und Amplitudenabnahme
- Linearer Zusammenhang zwischen Temperatur und Amplitude \rightarrow Beschrieben durch das Curie Gesetz

3D, Auflösungsvermögen

- Charakterisierung wichtig für Ergebnisinterpretation
- Abgebildet: Glaskugeln mit 7 mm Durchmesser in Wasser
- 80x32x32 mm³ Volumen, abgebildet mit 240x96x96 Voxel
- Segmentierung in Wasser- und Restsignal \rightarrow Wasser einzeln darstellbar (Abb. 6)
- Auflösung von unter 0.5 mm möglich

Sicherheit in Technik und Chemie

Verweise:

^[a] S. G. Allen, P. C. L. Stephenson, J. H. Strange (1997): Morphology of porous media studied by nuclear magnetic resonance ^[b] www.pure-devices.com/images/Flyer/Flyer_MR-CAT.pdf (2021)

www.bam.de

Abb. 1: (I) Präzession der Protonen; (r) Änderung von M

Der NMR-Tomograph an der BAM^[b]

- Optimiert für zerstörungsfreie Baustoffuntersuchungen

- Messvarianten

Sensitive Messbereiche

- Schichtmächtigkeit nach *full width half maximum*
- Abgebildet: 32 mm Spule erwartet: 10 mm Schicht bestimmt: 9.9 mm Schicht 99%ige Übereinstimmung
- Schichten bei über 94%

3D, Darstellung von kapillaren Saugversuchen

- Stirnseite (Ø=20 mm) verschiedener Sandsteinzylinder 5 mm in Wasser getaucht \rightarrow Kapillares Saugen
- 80x32x32 mm³ Volumen, abgebildet mit 160x64x64 Voxel
- 3D-Messungen zu verschiedenen Zeitpunkten
- Abgebildet (Abb. 7) nach 3 h (links) und nach 96 h (rechts) Saugen des Neckartäler Sandsteins
- Wasserausbreitung und Strukturen innerhalb der Probe zerstörungsfrei beobachtbar

¹ TU Berlin Gustav-Meyer Allee 25, 13355 Berlin

Bundesanstalt für Materialforschung und -prüfung

Minimale Echozeiten von 50 μ s bis 80 μ s und Bohrkerndurchmesser bis 70 mm Verschiedene Spulen unterschiedlichen Durchmessers von 22 mm bis 72 mm

• OD – Messen über gesamtes Spulenvolumen • 1D – Messen in eingeschränkter Schicht, senkrecht zu B_{Ω} • $3D - Messen in einzelnen Voxeln \rightarrow Zusammensetzung zu 3D-Bild$

• Schichtmächtigkeit bei 1D-Messungen flexibel einstellbar \rightarrow 2 mm – 20 mm • Position der Schicht und Verteilung der Mächtigkeit wichtig für Auswertung • Bestimmung durch dünne Fettprobe (0.5 mm) an verschiedenen Positionen

Durchschnittlich liegt die Übereinstimmung für alle Spulen und untersuchte

Abb. 2: NMR Tomograph Frontansicht

Abb. 7: Kapillares Saugen eines Sandsteins nach (I) 3 h und nach (r) 96 h

² Bundesanstalt für Materialforschung und -prüfung Unter den Eichen 87, 12205

