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Abstract

Information on water balance components such as evapotranspiration and groundwa-

ter recharge are crucial for water management. Due to differences in physical condi-

tions, but also due to limited budgets, there is not one universal best practice, but a

wide range of different methods with specific advantages and disadvantages. In this

study, we propose an approach to quantify actual evapotranspiration, groundwater

recharge and water inflow, i.e. precipitation and irrigation, that considers the specific

conditions of irrigated agriculture in warm, arid environments. This approach does not

require direct measurements of precipitation or irrigation quantities and is therefore

suitable for sites with an uncertain data basis. For this purpose, we combine soil mois-

ture and energy balance monitoring, remote sensing data analysis and numerical

modelling using Hydrus. Energy balance data and routine weather data serve to esti-

mate ET0. Surface reflectance data from satellite images (Sentinel-2) are used to derive

leaf area indices, which help to partition ET0 into energy limited evaporation and tran-

spiration. Subsequently, first approximations of water inflow are derived based on

observed soil moisture changes. These inflow estimates are used in a series of forward

simulations that produce initial estimates of drainage and ETact, which in turn help

improve the estimate of water inflow. Finally, the improved inflow estimates are incor-

porated into the model and then a parameter optimization is performed using the

observed soil moisture as the reference figure. Forward simulations with calibrated soil

parameters result in final estimates for ETact and groundwater recharge. The presented

method is applied to an agricultural test site with a crop rotation of cotton and wheat

in Punjab, Pakistan. The final model results, with an RMSE of 2.2% in volumetric water

content, suggest a cumulative ETact and groundwater recharge of 769 and 297 mm

over a period of 281 days, respectively. The total estimated water inflow accounts for

946 mm, of which 77% originates from irrigation.
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1 | INTRODUCTION

Information on water balance components is essential in hydrological

sciences and related disciplines. It is needed to quantify the replenish-

ment of natural resources and thus forms the basis for sustainable

water resources management. For irrigated agricultural systems it

helps in irrigation and drainage planning and in distinguishing between

blue and green water footprints of crops.

Unfortunately, the possibilities for direct measurements of some

balance components such as actual evapotranspiration (Allen

et al., 2011; Wang & Dickinson, 2012) and groundwater recharge

(Healy, 2010) are quite limited. Therefore, indirect approaches that

require less own measurement effort are more frequently applied.

Very common for the approximation of actual evapotranspiration

(ETact) is, for example, the Penman–Monteith equation, which uses

routine weather data and information on plant physiology, usually

extracted from readily accessible databases (Allen et al., 1998). Indi-

rect methods for estimating groundwater recharge (GWR) include for

instance hydrograph analysis, various tracer methods and modelling.

Hydrological models are particularly interesting because they usually

provide estimates of all water balance components. However, the reli-

ability of their results depends strongly on the availability and quality

of the input data, which therefore constitute the principal source for

uncertainties, particularly in data scarce regions.

In addition to ETact and GWR, natural water inflow, that is, precip-

itation, can also be subject to uncertainties, for instance if there are

no precipitation measuring stations in the vicinity or if only spatially

integrated data from satellite data (e.g., TRMM, CMORPH) or

reanalysis (e.g., ERA5) are available. If imprecise precipitation esti-

mates are then used in models, incorrect parameter estimates and

model results may occur (Fraga et al., 2019; Peters-Lidard et al., 2008;

Troutman, 1983). For irrigated agricultural systems, irrigation water is

also an important but often insufficiently known inflow component

(Brocca et al., 2018; Lankford, 2006; Wisser et al., 2008). The degree

of uncertainty depends on the type of irrigation. In systems where the

water is distributed by a piping system, equipped with flow meters,

fairly accurate application rates are available. In many parts of the

world, however, there are more rudimentary systems. For example,

simple, hand-dug channels for water distribution are very common.

Here, flow rates and transmission losses are often only roughly esti-

mated, based on visual observations, irrigation schedules, and experi-

ence (Forkutsa et al., 2009). Irrigation rates become even more

uncertain in case of excess irrigation. Here, in addition to inflow rates,

drainage rates are required to calculate the net water input into

the soil.

Motivated by the problem of inaccurate or unavailable precipita-

tion measurements, Brocca et al. (2013) developed an approach to

estimate precipitation amounts by analysing soil moisture changes. To

do this, they inverted the soil water balance equation. Water balance

components required in addition to soil moisture change were either

neglected (evapotranspiration and surface runoff) or estimated using

empirical methods (drainage). Soil moisture changes can be derived

from in situ observations (Brocca et al., 2015) or from satellite-based

radar data (Brocca et al., 2014). Later, this approach was also used to

estimate irrigation volumes (Brocca et al., 2018; Dari et al., 2020;

Filippucci et al., 2020).

The aim of the present study is to present a method that allows a

reliable estimation of the water balance components ETact, GWR, and

water inflow (precipitation and irrigation) with moderate measure-

ment efforts. This approach is particular suitable for irrigated areas,

where irrigation water inflows are insufficiently known and difficult to

measure. For this purpose, we apply a combined approach of soil

moisture and radiation balance monitoring, remote sensing data analy-

sis, and numerical modelling. Unknown irrigation amounts are esti-

mated based on soil moisture data and an inversion of the soil water

balance equation. This is accompanied by an iterative process in which

other required water balance components are estimated stepwise by

numerical modelling using Hydrus (Šimůnek et al., 2008).

2 | STUDY SITE

We apply this approach to an agricultural test field of the University

of Agriculture Faisalabad in Punjab, Pakistan, which is part of the

Lower Chenab Canal (LCC) system (Figure 1; Becker et al., 2019). The

test field has a dimension of 110 m × 30 m and the crop cycle during

our investigation period from July 2018 to June 2019 is cotton (Kharif

season, monsoon) and wheat (Rabi season, inter-monsoon). The water

allocation is realized with the Warabandi system (Narain, 2008) and

applied to the plants by flood irrigation. While for the total LCC sys-

tem and its larger irrigation subdivisions fairly precise canal supplies

are known, on the field-scale only sparse data are available on irriga-

tion operations and irrigation volumes (Ahmad et al., 2009). The long-

term (1981–2019) average annual air temperature, precipitation and

potential evaporation of the study site are 24.6�C, 540 mm and

2540 mm, respectively (Muñoz Sabater, 2019). The soil type is classi-

fied as sandy loam (locally termed Farida), which is the most abundant

soil type in the LCC system (Awan & Ismaeel, 2014).

According to Köppen–Geiger, the climate in the Punjab region is

generally classified as hot arid (Kottek et al., 2006), and only irrigation

water allows intensive agriculture. Overall, this makes the Punjab

region with the Indus Basin Irrigation System one of the largest closed

irrigation areas with the world's second largest blue water footprint of

50 Gm3 a−1 after Utter Pradesh (Ganges) and before California

(Mekonnen & Hoekstra, 2011). The main irrigation water source for

the Punjab is surface water from the Indus and its tributaries. How-

ever, measures against waterlogging (Bhutta & Smedema, 2007),

steadily rising irrigation water demand, substantial transmission losses

in the canal distribution system (Chaudhry, 2015), not demand-

oriented water allocation (Basharat & Tariq, 2013), and large differ-

ences between up and downstream water availability (Kazmi

et al., 2012) lead to an increasing exploitation of local groundwater

resources (Habib, 2004). In addition to falling groundwater levels, the

Punjab is strongly affected by increasing soil and groundwater salini-

zation (Bhutta & Smedema, 2007), which is a quite typical phenome-

non of irrigated agriculture in arid regions (Foster et al., 2018). In
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order to counteract these trends and make agriculture in this region

more sustainable, management adjustments are necessary, which

require a quantification of the water balance components.

3 | MATERIALS AND METHODS

3.1 | Monitoring and soil sampling

A monitoring station was installed in July 2018 on a test field of the

University of Agriculture Faisalabad (UAF) in Pakistan (Figure 1). The

station is located at 73�04017.700N, 31�260021.300E and is equipped

with the following devices:

1. one net radiometer (NR-Lite2, Kipp & Zonen), mounted at a height

of 2.5 m to a vertical pipe;

2. one self-calibrating soil heat flux plate (HFP01SC, Hukseflux),

installed in a depth of 8 cm below ground level (b.g.l.);

3. four soil moisture and temperature sensors (CS650, Campbell Scien-

tific), installed in a depth of 10, 20, 40 and 80 cm b.g.l., respectively;

4. one data logger (CR800, Campbell Scientific), mounted to the verti-

cal pipe of the net radiometer and set to a 1-min recording interval;

5. one 12 V battery with a capacity of 4.2 Ah.

This station was in operation from 3 July 2018 to 1 June 2019. Due

to empty batteries or full memory storage the records show some

gaps. The cumulative gap length is 51 days, and the number of full

days with records is 281. This database is available via https://doi.

pangaea.de/10.1594/PANGAEA.921389 (Schulz, 2020).

Additionally, routine weather data such as air temperature (mini-

mum, maximum and mean), relative humidity, precipitation, class A

pan evaporation, sun shine duration, and wind speed are available

from a nearby (<100 m) weather station.

During the installation of the monitoring station, we took three

undisturbed soil samples using 250 mL soil sample rings in depths of

10, 40 and 80 cm b.g.l., respectively. The samples were oven-dried at

105�C for 24 h and weighted to derive the bulk density. Subsequently,

the three sub-samples per layer were combined and wet sieved with

various mesh sizes to quantify the mass fractions for particle diameters

larger than 63 μm. For particle diameters smaller than 63 μm, we car-

ried out a sedimentation analysis. Results are given in the Table S1.

3.2 | Overview of data processing methodology

To estimate the water balance components ETact, GWR, and water

inflow we apply an approach, which comprises a series of data

processing steps (Figure 2). First, we estimate reference crop evapo-

transpiration (ET0) using energy balance data from our monitoring sta-

tion and routine weather data. Subsequently, surface reflectance data

from satellite images (Sentinel-2) are used to derive time-variable

plant-specific information such as leaf area index (LAI), which then

serves to partition ET0 into energy limited evaporation (Emax) and tran-

spiration (Tmax). The next step is a first approximation of the inflow

(sum of precipitation and irrigation) by inverting the soil water balance

equation. Required changes in soil moisture storage are derived from

interpolation and integration of the observed soil moisture data. To

account for uncertainties, resulting from interpolation, a range of soil

F IGURE 1 (a) True colour satellite image from 10 October 2018 of the test site. (b) Overview map with the Lower Chenab Canal (LCC)
system. (c) Monitoring station on the test field with young cotton plants. (d) Subsurface part of the monitoring station with soil heat flux plate and
four soil moisture and temperature sensors
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moisture changes are calculated by applying different interpolation

schemes. Moreover, at this stage, drainage is neglected and the sum

of Emax and Tmax serves as a first guess of ETact.

Afterwards, we perform a first series of forward simulations of the

water flow in the unsaturated zone and the root water uptake using

Hydrus. The upper boundary conditions for this model are first approxi-

mations of the water inflow, Emax, and Tmax. To further account for soil

parameter uncertainties, we run simulations with a quite wide range of

a priori estimates of van Genuchten parameters, derived from a soil tex-

ture analysis. This first modelling step yields a range of estimates for

ETact and drainage (flux at 1 m b.g.l.), which are then used to better esti-

mate the inflow from the inverted soil water balance equation. The final

step is to incorporate these improved inflow estimates into the model

and calibrate the soil parameters by inverse modelling. Here, the

observed soil moisture data form the reference figure for calibration.

Forward simulations with calibrated soil parameters and improved

inflow estimates result in final estimates for ETact and GWR. A detailed

description of all processing steps is given in the following sections.

3.3 | Evapotranspiration

3.3.1 | Radiation balance

The amount of energy, which is available for the latent heat (LE) and

the sensible heat (H), is defined by the one-dimensional surface

energy balance (Equation 1, Hartmann, 2016).

LE +H=Rn−G ð1Þ

While the net radiation (Rn) is directly measured by the net radiome-

ter, the estimation of the ground heat flux (G) requires some compu-

tation. The heat flux, which we measure with our monitoring station,

is the flux in a depth of 8 cm (G8cm). To derive the ground heat flux,

we need to account for a storage term (Sheat), which describes the

change of heat stored in the layer above the heat flux plate

(Equation 2).

G=G8cm + Sheat ð2Þ

The storage term depends on the volumetric heat capacity of the

moist soil (Cs) and is defined in Equation (3) (Hartmann, 2016).

Sheat = dTs �dzdt �CswithCs = ρs �cs � fs + ρw �cw � fw ð3Þ

Estimates for the soil temperature change (dTs) over the time period

(dt) as well as the volume fraction of water (fs) of the upper soil layer

with a thickness (dz) of 8 cm base on records from the uppermost

(10 cm b.g.l.) soil moisture and temperature sensor. The product of

the soil density (ρs) and the volume fraction of soil (fs) is the previously

determined bulk density. The specific heat capacity of most dry min-

eral soils (cs) and of water (cw) are 837 and 4190 J kg−1 K−1, respec-

tively, and the density of water (ρw) is assumed to be 1.00 g cm−3

(Hanks, 1992).

F IGURE 2 Overview of data processing methodology
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3.3.2 | Leaf area index and rooting depth

Leaf area index (LAI) and rooting depth are plant characteristics, which

are required to quantify transpiration, that is, LAI serves for partitioning

of evapotranspiration (Allen et al., 1998) and rooting depth defines the

soil depth from which plants can take up water (Feddes et al., 1976).

Leaf area indices (LAI) for our test site are estimated using red

and near-infrared reflectance data. This approach was introduced by

Clevers (1989) and bases on an empirically derived linear relationship

(Equation 4) between LAI [m2 m−2] and the weighted difference vege-

tation index (WDVI).

LAI = 0:109 �WDVI−0:3233 ð4Þ

Furthermore, Clevers (1989) suggests to calculate the WDVI using red

(R670) and near-infrared (R870) reflectance data of the plant canopy

and the soil (R670,soil and R870,soil), respectively (Equation 5).

WDVI=R870−C �R670withC =
R870,soil

R670,soil
ð5Þ

Given the availability of high-resolution satellite data, Clevers

et al. (2017) revisited this approach and proofed its usability with

space-borne multispectral reflectance data from the Sentinel-2 satel-

lite mission. An advantage of this approach, especially for small-scale

applications such as in the presented case, is the relatively high spatial

resolution of 10 m of the required spectral information, that is, band

4 (665 nm) and band 8 (842 nm).

For this study, 65 sets of satellite images are analysed, covering our

monitoring period from 10 July 2018 to 1 June 2019. To allow for the fur-

ther use of these scenes, the data are converted from top-of-atmosphere

into top-of-canopy reflectance using the atmospheric correction proce-

dure sen2cor (Louis et al., 2016). Afterwards, images with haze or clouds

covering our test field are excluded. For the remaining images, reflectance

values of band 4 and 8 are extracted from the pixel at the location of our

monitoring station. To calculate the slope of the soil line (C in Equation 5)

we use averages of the band values at the same location of images at times

between cropping periods, that is, with bare soil.

Rooting depth (rd) is assumed to be proportional to the soil cover

fraction (SCF; Equation 6; Wongkaew et al., 2018).

rd
SCF

= constant ð6Þ

The value for the constant in Equation (7) can be determined by divid-

ing the maximum rooting depth by the maximum SCF. While maxi-

mum rooting depths are tabulated for various crop types in the FAO

Irrigation and Drainage Paper No. 56 (Allen et al., 1998), SCF is calcu-

lated according to Equation (7) (Campbell & Norman, 1998).

SCF=1−e −Kb �LAIð Þ ð7Þ

Plant-specific canopy extinction coefficients (Kb) are also available

from Allen et al. (1998). The extinction coefficients for cotton and

wheat are 0.65 and 0.55, and the maximum rooting depths are 1.35 m

and 1.65 m, respectively.

3.3.3 | Energy-limited evapotranspiration

Estimates of energy-limited (soil) evaporation and energy-limited tran-

spiration, that is, not limited by the availability of water, are derived

from methods suggested in the FAO Irrigation and Drainage Paper

No. 56 (Allen et al., 1998). Parts of these methods are slightly adapted

to better meet the requirements of the numerical simulation tool

Hydrus. First, reference crop evapotranspiration (ET0) is calculated

based on the FAO Penman–Monteith method, thoroughly described

by Allen et al. (1998), using data from our monitoring station (Rn and

G) and routine weather data from the nearby weather station. In order

to separate ET0 into a plant-specific and energy-limited transpiration

and evaporation component, we applied the dual crop coefficient

approach. Here, transpiration is calculated without considering limita-

tions in soil water availability and thus, constitutes maximum possible

transpiration (Tmax), Equation (8).

Tmax = ET0 �Kcb ð8Þ

The basal crop coefficient (Kcb) characterizes the growth stage of the

plant and can be derived from the time-variable LAI (Equation 9).

Kcb =Kcmin + Kcb full−Kcminð Þ � 1−e−0:7�LAI� � ð9Þ

Kc min is the minimum crop coefficient for bare soil (Kc = 0.15) and Kcb

full is the plant-specific Kcb during the mid-season at peak plant height.

Kcb full for cotton and wheat are 1.15 and 1.1, respectively (Allen

et al., 1998).

Evaporation from the soil (E) depends strongly on the growth

stage of the plant, that is, the more of the soil surface is covered by

plants, the lower the evaporation. In contrast to the previous calcula-

tion of transpiration, evaporation additionally bases on the availability

of soil water for evaporation, described by the evaporation reduction

coefficient (Kr, Equation 10). However, for further use in Hydrus we

are only interested in the energy-limited (maximum possible) evapora-

tion (Emax). Therefore, we set Kr to its maximum value of 1, which

results in Equation (11).

E =ET0 �Kr � Kcmax−Kcbð Þ ð10Þ

Emax = ET0 � Kcmax−Kcbð Þ ð11Þ

The maximum crop coefficient (Kc max) represents the upper limit for

the actual evapotranspiration, considering the constraints of the avail-

able energy (Equation 12).

Kcmax

=max 1:2+ 0:04 � u2−2ð Þ−0:004 RHmin−45ð Þ½ � � h
3

� �0:3
( )

, Kcb +0:05f g
 !

ð12Þ
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Wind speed at 2 m height (u2) and daily minimum relative humidity

(RHmin) are obtained from the nearby weather station. The mean plant

heights during mid or late season stages (h) for cotton and wheat are

1.2 m and 1.0 m, respectively (Allen et al., 1998).

Crop coefficients and evapotranspiration rates are initially calcu-

lated on a daily basis. However, hourly values are required for the

model. To downscale daily values to hourly values, daily rates of Emax

and Tmax are multiplied by the hourly relative diurnal variations of the

theoretically maximum available energy for evapotranspiration (LE

+ H), exemplified for Emax in Equation (13) (indices 1–24 represent the

hours of a day).

Emax, 1

Emax,2

..

.

Emax,24

0
BBBBB@

1
CCCCCA= Emax �

LE1 +H1

LE2 +H2

..

.

LE24 +H24

0
BBBBB@

1
CCCCCA
�X24

h=1

LEh +Hh ð13Þ

To allow a comparative analysis to the estimation of energy-limited

evaporation and transpiration described above, which bases on energy

balance data from our monitoring station and routine weather data

from the nearby weather station, we apply two alternative methods.

First, we followed the same procedure as described above, but for the

estimation of ET0 we use only data from the nearby weather station,

that is, air temperature, relative humidity, wind speed and sunshine

hours (Allen et al., 1998). Second, we calculate the theoretical maxi-

mum available energy for evapotranspiration (LE + H), using only data

from our monitoring station, that is, Rn and G. Here, the temperature-

dependent latent heat of vaporization was calculated using the tem-

perature recordings of the upper CS650 sensor and an approach pro-

posed by Henderson-Sellers (1984). These two alternative methods

are evaluated by comparing them to the previously presented

approach and may serve as an alternative when not all required data

are available.

3.4 | First approximation of inflow

For days with observed positive changes in soil water storage, we

assume that either precipitation or irrigation must have taken place.

For these days we calculate the amount of water inflow (sum of irriga-

tion and precipitation) using the water balance of the first meter of

the unsaturated zone (Equation 14).

Inflow= dS1m + flux1m +ETact ð14Þ

Daily changes of soil moisture storage in the upper 1 m (dS1m) result

from the water volume stored at the end of the day (t) minus the

water volume stored at the end of the previous day (t-1). To estimate

these water volumes, first, temperature corrected (Campbell

Scientific, 2018) measurements of volumetric water content (θ) at

10, 20, 40 and 80 cm b.g.l. are extrapolated, yielding continuous

values every 10 cm. Subsequently, extrapolated soil moistures are

integrated over the first 1 m (dz, Equation 15).

dS1m =
ð1 m b:g:l:

0
θt zð Þdz−

ð1 m b:g:l:

0
θt−1 zð Þdz ð15Þ

This approach introduces some uncertainty as the application of dif-

ferent extrapolation schemes result in different daily changes of soil

moisture storage. To quantify this uncertainty, we run the extrapola-

tion with the five standard interpolation methods that are available in

Matlab 2020a: ‘linear’, ‘nearest’, ‘makina’, ‘pchip’ and ‘spline’. The
lowest and the highest estimate for dS1m constitute the lower and

upper bound of the uncertainty range, respectively.

Since we do not know too much about the variables flux1m (flux

at 1 m depth, previously referred to as drainage) and ETact, for now,

we apply the initial assumption flux1m = 0 and ETact = Emax + Tmax.

This step serves only for a first estimation of the inflow and in second

step better estimates of flux1m and ETact will be available. Neverthe-

less, we expect that this assumption is not too far from reality. On a

daily basis, the expected flux1m is quite low compared to the relatively

large, periodically applied inflow quantities that are common in flood

irrigation. Moreover, irrigation contributes to a constant water supply

for evaporation, which allows the assumption that evapotranspiration

is mostly energy-limited.

3.5 | Numerical modelling

Modelling of water flow and root water uptake are performed with

the numerical simulation tool Hydrus (Šimůnek et al., 2008). Our

model represents a one-dimensional vertical soil profile, divided into

three layers of 0–15 cm b.g.l., 15–60 cm b.g.l. and 60–200 cm b.g.l.,

and it covers a time period from 16 August 2018 to 4 May 04. The

vertical spatial resolution, i.e. the distance between two neighbouring

nodes, is 1 cm and the temporal resolution is 1 h. Time variable

energy-limited evaporation and transpiration, and water inflow (sum

of irrigation and precipitation) constitute the upper boundary. As our

simulated soil profile is quite deep (2 m b.g.l.) and still far away from

the groundwater table (approximately at 10 m b.g.l.), we do not expect

a significant capillary rise from deeper layers into our profile and thus,

set the lower boundary to free drainage. The hydraulic properties of

the soil are described by the van Genuchten–Mualem model (van

Genuchten, 1980). To account for temperature changes and their

effects on the soil hydraulic properties, we also simulate the heat flow

and activate the temperature correction function in Hydrus. Thermal

conductivity parameters of loam are derived from the internal data-

base of Hydrus (Chung & Horton, 1987). The time-variable upper and

lower Dirichlet boundary conditions of the heat flow model are line-

arly extrapolated temperatures of the soil surface and 2 m b.g.l.,

respectively. Parallel to the flow modelling, root water uptake is simu-

lated using the Feddes model (Feddes et al., 1976). Parameter of the

Feddes model for cotton and wheat base on values provided by
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Taylor and Ashcroft (1972), cited in Forkutsa et al. (2009) and

Wesseling (1991), respectively.

3.5.1 | Final estimation of inflow

Final estimates of inflow are derived from a first model application.

The van Genuchten parameters (VGP) and the saturated hydraulic

conductivity (Ks) of the model are not yet calibrated and only a priori

estimates based on the particle size distribution and the bulk density

are available. These estimations are predicted by pedotransfer func-

tions implemented in the Rosetta model (Schaap et al., 2001;

Zhang & Schaap, 2017). This is an elegant and frequently used

approach. However, due to its empirical nature (pedotransfer func-

tions are derived from a neural network analysis of a soil database),

it is associated with uncertainties that are quantified with the stan-

dard deviations (σ) resulting from a bootstrap-resampling method

(Zhang & Schaap, 2017). In this study, except for the saturated water

content (θs), the range of the a priori estimation of the hydraulic

parameters is defined as their mean predicted value ±2� � �σ. Due to

intense irrigation, that is, high availability of water, we assume that

the highest observed volumetric water content is a good estimate

for θs.

Now we perform a series of forward simulations with all possible

parameter configurations for all three soil layers and the five initial

estimates of the inflow. The resulting sets of simulations of flux1m and

ETact are used to improve the calculation of the inflow (Equation 14).

Maximum and minimum estimates represent the uncertainty range of

the inflow.

3.5.2 | Parameter optimization

With an estimation of the inflow boundary condition and a quantifica-

tion of its uncertainty, we can carry out an optimization of the hydrau-

lic parameters. For this purpose, we apply an inverse modelling

approach using the PEST (Model-Independent Parameter Estimation

and Uncertainty Analysis) tool (Doherty, 2015). Here we employ the

global optimization tool CMA-ES (Covariance Matrix Adaptation Evo-

lution Strategy) to minimize the objective function, that is, the sum of

squared residuals of simulated and observed volumetric soil moisture

(Hansen, 2006). In analogy to the estimation of the inflow uncertainty,

we use the mean predicted value ±2� � �σ from the Rosetta model as

the parameter range for the VGPs and Ks during optimization. θs is an

exception here as well. This parameter is kept constant on its a priori

estimated value, that is, the highest observed volumetric water con-

tent. The optimization procedure is applied for the minimum, mean

and maximum inflow estimations, resulting in three sets of calibrated

hydraulic parameters.

4 | RESULTS AND DISCUSSION

4.1 | Evapotranspiration

4.1.1 | Radiation balance

The observed average energy flux at the surface (top of canopy or

ground) of our test site is 119 and 0.2 W m−2 from net radiation (Rn)

and ground heat flux (G), respectively (Figure 3a). With this, ground

F IGURE 3 (a) Records of net radiation and ground heat flux. (b) Records of volumetric water content. (c) Daily changes in soil moisture
storage
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heat flux contributes on average less than 1% to the total energy bud-

get (Rn-G). However, looking at the daily values, the share of ground

heat flux ranges approximately between −50% and 10% with negative

values referring to an energy flow from the soil into the atmosphere

and positive values vice versa. The mean absolute value of the daily

fraction is 16%. Typically, it is assumed that the magnitude of the gro-

und heat flux in day periods is very small and may therefore be

neglected (Allen et al., 1998). However, this seems to be too much of

a simplification for our system. A possible explanation can be found in

the specific conditions for our test site. Due to the intensive irrigation,

our soil is almost always moist, which results in a rather high heat

capacity of our soil, since the specific heat capacity of water is more

than four times higher than that of mineral soil (Hanks, 1992). Com-

bined with a high but variable energy input due to climatic conditions,

this can result in a high energy storage in the soil, which does not

allow for quick heat equalization.

4.1.2 | Leaf area index and rooting depth

The basis for estimating LAI and rooting depth is the canopy or soil

reflection data from the Sentinel 2 satellite mission. After sorting out

the images with haze or cloud cover over our test field, 11 images for

cotton, 9 images for wheat and 7 images for bare soil remained for

our observation period. From the images showing bare soil, we calcu-

lated a value of 1.39 for the slope of the soil line (C in Equation 5). For

both cotton and wheat, the temporal development of the LAI clearly

shows the different growth stages from early plant development to

harvest (Figure 4a). Observed values for cotton and wheat range from

0.1 to 1.7 and from 0.4 to 3.2, respectively. The rooting depth

depends on the constant canopy extinction coefficients and the time-

dependent LAI and thus shows a similar temporal pattern as the LAI.

4.1.3 | Energy-limited evapotranspiration

Energy-limited evapotranspiration (Emax + Tmax) show pronounced

inter-annual variabilities with higher rates during the hot summer

months (up to almost 10 mm day−1) and significantly lower rates dur-

ing the temperate winter months (Figure 4b). The partitioning of

evapotranspiration is based on the dual crop coefficient concept. Like

the rooting depth, crop coefficients highly depend on the LAI. The

more photosynthetically active leaves the plant has, the larger the

basal crop coefficient (Kcb) and thus the higher the share of transpira-

tion. In case of bare soil, Kcb is zero and only evaporation takes place.

On average, the sum of Kcb and the share for Emax (Kc max − Kcb) is

1.11 (Figure 4a). This means that the energy-limited evapotranspira-

tion of our test site is 11% higher than the reference crop evapotrans-

piration (ET0), that is, ETact of short, green and well-watered grass.

This is quite an important observation, as it is not uncommon to

use ET0 as so called potential evapotranspiration, which then defines

the upper limit for actual evapotranspiration in Hydrus (Šimůnek

et al., 2013). In most cases this is a well working assumption.

However, in cases with a high energy input, tall crops and almost

permanent excess of water, for example, through irrigation,

actual evapotranspiration may easily exceed ET0 (Kirkham, 2014;

Rosenberg, 1974).

Noteworthy findings also result from the comparison of the dif-

ferent possibilities to estimate evapotranspiration. For our study, we

used energy-limited evaporation (Emax) and transpiration (Tmax) esti-

mates derived from methods proposed in the FAO Irrigation and

Drainage Paper No. 56 (Allen et al., 1998) using energy balance data,

that is, Rn and G, from our monitoring station as well as routine

weather data from the nearby weather station. Additionally, we esti-

mated the energy-limited evapotranspiration with two alternative

methods. One of them uses only energy balance data from our

F IGURE 4 (a) Temporal evolution of LAI, rooting depth and crop coefficient components. (b) Daily sums of energy-limited evaporation (Emax)
and transpiration (Tmax), and alternative estimates for energy limited evapotranspiration estimates
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monitoring station and the other one uses only routine weather data.

Results from the two alternative methods show a similar pattern as

our approach (Figure 4b). The root mean square error (RMSE) of the

FAO approach using only routine weather data and the approach

using only energy balance data compared to the FAO approach based

on both data sets are 0.73 mm and 0.69 mm, respectively. While the

first mentioned alternative seems to slightly overestimate the energy-

limited ET (mean error of +0.23 mm), the energy balance approach

shows on average almost no difference (−0.04 mm). At first, the even

better performance of the energy balance approach is somewhat sur-

prising, as it neglects any energy loss or input through sensible heat

flux (H). However, the special conditions of our study area, that is,

almost constantly well-irrigated soil and relatively high temperatures,

associated with low advection and low Bowen ratios, may explain this

finding (McMahon et al., 2013; Priestley & Taylor, 1972). In this

regard, it should also be noted that the deviation of LE + H related to

the energy-limited ET increases during the first half of the last fallow

period when the soil dries out (compare Figure 3b and 4b). This sup-

ports the previously given explanation and likewise shows the limited

validity of this alternative approach. Nevertheless, under the given

conditions, that is, irrigated agriculture in a semi-arid environment, LE

+ H could be used as a first estimate for the energy-limited ET. This

approach is quite attractive because of its simplicity. It does not

require any assumptions for the FAO Penman–Monteith method, nor

is it necessary to compute crop coefficients.

4.2 | First approximation of inflow

Daily soil moisture changes and energy limited evapotranspiration

estimates constitute the base for the first approximation of inflow.

Interpolation and subsequent integration of the observed soil mois-

ture data (Figure 3b) yield daily changes in soil moisture storage

(Figure 3c). Abrupt positive changes in soil moisture result either from

precipitation or irrigation events and range from a few millimetres to

almost 150 mm per day. More frequent, but less pronounced, are neg-

ative values of soil moisture storage changes representing water loss

due to evapotranspiration and deep percolation. Here the maximum

absolute rate is about 18 mm per day. The range of values resulting

from the application of different interpolation schemes represents the

uncertainty range.

Calculated first approximations of the daily inflow amounts for

the different interpolation schemes are given in the Table S2. Esti-

mates for single inflow events show differences of up 14 mm and

their relative cumulative uncertainty range is 9.5%.

4.3 | Model results

4.3.1 | Final estimation of inflow

To improve the estimation of inflow, in addition to soil moisture

change in the first meter (dS1m), estimates of ETact and flux at 1 m

depth (flux1m) are required. These values and their uncertainties are

derived from a series of forward simulations (Figure 5a). For this, all

possible combinations of the different initial inflow estimates, which

are based on the different estimates of the soil moisture storage

changes, and the a priori van Genuchten parameters (VGP) are used

(Figure 5b). The basis for the a priori parameter estimates is the grain

size fractions and bulk densities of the three soil layers. These values

and the resulting VGP are given in the Table S1 and S3, respectively.

Not surprisingly, the derived initial set of ETact and flux1m estimates

show a rather wide range (Figure 5a). During the modelling period

from16 August 2018 to 4 May 2019, the mean initial ETact and the

mean initial flux1m are 3.5 and 0.8 mm day−1 with a relative uncer-

tainty range of 64% and 246%, respectively. At first glance, these

uncertainties seem to be quite large. However, these values are only

used for inflow estimation, and compared to the relatively large soil

moisture changes of up to almost 150 mm day−1 this first impression

is somewhat relativized. Finally, Equation (14) is applied to calculate

three inflow time series using the mean, minimum and maximum

values of dS, initial ETact, and initial flux1m, respectively. The final

inflow estimates range from small events of only a few millimetres up

to events of more than 150 mm (Table S5, Figure 6).

Comparing the uncertainty range of the first approximation of

inflow (introduced by the application of different interpolation

schemes) and the final inflow estimates (based on both, interpolation

and a priori soil parameter uncertainty) provides information about

the sensitivity of the different interpolation methods and soil parame-

ters. While the first approximation of the inflow shows a mean rela-

tive uncertainty of 9.5%, it increases to 23.8% for the final estimates

(compare Table S2 and S5). This suggests that both sources of uncer-

tainty are quite similarly sensitive.

4.3.2 | Parameter optimization

The second stage is the VGP optimization. With the exception of the

saturated water content (θs), the upper and lower parameter limits

for optimization are defined by the a priori parameter range

(Figure 5b). θs of layer 1 is kept constant at the highest observed

water content (θobs) of 40.6% recorded by the sensor at 10 cm

b.g.l. θs of layer 2 is set to 35.0%, the highest observed values of the

sensor at 20 cm b.g.l. Due to comparable soil properties of layer

2 and layer 3 and the difficulty of reaching saturation at greater

depth, we also assume a value of 35.0% for θs of layer 3. The calibra-

tion procedure is performed separately for the minimum, mean and

maximum inflow estimates. This results in three different optimized

parameter sets, representing the range of the posterior parameter

uncertainties (Figure 5b). Values for the optimized VGP are given in

the Table S4. The simulated volumetric water contents with the best

fitting parameter sets of the three inflow cases are quite similar and

show fairly satisfactory fits to the observed values (Figure 5c). The

goodness-of-fit, expressed as root mean squared error, of the mini-

mum, mean and maximum inflow case is 2.3%, 2.2% and 2.2%

respectively.

SCHULZ ET AL. 9 of 14



4.3.3 | Prognostic runs

Finally, the model is applied in a forward simulation using the three

different optimized parameter sets to estimate ETact and the flux in

2 m (flux2m), which constitutes the bottom flux of our model, and

their associated uncertainties (Figure 6). The simulation with the

parameters, resulting from the optimization using the mean inflow

estimate, yields 769 mm and 297 mm of cumulative ETact and flux2m,

respectively. These outflow components are balanced by a cumulative

inflow of 946 mm. The difference of 120 mm results mainly from an

unrecorded irrigation event during the first data gap and a soil mois-

ture storage change over the modelling period. While the ETact shows

F IGURE 6 Final inflow estimates and simulation results of actual evapotranspiration and groundwater recharge for the period from
16 August 2018 to 4 May 2019

F IGURE 5 (a) Exemplary data sets from the first modelling stage with first estimates of actual evapotranspiration and flux at 1 m b.g.l. (b) Soil
water retention curves representing the a priori and posterior (optimized) van Genuchten parameter ranges of the three soil layers. (c) Simulated

and observed volumetric water contents of the four sensor positions for the entire modelling period from 16 August 2018 to 4 May 2019
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only a small uncertainty range of 2.1%, the uncertainties of the flux2m

estimates are significantly larger with a range of about 72%. This is

not a surprising result. Our test site is always very well-watered and

consequently ETact is likely most of the time as high as the sum of

Emax and Tmax (Figure 6). In order to fulfil continuity in the water bal-

ance, the uncertainty of the inflow is therefore mainly related to the

uncertainty of flux2m. Daily sums of simulated values of inflow, ETact

and flux2m, as well as their associated uncertainty ranges are given in

the Table S5.

Due to a rather deep groundwater table of about 10 m b.g.l., a

maximum rooting depth of 1.65 m and almost always well-watered

conditions, one can expect a depth of the zero-flux plane of not more

than 2 m b.g.l. Also, simulation results, that is, fluxes at various obser-

vation points, suggest a maximum depth of the ZFP of 1.47 m

b.g.l. during our modelling period. Consequently, the flow direction at

2 m depth is always downward and the flux at 2 m depth (flux2m) can

be considered as groundwater recharge.

4.3.4 | Comparison of results with observed data

From the nearby weather station, daily precipitation amounts are

available for our modelling period. These data are used to identify pre-

cipitation events in the simulated inflow time series, that is, inflow

events that occur during a day or the following day when precipitation

is recorded are attributed to precipitation. Thus, a comparison

between measured and simulated precipitation is enabled. Generally,

the measured precipitation pattern matches well with the one we esti-

mated from the water balance. Except for a few small precipitation

events (<5 mm) all precipitation events could be captured (Figure 6).

The reason for not detecting these small events is that low precipita-

tion can be balanced out by evaporation during the day, that is, no

positive change in daily soil moisture storage is observed. Neverthe-

less, the sums of the measured precipitation are within the error range

of those simulated during cotton and wheat cultivation (Table 1). The

deviation of simulated (mean) and observed precipitation over the

total simulation period is 7% (14 mm).

During our modelling period, mean simulated precipitation might

account for only 23% of the total inflow, while irrigation accounts for

77%, illustrating the rather large blue water footprint of cotton and

wheat production in the region. Similar values are reported by Ahmad

et al. (2002), who analysed the water balance of a cotton-wheat sys-

tem of a comparable test field near Faisalabad from May 2000 to April

2001. For this period, they have measured a total precipitation and

irrigation amount of 290 mm (26%) and 844 mm (74%), respectively.

5 | CONCLUSION

This study presents a method for estimating water balance components

with moderate measurement efforts. We focus on the specific require-

ments of irrigated agriculture in semi-arid and arid environments. A par-

ticular aspect is that we do not need measurements of irrigation nor

precipitation quantities to establish the water balance. This is quite use-

ful as many irrigated areas lack the basic knowledge of these inflows.

The final estimations of the actual evapotranspiration and groundwater

recharge base on simulations with the numerical model Hydrus. This is

also beneficial since models have predictive power and simulations

could be performed to test different management scenarios, for exam-

ple, different irrigation practices or crop cycles.

TABLE 1 Seasonal sums of simulated and observed water balance components

Period Crop

Simulated Observed

ETact
[mm]

GWR
[mm]

Irrigation
[mm]

Precipitation
[mm]

Precipitation
[mm]

16 August 2018 to 4 December 2018 Cotton min 407.3 94.3 406.8 32.2 42.3

mean 411.6 132.0 440.2 36.7

max 413.2 186.5 493.3 43.1

4 December 2018 to 27 December

2018

Fallow min 27.8 12.3 68.5 0.0 0.7

mean 27.9 13.4 73.4 0.0

max 28.0 14.4 79.0 0.0

27 December 2018 to 17 April 2019 Wheat min 308.7 90.4 190.9 141.4 154.1

mean 309.8 138.9 208.4 168.3

max 310.6 209.5 241.7 205.4

17 April 2019 to 4 May 2019 Fallow min 9.4 11.9 0.0 9.7 6.6

mean 12.7 12.2 0.0 12.5

max 16.9 12.9 0.0 14.6

16 August 2018 to 4 May 2019 Total min 753.2 208.9 666.2 183.3 203.7

mean 762.1 296.5 722.0 217.5

max 768.6 423.3 814.1 263.1
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Although the presented method of the inflow estimation could also

be applied to solely rainfed systems, it can be reasonably assumed that

precipitation can be measured more simply and with much lower uncer-

tainties, for example, with a rain gauge. However, it is different for irriga-

tion. Theoretically, measurements are not complicated here either

(simple flow meters would often be sufficient), but they would be

needed for each field separately and farmers would have to keep accu-

rate records. Moreover, irrigation water distribution over the field can

vary considerably. This can lead to uncertainties if only one specific point

is to be examined, as it is common, for example, in one-dimensional pro-

cess analysis. Finally, the decision whether the presented approach is

suitable depends on the research question and the available data. In this

context, the two alternative methods for estimating energy limited

evapotranspiration are also worth mentioning. If an accurate determina-

tion of evapotranspiration is not the primary goal, but only an estimation

of irrigation or groundwater recharge, one of the presented alternatives

can also be applied. They require less data and the differences between

the methods are quite small compared to irrigation amounts.

Moreover, this study could show some shortcomings in fre-

quently applied assumptions such as using ET0 as the upper limit for

actual evapotranspiration or neglecting the ground heat flux in the

energy balance. For most cases these assumptions might work and

constitute valid simplifications. However, for irrigated agricultural sys-

tems with a high but variable energy input, as common in arid regions,

they seem to be too much of a simplification and should be avoided.

For our study area, but also for other irrigation systems in arid

environments, the complex interplay of different aspects such as wat-

erlogging and salinity control, preservation of drinking water

resources and reduction of the blue water footprint while ensuring

agricultural productivity requires finely tuned management. A pro-

found knowledge of the hydrological processes and a reliable quantifi-

cation of the water balance components are essential for this.
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Šimůnek, J., van Genuchten, M. T., & Šejna, M. (2008). Development and

applications of the HYDRUS and STANMOD software packages and

related codes. Vadose Zone Journal, 7(2), 587–600. https://doi.org/10.
2136/vzj2007.0077
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