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Abstract

The general task of image classification seems to be solved due to the development of modern convolutional
neural networks (CNNs). However, the high intraclass variability and interclass similarity of plankton images
still prevents the practical identification of morphologically similar organisms. This prevails especially for rare
organisms. Every CNN requires a vast amount of manually validated training images which renders it inefficient
to train study-specific classifiers. In most follow-up studies, the plankton community is different from before
and this data set shift (DSS) reduces the correct classification rates. A common solution is to discard all uncertain
images and hope that the remains still resemble the true field situation. The intention of this North Sea Video
Plankton Recorder (VPR) study is to assess if a combination of a Capsule Neural Network (CapsNet) with proba-
bility filters can improve the classification success in applications with DSS. Second, to provide a guideline how
to customize automated CNN and CapsNet deep learning image analysis methods according to specific research
objectives. In community analyses, our approach achieved a discard of uncertain predictions of only 5%.
CapsNet and CNN reach similar precision scores, but the CapsNet has lower recall scores despite similar discard
ratios. This is due to a higher discard ratio in rare classes. The recall advantage of the CNN decreases with
increasing DSS. We present an alternative method to handle rare classes with a CNN achieving a mean recall of

96% by manually validating an average of 6.5% of the original images.

State-of-the-art sampling with towed optical devices pro-
vides anthropocenic marine planktologists with a wealth of
data that even their most recent ancestors could only have
dreamed off. Old-school planktologists had to spent hours sit-
ting over the microscope hand-sorting net samples. They were
rewarded with snapshots of plankton communities in space
and time at the highest possible taxonomic level, sometimes
even down to ontogenetic life stages, sex, and clutch sizes
(Hansson et al. 1990; Ston et al. 2002; Johansson et al. 2004;
Vuorio et al. 2005; Renz and Hirche 2006; Peters et al. 2013).

Modern plankton sampling devices provide information
from the other ends of these scales: millions of images at a
spatiotemporal resolution of cm and seconds (Davis
et al. 1992; Wiebe and Benfield 2003; Benfield et al. 2007)
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sampled continously over transects 10s (Floeter et al. 2017) or
even 100s (Davis and McGillicuddy 2006) of nautical
miles long.

The subsequently necessary automatic plankton image classi-
fication has followed the trends in machine learning from Sup-
port Vector Machines (SVMs; Hu and Davis 2005; Sosik and
Olson 2007), later on Neural Networks (NNs, Tang and Stew-
art 1996) to modern Random Forest (Bell and Hopcroft 2008;
Orenstein et al. 2015; Faillettaz et al. 2016) and convolutional
neural networks (CNNs; LeCun et al. 2015; Krizhevsky
et al. 2017), though the use of manually engineered features
such as in SVMs is still relatively common (e.g., Nanni
et al. 2019). Since the year 2015, when the Microsoft Research
Asia team (He et al. 2015) had won the annual ImageNet chal-
lenge (Russakovsky et al. 2015) by reaching an accuracy of
96.4% in classifying high-resolution color images into 1000 dif-
ferent categories, image classification seemed to be solved
(Chollet 2017). At first sight, plankton images are no exception,
because recent efforts have resulted in > 90% average classifica-
tion accuracy (Al-Barazanchi et al. 2016; Luo et al. 2018).

However, the taxonomic resolution is also almost always
diametrically opposed to the increasing scales, providing
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densities for coarse zooplankton groups such as “jellyfish” or
“calanoid copepods” and reaching the family-, or for very dis-
tinct organisms the genus-level at best (e.g., Pseudocalanus spp.
in the Baltic Sea; Moller et al. 2015; Pitois et al. 2018). This is
certainly not sufficient for biodiversity monitoring (Batten
et al. 2019). However, in many cases coarse groups are suitable
for ecological process studies, especially targeting
the mesoscale (Floeter et al. 2017) and microscale (Moller
et al. 2012; Ohman et al. 2019).

Further on, the specific success of an automatic plankton
image classification task depends on a number of factors: first
on the desired taxonomic resolution, that is, the research
question, and second on technical properties as the number of
training images and their distribution among classes
(e.g., Orenstein et al. 2015). Additionally, the image quality
can have an effect (e.g., how many suspended particles have
scattered the flashlight), as the GIGO Principle (Garbage In
— Garbage Out) still prevails in times when machines are
learning.

Some plankton classes are very abundant while others are
scientifically more in focus but rare. Coupled with the usually
high intraclass variability and interclass similarity, this leads
to the first unsolved problem in real world applications of
automatic plankton image classification: the correct identifica-
tion of rare and/or morphologically similar organisms
(Culverhouse et al. 2003; Benfield et al. 2007; Bell and
Hopcroft 2008). The second remaining problem of plankton
classification with machine learning methods in production
mode applications is related to data set shift (DSS; Moreno-
Torres et al. 2012), more specifically in form of “covariate
shift” (Moreno-Torres et al. 2012; Webb et al. 2018). DSS can
be a problem when, for example, a machine learning model
fitted to images of one region such as the North Atlantic is
applied in an apparently similar region in the adjacent North
Sea (Webb et al. 2018). Covariate shift is a specification of DSS
and can occur when a model that is fitted to images sampled
from one plankton distribution needs to be applied to another
plankton community sampled some weeks later at the same
location.

One approach to cope with these challenges in the produc-
tion mode application of machine learning methods in plank-
ton image classification is the introduction of probability
thresholds, which discards images with uncertain (i.e., likely
erroneous) classifications (Faillettaz et al. 2016). This method
leads to considerable improvements in average precision but
simultaneously to high discard rates of 30-70% of the original
images, which artificially changes their abundances (Luo
et al. 2018). As some of the discarded images were correctly
identified objects, the recall (i.e., the proportion of the true
total number of objects of a class that are correctly predicted
in that class) is reduced. The resulting key question is whether
any subsequent analyses still yield ecological patterns that
resemble the truth (Faillettaz et al. 2016; Luo et al. 2018). This
is usually fulfilled for research questions that target common
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taxa at coarse spatial resolutions. When validated images in
the order of magnitude of the test data set are easily obtain-
able for each new data set, a multiplication factor can be com-
puted from the F-score based confusion matrix to calculate
postfiltering corrected concentrations (Hu and Davis 2006;
Brisefio-Avena et al. 2020; Schmid et al. 2020).

However, when the scientific focus is on rare organisms or
alpha biodiversity, recall is more important than mean preci-
sion and a filtering method may be impedimental.

The second main challenge is the consistency of model per-
formance over time and space, that is, data set drift (Bell and
Hopcroft 2008; Al-Barazanchi et al. 2016; Gonzélez
et al. 2017). The Capsule Network (CapsNet) is a recently
developed machine learning architecture (Hinton et al. 2011;
Sabour et al. 2017), which could overcome this issue. Cap-
sNets group neurons into so called Capsules, which learn spe-
cific properties of an object or segment such as size or
rotation. This makes the predictions of a CapsNet invariant to
the viewpoint, that is, variations in position and orientation,
and to variations in scale and lighting. It can theoretically
improve the performance on overlapping objects, thus it could
be useful to detect, for example, grazing interactions with
marine snow particles (Moller et al. 2012). Instead of dropout
layers, a CapsNet uses a reconstruction autoencoder for regu-
larization. This autoencoder should be able to reconstruct an
object of the predicted class based on the features learned for
that class (Sabour et al. 2017; Xi et al. 2017). So far CapsNets
have been successfully applied to “baseline” data sets such as
MNIST or CIFAR10 (Sabour et al. 2017; Xi et al. 2017;
Rajasegaran et al. 2019) but only to a limited number of “real-
world” applications such as brain tumor recognition (Afshar
et al. 2018).

The theoretical advantages of the CapsNet over a common
CNN led us to the assumption that a CapsNet should be able
to adapt better to changing field conditions and therefore
yield better results in production mode applications. By fol-
lowing Gonzaélez et al. (2017) recommendations for the devel-
opment of unbiased input datasets reflecting the class
distribution in the field, we describe the whole training pro-
cess for a deep learning CNN and a CapsNet to classify plank-
ton images in 26 different classes. This includes preprocessing,
classification, and postprocessing of the images. Subsequently,
we apply our models in production mode, that is, without
updating the training, to three different North Sea field
data sets with increasing temporal and structural distance.

In our analysis, we demonstrate how the filtering method
and a CapsNets can help coping with DSS in automatic plank-
ton image classification. Specific research tasks typically focus
on predicting broad scale plankton community properties in
unseen samples or on classifying each image correctly, also for
rare organisms.

To assess whether filtering methods and CapsNets can be
customized to successfully cope with data set and covariate
shift, we compare two different scenarios: a baseline scenario
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(BL) without any filtering and a high precision scenario (P95)
with probability filters aimed to maximize precision in a fully
automated analyses of plankton communities. Second, we
show how to customize the method to maximize the recall for
classes, individually, supporting studies focusing on specific
classes exclusively. To measure the potential advantage of the
CapsNet, we compare the results of a simultaneously trained
CNN with those of our CapsNet.

Materials and procedures

Description of instrument

We used a VPR (Seascan, Falmouth, Massachusetts, U.S.A.)
mounted on a MacArtney TRIAXUS ROTV which was con-
nected to a research vessel with a fiber optic cable to record
high-resolution images of in situ plankton organisms. The
ROTV was towed at a speed of 8 knots (4.1 ms~!) with a
three-degree lateral offset to lessen any disturbance from the
vessels wake. During most transects, the ROTV was undulating
with a vertical speed of 0.1 ms™" from ~ 4 m below the sea
surface to ~ 8 m above the seafloor. The VPR was equipped
with a high-resolution digital camera (Pulnix TM-1040) that
records up to 25 fps. A synchronized strobe (Seascan—20 W
Hamamatsu xenon bulb) provided the illumination for the
images at a pulse of 1 us. The resulting images consist of
1392 x 1024 pixels with a size of 9.0 x 9.0 ym. The chosen
field of view was 24 x 24 mm with a focal depth of ~ 60 mm
at 246 mm from the lens. The image volume was thus
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Fig 1. Core area of the sampling transects with the VPR in the North
Sea. The red transect provided ~ 90% of the labeled training images.
Black: Remaining training set; field sets—green: FS446 (#1; 2015; 55,302
images); brown: FS466 (#2; 2016; 7798 images); orange: FS534 (#3;
2019; 31,848 images). Blue shading: depth contours from 20 to 50 m.
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34.93 mL. Imaged particles were extracted as regions of inter-
est (ROIs) by the Autodeck image analysis software (Seascan)
and saved to the computer hard drive as TIFF files.

Description of hardware and software

The German Climate Computing Center (DKRZ) provided
computing time with the High Performance Computer System
for Earth System Research (HLRE-3, Mistral), which consists of
more than 3000 compute nodes, providing a peak compute
performance of 3.6 PFLOPs and was used to train our models.
We used two Mistral computing nodes (2x 18-core Intel Xeon
[E5-2695 v4] with a single Nvidia Tesla V100 GPU and 512 GB
RAM) for the training of our models (https://www.dkrz.de/up/
systems/mistral/configuration, 04 August 2020. 16:35:40).

Training and application of deep learning models were
done with a GPU supported Tensorflow (Abadi et al. 2015)
backend for Keras (Chollet 2015) under Python 3.7 (Van
Rossum and Drake 2009). Subsequent data analyses were done
with the statistical package R (R Core Team 2020). Visualiza-
tions were created using ggplot2 (Wickham 2016) while data
management was mainly done with dplyr (Wickham
et al. 2020). We calculated the t-test modified by Dutilleul
(Dutilleul et al. 1993) using SpatialPack (Osorio and Val-
lejos 2019). The Bray-Curtis (BC) dissimilarity (Bray and Cur-
tis 1957) between the validated training set and the predicted
field sets was calculated using the implementation in vegan
(Oksanen et al. 2019).

Field sampling

We used ~ 124,000 hand sorted and labeled images to train
our models, of which ~ 90% were sampled on the FS Heincke
cruise HE446 on the 4™ of June 2015 between 07:00 and
13:00 UTC. The remaining 10% of the images originate from
the period June to August of 4 yr (2014-2017) and cover all
24 h of a day. Most of our images (94%) were sampled in the
inner German Bight of the North Sea, including the three
unlabeled field data sets (Fig. 1) which we used in our produc-
tion mode analysis. The remaining 6% originated from the
Baltic Sea and provided images for the classes “eggs” and “lar-
vae” which were not represented otherwise.

Evaluation of the performance consistency of our final clas-
sifiers in production mode was done using the three field dat-
asets. The similarity of the wunvalidated classifications
(i.e., predictions) of the field data sets and the training set
(TS) was assessed calculating the BC dissimilarity. Field set
1 (FS446) originated from the same HE446 cruise in 2015 as
the majority of our training images. However, the field set was
sampled in the morning from 06:00 to 09:00 (UTC, 55,302
images). The second field set (HE466) was sampled in June
2016 between 18:00 and 19:00 (UTC, 7798 images). The third
field set (HE534) was sampled in June 2019 from 11:00 to
12:00 (UTC, 31,848 images). All field set model predictions
were manually checked and if necessary corrected by a human
zooplankton expert to obtain the “true” classification.
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Image preprocessing

As CNNs require equally sized images, based on our most
common ROI size we chose a size of 240 x 240 pixel. Smaller
images were extended by placing the original ROI image in
the center and adding pixels. The new pixel values were set to
the median of the ROI pixel values since most ROI images
were mainly filled with black background. ROI images that
were greater than 240 pixels in one or both dimensions were
first squared by adding pixels with median values to keep the
proportionality of the objects before rescaling them to
240 x 240 pixels. Initial experiments showed that classifica-
tion accuracy did not benefit from colored images, so we
transformed our images to grayscale by multiplying the RGB
values with 0.299 (R), 0.587 (G), and 0.144 (B). The resulting
matrix was replicated two times to create the required three
channel image input format. When fed to the model, images
greater than 240 pixels were reduced to 240 pixels.

Images were fed to the model in small batches using an
Image Data Generator function provided by Keras. The batch
size was adapted to the respective model and image set (1-40).
Since deep learning models usually perform better with homo-
geneous, small values (Bishop 1995) all pixel values were
divided by 255. Data augmentation was applied during the
training but not in the validation and test step. Images were
rotated, shifted in both directions, sheered, zoomed, and hori-
zontally flipped randomly with fill mode set to “nearest.” This
was done to increase the generalization of the deep learning
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Fig 2. Our model architectures. Both models were based on the Con-
vBase of the Xception V1 (for details, see Chollet 2017). We changed the
input size to 240 x 240, so the output of the ConvBase was a feature
stack of 2048 filter maps with size 8 x 8. CNN: a convolutional layer with
kernel size 3 x 3 returning 2560 filter maps followed by a flatten layer.
The final softmax layer had length 26 (for 26 classes). CapsNet: a con-
volutional layer with 240 kernels of 6 x 6 and strides 2. The output was
grouped into 80 primary capsules with 24 dimensions, each of which rep-
resented one property of the feature learned by the respective capsule.
Plankton capsules returned 26 capsules (one for each class) with 16 dimen-
sions (one for each property) after three cycles of routing-by-agreement.
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model by providing slightly altered images during each train-
ing cycle (= epoch).

While CapsNets do not necessarily need data augmentation
to achieve the performance of similar CNNs trained with data
augmentation (Jiménez-Sanchez et al. 2018), data augmenta-
tion nevertheless can increase the performance especially for
small classes (Toraman et al. 2020). Thus, we also applied data
augmentation during the training with the CapsNet.

Automated image classification

Workflow

We combined a two-step training procedure suggested by
Lee et al. (2016) and the application of different filtering
thresholds, as suggested by Faillettaz et al. (2016), to optimize
our model performance. In step 1, the model was trained with
a balanced data set and rated according to the performance
with a balanced test set, both of which were subsets of the
imbalanced labeled data set. On this basis, we continued to
train the same model with an imbalanced training set, using
the final weights from step 1 in the initialization and all avail-
able labeled images. As is common practice in deep learning,
we split the entire data sets into training-, validation-, and
test-subsets. Based on the predictions for the imbalanced test
set, we calculated filter values which can be applied to tailor
the results for specific research questions in production mode,
that is, application to new field data sets without updating the
training procedure.

Convolutional neural network

We used the convolutional base (ConvBase) of the
Xception V1 model with weights pretrained on ImageNet
available for download using the Tensorflow backend from
Keras (https://keras.io/api/applications/xception/, 10 December
2019. 15:06:15). The input size was changed to 240 x 240
pixel from 299 x 299 pixel. We added an additional con-
volutional layer (ConvLayer—SeparableConv2D) using the
Keras functional API before the flatten operation and the final
Dense-Layer. The ConvLayer had a convolutional window
with kernel size 3 x 3 and padding set to “same.” We chose
“Rectified Linear Unit” as activation function. The resulting fil-
ter stack of 2560 filter maps with size 8 x 8 was flattened and
the final Dense-Layer with softmax activation was used to clas-
sify the images into 26 different classes. The final model had
30,385,218 parameters (Fig. 2).

Training the models

In a first training step, we used only 100 images of each
class (2600 images in total) for the training set and 10 images
for validation (260) and testing (259), respectively. The
smallest class had only nine test images. The validation set is
used to monitor the ability of the model to generalize during
the training process, while the test set is a final evaluation
prior to the application in production mode. Convlayers
“learn” by applying small weights to each input. Those
weights store the “learned” information. We successively
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adapted more layers of the pretrained ConvBase to our images
during training, starting with the topmost (last) layers, going
deeper in each successive phase (Table 1). This is called “trans-
fer learning” (Pan and Yang 2010; Kornblith et al. 2019). The
Keras callback “ReduceLROnPlateau” was used with patience
2 and factor 0.6 and the weights of the best model achieved
during training were saved by another callback “Mod-
elCheckpoint.” Using the Adam optimizer (Kingma and Ba 2014)
and a categorical cross-entropy loss function, the model was
trained with an initial learning rate of 2x 10> (CNN) or
5 x 107 (CapsNet), using accuracy for evaluation.

In a second training step, the same model was initialized
with the final weights from step 1 and trained on a heteroge-
nous data set. The distribution of the training images represen-
ted the distribution observed in the labeled data set (Table 2).
Eighty-four percent of all images in a class were used as training
set and 8% as validation and test set, respectively. The smallest
class (echinodermata) had 100 (0.1%) training images while the
largest (marine snow) had 68,311 (65.7%). We used class
weights (CW; Eqg. 1) to account for this imbalance:

CW; =log (Nﬁ‘a") (1)

The CW of class i was calculated as natural logarithm of
the ratio of the maximum number of images over all classes
(Nmax) and the number of training images of class i (N;).
The CW of the largest class marine snow was set to 1 and
the CWs of the other 25 classes increased logarithmically
with decreasing number of available training images up to a
factor of 6.5 for the smallest class “echinodermata.” Again,
we used “transfer learning” to benefit from the features
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learned during the first training step, especially in less
abundant classes.

The first training needed a computing time of ~ 20 min
while second training required ~ 24 h (1440 min) for the
CNN and ~ 21 h for the CapsNet.

As CNNs are a gradient-based method, the chosen starting
point may be crucial for the final fit of the model, and one
way of assessing and reducing the effect of start conditions are
multistart approaches (Subbey 2018). We repeated the first
training step 100 times with randomly changed image
sequences fed into the CNN. The second training was only
performed once based on the model from step 1 which
achieved the best test accuracy. Repeating the second training
step was not feasible due to long computing times.

The same best step 1 CNN model was used to train the
CapsNet. Before we started the training with the heterogenous
data set in the same way as described for the CNN, we repeated
step 1 once in a reduced form (Fig. 3) to adjust the weights of the
last three layers of the ConvBase to the new Capsule-Layers, which
replaced the Dense- and Flatten-Layers used in the CNN (Fig. 2).

Model performance

To compare the different models, we calculated the class-
wise as well as average training-, validation-, and test-
accuracies (Acc), which is the percentage of correctly classified
images. Training-, validation-, and test-accuracies are related
to the respective image subsets. In case of the balanced
data set for the first training step that means 100 images per
class for training and 10 images for each, validation and test-
ing. While this is sufficient for homogenous data sets such as
the one used during the first training, accuracy fails to account
for the imbalance in a heterogenous data set as used during the

Table 1. Models were trained on 26 classes, including 2 classes with none-living objects (‘marine snow’ and ‘rod’) and 2 classes for
unrecognized objects (‘unknown’ and ‘blurry’). The numbers for the training- (TS) and field sets (FS) correspond to the ‘true’ distribu-

tion obtained by manual classifications.

Model Training step Training phase Epochs ConvBase trainable layers
CNN 1 1 7 2
CNN 1 2 7 11
CNN 1 3 7 20
CNN 1 4 7 29
CNN 2 1 3 2
CNN 2 2 3 11
CNN 2 3 3 20
CNN 2 4 3 29
CNN 2 5 5 35
Cap 1 1 7 2
Cap 2 1 3 2
Cap 2 2 3 11
Cap 2 3 4 20
Cap 2 4 3 29
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Table 2. Training procedure for the CNN and the CapsNet. Training the CNN was initialized using weights pre-trained on ImageNet,
while the training of the CapsNet was initialized using the weights received at the end of step 1 with the CNN. Due to overfitting, the
CapsNet was trained only for 4 phases in step 2, while the CNN was trained for 5 phases. The ConvBase had 40 layers in total.

Class Label TS (N) FS446 (N) FS466 (N) FS534 (N) Example image
Actinotrocha act 208 0 5 11

Amphipods amp 241 0 0 0
Appendicularia app 545 28 147 198 -
Appendicularia with house app 837 270 204 899 -
Bipinnaria bip 473 79 11 8 -
Blurry blu 1187 101 1313 1014 -
Copepods cop 2258 151 627 2219

. P

(Continues)
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Table 2. Continued
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Class Label TS (N) FS446 (N) FS466 (N) FS534 (N) Example image
Echinodermata ech 100 0 0 0
) .-

Eggs egg 416 5 0 0
Larvae lar 230 15 7 1 H
Malacostraca mal 376 22 43 87

- ’
Medusae med 394 76 144 24 -
Mnemiopsis mne 739 144 1 7 -

(Continues)
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Table 2. Continued
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Class Label TS (N) FS446 (N) FS466 (N) FS534 (N) Example image
Noctiluca noc 834 348 20 3696

Phaeocystis pha 224 0 0 0

Pilidium pil 142 0 56 19

Pluteus plu 14,713 9861 212 1343

Polychaeta pol 802 363 16 22

Pteropods pte 587 0 0 0

Rod rod 264 2034 814 22

(Continues)
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Table 2. Continued
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Class Label TS (N) FS446 (N) FS466 (N) FS534 (N) Example image
Marine snow sno 68,311 37,675 3578 20,519 -
Unknown unk 509 208 176 758 -
Veliger vel 249 0 34 47 _
Worms wor 2103 705 37 913 -
Zoea zoe 274 27 7 25 I

second training step (Gonzalez et al. 2017). Therefore, we also
calculated the F1 score (Eq. 2), which is the harmonic mean of
the classification metrics precision (P—"“purity”; Eq. 3) and recall
(R—“completeness”; Eq. 4) and is more sensitive to wrong predic-
tions in highly skewed data (He and Garcia 2009).

Precision and recall are calculated using true positives (TP),
false positives (FP, type I error), and false negatives (FN, type II
error). A correctly identified copepod image in the copepod
class is a TP. A copepod identified as a diatom is a FN for the
copepod class and at the same time a FP for the diatom class.
FPs and FNs are class-specific and make sense only from the
viewpoint of the respective class. Images which truly belong to
a class, though they are sorted into other classes, count as FNs,
while all images which do not belong to a class, though they
are sorted into that class, count as FPs. Precision is the

proportion of correctly classified objects in a predicted class and
recall is the proportion of the true (i.e., manually labeled) num-
ber of objects of a class that are correctly predicted in that class.

2)<Pi XRi
Flij=————— 2
! P,'+Ri ( )
TP;
P’_TP,~+FP1~ (3)
TP;
Rz—m (=Acc) (4)

Probability filtering and top-k predictions
All 100 models of the first training step were used to create
predictions for an identical test set of 259 images to assess the
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Fig 3. Schematic visualization of model training. Training step 1 was
repeated for the capsule network in a reduced form (Table 1), which is
indicated by the dashed arrow. Both our models shared the ConvBase
with the Xception V1 model, but we replaced the final classifying layers
with our own choice of layers as indicated by the colored part of the cylin-
ders and the red and green arrow in the top left corner. CAP, capsule net-
work; C-Base, convolutional base; C-Layer, convolutional-layer; CNN,
convolutional neural network; D-Layer, dense-layer; Xcep VI,
Xception V1.

final model performance. After the second training step, a
labeled test set of 9903 images was used to validate the model
performance on new, unseen data sets. The three unlabeled
field sets were only predicted (i.e., classified) once by the final
model after the second training step, since initial results
suggested that field set predictions after step 1 were not mean-
ingful. For a given image, CNNs compute a probability for
each class. In an ideal case, the class with the highest probabil-
ity resembles the true taxonomic class of the imaged object.
The filtering method of Faillettaz et al. (2016) takes advantage
of those probabilities and accepts only predictions above a
user specified threshold. The assumption is that TPs have a
higher probability than FPs and thus more wrong than correct
predictions are discarded, ultimately increasing the precision.
We used the labeled test set to calculate probability filters for
each class individually. All images assigned to a class (TP + FP)
were sorted in increasing order of their probability to belong

10

Can capsules and filters cope with DSS?

to that class. All images with a lower probability than the cho-
sen threshold but correctly classified as class i were then never-
theless treated as FNs and thus decreased the recall and
subsequently the F1-score. Precision was calculated using only
images with a higher probability than the chosen threshold,
since the “purity” of a class can only be affected by images
assigned to this class. Therefore, FPs with a lower probability
than the chosen threshold had no influence on the calculated
precision. This method can of course only be applied with dat-
a sets that have been manually validated and labeled to obtain
the “true” classifications.

Tailoring to specific research questions

During the validation of the final model, the filters were
stepwise increased from the lowest to the highest probability
and the corresponding classification metrics were calculated.
This enables the researchers to pick their favorite set of class-
specific filters along the trade-off continuum between the best
average precision and the best recall. In Luo et al. (2018), clas-
ses with n<25 of 75,000 randomly drawn images were
excluded to achieve a mean precision of 90.7%. This threshold
(n = 25) divided classes into a “pure” (precision > 90%) and an
“uncertain” (precision < 90%) group. In addition to the class-
wise filters aiming to maximize the precision (P95), we chose
for each model and field set a class unspecific threshold (f) of
n images to separate a “pure” group of classes (mean
precision > 90%) from a “uncertain” group of classes (mean
precision < 90%). In a larger scale community distribution-
oriented research question, this sorts classes classified on a
human-like level into the “pure” group and leaves classes with
poor performances in the “uncertain” group (Luo et al. 2018).
The threshold was chosen based on the sum of the TPs and
the FPs of the predictions of the three field sets (n = TP + FP).
One hundred bootstraps were performed using randomly cho-
sen 75% of the images that remained after P95-filtering to
increase the confidence in the chosen threshold.

However, a reduced recall is problematic if rare taxa like fish
larvae are specifically in the focus of the research question.
Thus, we assessed whether the deep-learning practice of the
Top-5-Accuracy can be used to increase the recall and signifi-
cantly reduce the time needed for manual classification. We
accepted the k highest predictions for each image, stepwise
increasing k from 2 to 5, and treated an image as “correct clas-
sified” if the correct class was assigned within one of the top-k
probabilities. Subsequently, the user has to manually classify
all top-k images in the classes which are in focus of the
research question. In this case, the trade-off between the recall
and the number of images that have to be manually classified
is of particular interest.

Representativeness of field set classifications

For research questions involving the detection of ecological
patterns in high frequency data sets, particularly for common
taxa, precision could be more important than recall (Faillettaz
et al. 2016). This arises because the distribution of images
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could resemble the field plankton community even when
large fractions of images that cannot be classified with suffi-
cient certainty are discarded.

As in Faillettaz et al. (2016), we tested the spatial distribu-
tions of our filtered predictions against the spatial distribution
of the manual classification using the t-test modified by
Dutilleul et al. (1993). We aggregated our data in 1 m depth
bins and by Latitude (0.01 decimal degree [DD] bins) for
North-South transects or Longitude (0.01 DD bins) for West—
East transects. Since the filtered predictions are per definition
a subset of the original data set, we compared relative abun-
dances instead of the absolute ones as Faillettaz et al. (2016)
suggested.

Results

Model training

The dynamics of training and validation accuracy of the
100 models during the first CNN training step were slightly
different each time, despite the fact that all were trained in
the same way and with the same training images. At the end
of step 1, the training accuracies (mean: 75%) usually slightly
exceeded the validation accuracies (mean: 71%; Fig. 4). Fur-
ther increasing the number of adjustable layers or training
epochs only led to strong overdispersion, which indicates
decreasing generalization of the model. Even though the gen-
eral trends during the 100 training runs were similar, the final
test accuracies ranged from 54.4% to 84.6%, indicating that
different runs produced different convergence progressions
and therefore different outcomes. The oppositional pattern of
validation- and trainings-accuracy between phase 1 and all fol-
lowing phases was probably due to the fact that the model
was trained to the verge of overfitting in each phase and thus
was already close to overfitting when training started in phase
2 (and following phases).

The training progress during the second step using the het-
erogenous data set differed between the CapsNet and the
CNN. The training and validation accuracy of the CNN
increased gradually to ~ 95% (Accr, = 95.2; Accy, = 94.9). The
final test accuracy was 94.67%. The CapsNet instead deterio-
rated during the last of the five phases, even though more
weights were released for training compared to the phase
before. While training (Accr, 95.9%) and validation
(Accya = 94.3%) accuracy were similar at the end of phase
4, the validation accuracy decreased to Accy, = 89.5% in
phase 5 while the training accuracy increased further to
Accry = 96.3% (Fig. 5). The CapsNet reached a slightly lower
test accuracy of 89.72%.

Test set predictions

Classes with a high mean test accuracy over all 100 models
in step 1 had small confidence intervals (Cls; 95%), while clas-
ses with lower mean test accuracies could range from 0% to
80% correctly classified images, depending on the model run,
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Fig 4. Convolutional neural network training step 1. The vertical lines
separate the different training phases 1-4 during the first step (training
with homogenous data set), where successively more layers were trained
in each phase. Black boxplots: training accuracy of 100 models; red
boxplots: validation accuracy of 100 models.

even though all classes were trained with the same amount of
100 images (Fig. 6).

In step 2, classes with high abundances generally achieved
high F1-scores, whereas the opposite was not true as low abun-
dant classes could have low, medium or high Fl-scores
(Fig. 7). In general, the CNN achieved better results than the
CapsNet after step 2. However, the CapsNet outperformed the
CNN in four classes (“diatoms,” “echinodermata,” “noctiluca,”
and “pteropods”), at least in precision and the Fl-score. Only
the “marine snow” recall of the CapsNet was superior to the
CNN. Both models had difficulties with the class “rod,” which
contains unidentified elongated objects. Another common
weakness was the “unknown” class with low recall scores
(Fig. 7). Most of the images labeled as “unknown” by a human
are recognized as a specific class by both models, mainly as
“marine snow” or “appendicularia with houses.”

Image filtering

All classes shared a common pattern in regard to the
assigned probability filters: at a high threshold, precision was
high while recall was low. Thus, only correct classifications
were accepted at the cost of discarding most of the correct, less
confident classifications together with the wrong classifica-
tions. With decreasing probability filters, this was reversed at
some point since more and more correctly identified images of
the respective class were kept, while simultaneously the
chance increased that incorrect classifications were kept as
well. As long as the recall was close to O, the Fl-score tended
to follow the recall. This was due to the fact, that the har-
monic mean (F1) tends to be 0 as soon as one of the compo-
nents is O (recall, Fig. 8). We selected class-specific filters
aiming to achieve at least 95% precision in each class. All of
the following results were based on these set of filters (P95).

The final filters varied from 36.44% to 92.36% (CapsNet)
and from 21.17% to 98.65% (CNN), depending on the class.
In general, after filtering the CNN was still superior to the
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Fig 6. Increasingly sorted mean test accuracies for the 26 classes based
on the predictions of the 100 models trained during step 1. Error
bars: 95% Cl.

CapsNet. However, for single classes the results of the CapsNet
could overcome those of the CNN (Fig. 9).

Applying the filters to our test set increased the mean preci-
sion of the CNN by 14% from 84% to 98% and of the CapsNet
by 15% from 78% to only 93%, as six classes did not achieve
the target of 95% precision. Seven percent of all predictions
had to be discarded using the CapsNet to maximize precision
(5% for the CNN).

Field set predictions

The BC dissimilarity for the field set predictions, not the
manually validated FSs, confirmed as expected, that FS446
(BCcenw = 0.45; BCeyp = 0.44) was closest to the TS as it was
sampled in the same geographical region 12 h after the major-
ity of our training images. FS534 (BCcnw = 0.69; BCcyp = 0.67)
was closer to our training data and to FS446 than FS466
(BCcnn = 0.92; BCcyp = 0.92). Thus, DSS is highest for FS466,
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lowest for FS446, and in-between for FS534 (Supporting Infor-
mation Fig. S1).

With increasing DSS, the threshold (f) to separate “pure”
from “uncertain” classes for the CapsNet increased according
to an exponential function of distance (Fig. 10):

t=axe(h><BC)

(5)
with a = 0.64 and b = 5.21. The simulated thresholds for FS466
followed a bimodal distribution. As the two groups were clearly
separated, we chose to include only the higher group of thresh-
olds in the estimation of the model. Therefore, it is less likely for
the model to underestimate the true threshold. The observed
thresholds (f446 = 5; tas = 65; ts34 = 25) were close to the average
simulated thresholds (446 = 3; t166 = 65; ts34 = 23). No reasonable
relationship could be established for the CNN and simulated and
observed thresholds did not match either.

Filtering generally increased the mean precision and
reduced the mean recall as expected. Excluding three none-
biological classes from the analyses, namely “blurry,”

“unknown,” “rod,” and additionally “marine snow,” the
thresholds between “pure” (mean precision >90%) and
“uncertain” classes were always approximately three times

higher for the CNN compared to the CapsNet, for example, in
FS446 all classes with five assigned images by the
CapsNet already belonged to the “pure” group while the CNN
had to assign at least 15 images to all classes to reach a mean
precision > 90% in the “pure” group (Table 3).

Both models successfully detected a similar amount of clas-
ses in the field sets, but the CapsNet predictions had more
classes contribution to the “pure” group compared to the
CNN. So overall, the CapsNet was better in the generation of
“pure” groups. The CapsNet predicted less images in classes,
which were not occupied in the field set (44 = 0 and
Nprea > 0), thereby creating so-called empty classes with only
FPs. In the predictions of the field set least similar to the train-
ing set (FS466), neither model achieved a mean
precision > 90%. The selected threshold only maximized the
mean precision to 87% for the CNN (one “pure” class) and to
76% for the CapsNet (three “pure” classes, Table 3).

The recall of the CapsNet was always lower compared to
the CNN, but this CNN advantage was reduced by increasing
DSS. Neither model dominated the other one regarding the
discard ratio, that is, the number of images that had a lower
probability than the class-specific filter for certain predictions
(P95) compared to uncertain predictions. The discards ranged
from 3% to 45% for the CNN and from 5% to 41% for the
CapsNet (Table 3).

For illustrative purposes, we will give an interpretation of
the first row in Table 3 (predictions of FS446 by the CNN).
The field set included 18 classes that were also present in the
training set: prior to P95-filtering, the model predicted 22 clas-
ses including four empty classes (TP = 0). Twelve classes
included more than 15 predicted images (t = 15). Those 12
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classes had a mean F1-score of 77%, a mean precision of 77%,
and a mean recall of 80%. After applying the P95-filter set,
17 classes remained including now only three empty classes.
The “pure” group of classes (TP + FP > 15) included eight clas-
ses of which none were empty (TP = 0). Those had a mean F1-
score of 89%, a mean precision of 94%, and a mean recall of
87%. Only 3% of the images belonging to the 18 “true” classes
(TP > 0) were discarded after filtering.

Top-k predictions

We investigated the relationship between k and the mean
recall based on the predictions for FS446 (n = 55,302). The
recall scores of the CNN always exceeded those of the CapsNet
and simultaneously the number of images to validate manu-
ally was always lower. We therefore only present the results
for the CNN. With k = 2 the mean recall increased from 63%
(Supporting Information Table S1) to 93% (Table 4), while on
average 7.8% of the images had to be validated. Only three
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classes required manual classification of more than 10% of the
original data set images (“diatoms,” “pluteus,” and “snow”),
but those were the most abundant classes. The majority
(12 classes) required less than 3% of the original data set to be
manually classified. With k = 3, the increase in recall (+2.9%)
was similar to the increase in images (+3.3%), but further
increasing k was less effective. We therefore selected k = 3 for
all field sets.

The classes “blurry” and “unknown” included per definition
a wide range of different, unidentified objects which made
them scientifically uninteresting. They were therefore not
included in the analyses. We also excluded the class “marine
snow” because of the extraordinary size. For the remaining
classes, the mean recall with k = 3 exceeded 90% for the low-
shift data set (FS446; 96%, n = 17,318) and medium-shift data
set (FS534; 95%, n = 9557), while the mean recall for the high-
shift data set (FS466; n = 2731) was only 86%. The Supporting
Information includes a complete table with all classes and
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field sets (Supporting Information Table S2), here we described
only the results for the first field set (FS446) in detail.

Only two classes had a recall below 90% (“malacostraca”
and “medusae”). All other classes, even the rarest, had a recall
above 95%. For especially rare classes like “eggs” (n = 5) and
“larvae” (n = 15), less than 1% of the original data set needed
manual validation to achieve a recall score of 100% at k = 3.
However, rare classes usually had lower ratios between TPs
and FPs compared to more abundant classes. An exception
from this trend was the class “polychaeta” with n = 363 and a
ratio between TP and FP of 1 : 29. Thus, ~ 20% of the original
data set needed to be manually validated in order to achieve
97.5% recall for this class (Table 5).

Spatial distributions

We calculated Dutilleuls modified t-test to assess whether
our P95 filtered model predictions were representative for the
true plankton community in our field sets. While p < 0.05 was
sufficient to accept the representativeness of a class prediction,
we generally assumed the model with the lower p value to be
superior. While the CapsNet was superior to the CNN in
11.1% of all classes in FS446 (low DSS), this increased to
21.1% in FS534 (medium DSS). However, the CNN was supe-
rior to the CapsNet in 50% of all classes in FS446 and in
36.8% classes in FS534. While this gave hope for a trend rever-
sal in high DSS situations, in the high-shift field set FS466 the
CNN is still superior in 55% of all classes and the CapsNet is
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Table 3. Changes in model performance for biological classes induced by class-wise P95-filtering. The numbers give the actual result
after filtering, while the numbers in the brackets give the difference from pre- to post-filtering. Mean F-scores (F1, precision, and recall)
were calculated using only classes with TP + FP > t (group of ‘pure’ classes after filtering). True and empty refer to the respective number
of classes predicted by the model for the respective FS. Discard is the percentage of images predicted with insufficient certainty for the
P95-filter set.

Classes Pure classes
Mod Data True Empty  True Empty t Mean F1 Mean precision ~ Mean recall  Discard (%)
CNN 446 14 (+0) 3(=1)  8(=3) 0(-1) 15 0.89 (+0.12) 0.94 (+0.17) 0.87 (+0.07) 3
CNN 466 16 (+0) 4 (+0) 1(=2)  0(+0) 190  0.74 (+0.09) 0.87 (+0.29) 0.64 (~0.16) 33
CNN 534  15(=1) 5(0) 5(+0) 0(-2) 85  0.68 (+0.05) 0.98 (+0.35) 0.61 (=0.03) 45
CAP 446 13 (-1) 1(=1)  8(=5)  0(+0) 5 0.59 (=0.13) 0.94 (+0.06) 0.53 (=0.15) 5
CAP 466 16 (+0) 3(-1)  3(-1) 0(-1 60  0.55 (+0.05) 0.76 (+0.19) 0.5 (-0.02) 41
CAP 534 15(=1) 3(-2) 6(-4) 0(-2) 25 0.6 (+0.03) 0.91 (+0.28) 0.59 (=0.01) 33

Table 4. The development of the mean recall and the mean percentage of images to validate with increasing k for FS446, where k
was the number of most likely predictions accepted for each image. If the true class belonged to the k accepted predictions, an image
was counted as ‘true positive’. N images: 55,302.

N k=2 (%) Recall k=2 N k=3 (%) Recall k=3 N k=4 (%) Recall k=4 N k=15 (%) Recall k=5
7.8 93.4 11.1 (+3.3) 96.3 (+2.9) 14.5 (+3.5) 97.2 (+0.9) 18.6 (+4.1) 97.6 (+0.4)

only superior in 10% of the classes. Spatial distributions This highlights one of the drawbacks of gradient-based algo-
predicted by both models did not show any significant devia- rithms as described by Subbey (2018) and the importance of a
tions from those of manually validated images, when two con- vast amount of training images, especially if different classes
ditions were met: My >S50 images and recall > 20%, contain similar organisms (like “amphipods” and “copepods”)
regardless of the level of DSS (Supporting Information and additionally one or more similar classes have high
Table S3). Figure 11 shows two exemplary distributions of  intraclass variability (e.g., already due to frontal, dorsal, or lat-
copepods predicted by our models in the field sets FS446 and eral viewpoints). For example, images of “veliger” were fre-
FS534, demonstrating the difficulties the CapsNet had with quently misinterpreted as “pilidium” and in case of the
low abundant classes (Supporting Information Table S3). CapsNet even vice versa (Supporting Information Table S$4).
For ecological studies, it is sometimes more important that
an image is correctly classified into a certain group rather than
the exact class (Gonzélez et al. 2017). For example, one way to
The intention of this study was to provide a guideline to cope with the high intraspecific variability in plankton classes
efficiently process not only common, but also rare biotic taxa is to divide images of a single species into multiple classes
using automated analyses of in situ plankton images, which is according to morphological distinctions (Luo et al. 2018). In
even more challenging than laboratory imagery of plankton this study, initial experiments with our classifier showed that
according to Faillettaz et al. (2016). the separation of the images with appendicularians in
During the first step of the model training, we observed a “appendicularia” and “appendicularia with house” yielded
great variability of the final test accuracies, even though the much better results compared to the classification of a single,
procedure was exactly the same each time, except for the combined class. Since both classes were treated as one in the
sequence of the images. All classes were trained with the same subsequent analyses, a misclassification of an “appendicularia”
number of images during step 1, but some classes had persis- into “appendicularia with house” was ultimately a correct clas-
tently lower mean test accuracies than others. However, the sification, thus increasing the performance of our model in a
lower the mean test accuracy, the greater were the Cls. For way of a Top-2 accuracy. This method is probably even more
those classes, for example, “polychaeta,” 100 images were relevant for more detailed image sets that allow for a higher
clearly not sufficient to reflect the class variability of the full taxonomic resolution than our images (e.g., flowcam images),
data set. Some of the 100 models probably learned more rele-  but is somewhat limited by the number of available training
vant patterns, most likely by chance (Gonzélez et al. 2017). images. Within this context, different sizes of plankton can

Discussion
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Table 5. Results of the Top-k-method with the CNN and k = 3
applied to FS446. The variable ‘n’ is the number of images that
need to be manually validated to maximize the recall. The vari-
able ‘N’ is the number of images in FS446 (55,302) including the
three classes ‘unknown’, ‘blurry’, and ‘marine snow’. When recall
is empty, the model sorted images in a class which was not occu-
pied in the field data set (‘correct classified” = 0). The ratio ‘cor-
rect classified’:false classified” (CC:FC) provides the number of
false images to be manually sorted for one true image found.

Class Recall CcC n n/N (%) CC:FC
amp 0 4824 8.7
app 0.997 298 6331 11.4 1:20.2
bip 0.987 79 171 0.3 1:1.2
cop 0.98 151 3601 6.5 1:22.8
dia 1 3190 11,172 20.2 1:2.5
ech 0 321 0.6
egg 1 5 346 0.6 1:68.2
lar 1 15 85 0.2 1:4.7
mal 0.773 22 122 0.2 1:4.5
med 0.789 76 4353 7.9 1:56.3
mne 0.986 144 184 0.3 1:0.3
noc 0.971 348 5197 9.4 1:13.9
plu 0.998 9861 11,675 21.1 1:0.2
pol 0.975 363 10,896 19.7 1:29
pte 0 81 0.1
rod 0.954 2034 5684 10.3 1:1.8
vel 0 90 0.2
wor 0.991 705 2731 4.9 1:2.9
zoe 1 27 77 0.1 1:1.9
Mean 0.96+0.07 1155 3576 6.46 1:15
Median  0.987 79 2731 4.9 1:13.9

have different biological meaning, like ontogenetic stages, and
thus could be worth including. However, the true size infor-
mation is unfortunately not available from VPR-images as the
distance to the lens is unknown.

Filtering

Our approach reduced the discard of uncertain predicted
images, which are removed by filtering, from 35.7% in Luo
et al. (2018) to 5%. In Luo et al. (2018), classes with n < 25 of
75,000 randomly drawn images were excluded to achieve a mean
precision of 90.7%. This threshold (r7 = 25) divided classes into a
“pure” (precision >90%) and an “uncertain’’(precision < 90%)
group. However, an evaluation using n is probably misleading
since some classes in the field set had a true n = 0, which was
below the threshold of n <5, and simultaneously had FP > 5,
which was above that threshold. Thus, without human interfer-
ence (i.e., validation), classes with n < 5 could be erroneously cat-
egorized as “pure” (and vice versa). Therefore, we used the sum of
TPs and FPs instead to divide between “pure” (i.e., trustworthy)
and “uncertain” classes (i.e., classes that need to be validated).
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The major advantage of this approach is that this threshold is
applicable without knowledge of the true distribution of the clas-
ses since it is based on the predictions instead of the true abun-
dance. Furthermore, we found a correlation between the
threshold and the BC dissimilarity that separates the distribution
of the TS from the distribution of the new field set. Remarkably,
this new method increased the threshold from n<35 to TP
+ FP < 15 for the CNN while it decreased the threshold for the
CapsNet (n < 25; TP + FP < 5). This threshold to separate “pure”
from “uncertain” classes using the CapsNet was below the thresh-
old of the CNN and therefore the CapsNet is superior in
extended production mode applications. Summarizing, the
CapsNet had similar discard ratios but lower mean recall scores
compared to the CNN. Thus, while it produced more “pure” clas-
ses, the drawback was a stronger filter pressure on rare classes.

However, each optical sampler is designed to target a differ-
ent component of the zooplankton (Owens et al. 2013) which
encompasses organisms that vary greatly in terms of size,
shape, and behavior (Pitois et al. 2018). This and varying envi-
ronmental conditions and ecosystem compositions may affect
the difficulty of classification tasks (Luo et al. 2018) and might
contribute to the differences found between different studies.

The fraction of “pure” classes decreased for the CapsNet
from 57% in FS446 (CNN: 57%) with a low amount of DSS to
38% (CNN: 31%) in FS534 with the medium amount of DSS.
The high amount of DSS in FS466 overcharged both models
similarly, as no class actually reached > 90% precision. This
trend observed between the threshold “t” and DSS (measured
as BC dissimilarity) was not reflected in the F-metrics. No obvi-
ous pattern for biological classes was observed regarding the F-
score, recall, or precision, indicating that the community
structure, and thus the difficulty of the classification task, is
probably an evenly strong driver of model performance as
DSS. Considering all classes, the CapsNet could not achieve as
high scores as the CNN under a low amount of DSS, but the
decrease with increasing DSS was also lower. However, for the
CapsNet to overcome the CNN, an amount of DSS is probably
necessary that precludes a practical application of either
model.

The performance of regionally trained classifiers tends to
decline with increasing environmental dissimilarity, whereas a
globally trained classifier achieved similar results in all areas,
but at the cost of lower accuracies for rare taxa (Chang
et al. 2012). Continually increasing the training set and
adapting the model to new situations could therefore help
coping with unknown community structures and keeping the
amount of DSS at a lower level, but this was not investigated
in this study.

Spatial distributions

Both models accurately predicted the spatial distributions
of filtered classes with 1y, > 50 and recall > 20%, regardless of
the amount of DSS. Due to better recall scores, the CNN could
predict the spatial distributions of more classes compared to
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Fig 11. Spatial distribution of the relative copepod abundances in FS446 (a) and FS534 (b) aggregated by longitude/latitude (0.01 DD) and depth (m). The
predictions of the CapsNet (left panel) and the CNN (right panel) were compared to the manual validation (central panel). n, absolute abundance; R, recall.

Target: single class

Predicted data set - TP + FP for each class (no validation necessary!)

Target: multiple classes

Target: spatial distributions

CNN + Top-3-Accuracy

> high recall

- low effort

use SUBSET for cluster analyses and
select threshold

threshold: classes with
abundances >1 %

CapsNet + Filter

- preferably presence/ absence

CNN + Filter

- limited to dominant taxa

Fig 12. Suggested workflows for three research target specific automated plankton image analysis methods.

the CapsNet, especially more smaller classes. Most classes
which spatial distributions were correctly predicted belonged
to the “pure” group. However, the opposite was not given.

some “pure’
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Due to low recall scores not all predictions for classes from the
“pure” group reflected the spatial distribution in the field, as
> classes had a high precision but a low recall
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(e.g., CapsNet FS446 “appendicularia™: precision = 100%,
recall < 1%). Thus, a categorization in trustworthy and mis-
leading predicted spatial distributions generally requires
knowledge of the recall and therefore manual validation.

Top-k predictions

The application of filters enables a user to automatically
detect a wide range of taxa with a high precision. However,
less abundant classes are still difficult to predict, especially if
DSS occurs. Since filters are per definition not appropriate to
increase the recall and make it more likely to detect rare clas-
ses, we instead employed the concept of the Top-5-Accuracy
used in machine learning. Here, the correct class of an image
does not have to have the highest probability. Instead, the
correctly predicted class is among the five highest probabili-
ties. Using already the Top-3-Accuracy, we increased the mean
recall by 33.3-96.3% and reduced the average number of
images that needed manual validation to 6.5% of the origi-
nal amount. This method significantly reduces the required
human efforts if the research focuses on rare classes, like
fish larvae, that are most likely not detected at a sufficient
rate using only the highest probability. Such an approach is
certainly limited by the size of a potential data set and the
number of classes, but so far it is probably the most effective
way if spatial distributions are equally important as total
abundances.

Comments and recommendations

The effectivity of a classifier is not solely determined by the
final model performance. Particularly, the specific objectives
of a research task need to be considered to tailor the best
model. Research targeting rare classes usually requires a quan-
titative classification (i.e., high recall) rather than a qualitative
classification (i.e., high precision) which is more important for
a study of community structures and biodiversity. The assess-
ment of spatial distributions requires qualitative and quantita-
tive classifications which is, without manual validation,
currently limited to dominant classes (>1% of the whole
data set). As a general guideline, we propose the following
scheme (Fig. 12): either model can be used to classify a given
data set using the P95-filter set. Subsequently, a cluster ana-
lyses to estimate the similarity of the new data set (predic-
tions) and the training data set (validated) is needed. As we
have not investigated how the thresholds behave for increas-
ing data set sizes, currently a subset of the original data set of
30,000-50,000 images is recommended to estimate the thresh-
old for “pure” classes based on Eq. 5. Recall scores of the
CapsNet fluctuate less strong with varying levels of DSS and
the threshold “t” can be adapted dynamically, which is impor-
tant for the comparison of different samples. The spatial distri-
butions of a particular sample should be investigated using a
CNN due to better recall scores in general, but without manual
validation this is limited to the dominant taxa. Rare taxa
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should be targeted using a CNN and the Top-3-Accuracy to
maximize the recall at a limited amount of human effort.
Thus, the only benefit in using a CapsNet in fact arises under
the presumption of DSS.

Data availability statement

All manually classified images from the full training set and
test sets (124 K probability filtering set and 94 K random field
sets), as well as text files containing predicted and validated
classes for all test sets will be available on Zenodo.org (doi: 10.
5281/zenodo.4431509).
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