
1.  Introduction
Convective cloud populations in Earth's atmosphere cover a broad range of spatial scales. Their occurrence 
acts on planetary scales, by persistently covering substantial areas of the globe. On the other end, individual 
clouds have dimensions from a few meters up to tens of kilometers. The spatial structure of cumulus popu-
lations acts on the intermediate (meso)scales and can take many forms, including random-like distributions 
(Nair et al., 1998) but also more organized patterns including cold pool structures and convergence lines 
(Bony et al., 2020; Zuidema et al., 2012).

Understanding the spatial structure of cumulus populations is important for various reasons. Global weath-
er and climate models require parameterizations to represent the impact of subgrid-scale processes on the 
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Plain Language Summary  Convective clouds play a crucial role in Earth's climate. The way 
they interact with the atmospheric circulation is not well understood, and is associated with long-standing 
problems in weather forecasting and climate prediction. Recent research has suggested that the spatial 
structure of these cloud fields is a key factor in this problem, and that improving our understanding of 
such convective cloud patterns is crucial for making progress. This study explores a new model framework 
for generating such cloud patterns, consisting of populations of convective objects on small grids. The 
objects are born in a random way, complete a life cycle, and can freely move around on the grid. They can 
also interact and form larger clusters, obeying certain rules of interaction. The way the objects behave and 
move around features some key innovations compared to previous ecosystem models of this kind. These 
are introduced to optimize the performance and reduce run time on a computer. Various experiments 
are conducted to explore the new model, illustrating that well-known behavior of convective populations 
is reproduced. These tests also highlight opportunities created for improving convection in weather and 
climate models.
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resolved-scale flow. Until recently this still fully included cumulus convection, but ongoing advances in 
supercomputing have gradually created a “gray zone problem” (Honnert et  al.,  2020; Wyngaard,  2004) 
in which feasible gridspacings approaches typical neighbor spacings of cumulus clouds (Joseph & Ca-
halan,  1990). This means convective populations are no longer fully sampled in individual gridboxes, a 
situation for which existing convective parameterizations need to be adapted (Brast et al., 2018; Craig & Co-
hen, 2006; Kwon & Hong, 2017; Plant & Craig, 2008; Rochetin et al., 2014; Sakradzija et al., 2016). A second 
motivation for studying the spatial structure of cumulus populations is the role it plays in the cloud-climate 
feedbacks (Vogel et al., 2016; Wing et al., 2018).

The investigation of spatial patterns in convective cloud fields goes back decades, using large-domain cov-
ering observations (Nair et al., 1998; Sengupta et al., 1990; Weger et al., 1992) and more recently also sim-
ulations (Feingold et al., 2017; Neggers et al., 2019; Tompkins & Semie, 2017). What is clear is that spatial 
patterns consist of many individual convective objects. Zooming in on any pattern then leads to ever fewer 
elements being contained in the shrinking domain of interest. As a result, bulk population averages go 
from smoothly behaving for a fully sampled population toward more discrete behavior for a significantly 
subsampled population, or even binary behavior in the limit that only one object is intermittently present 
in the gridbox. The way this happens is strongly affected by clustering (Neggers et al., 2019). Understanding 
and capturing this transition toward discrete behavior, including the role played by spatial organization, is 
key for developing scale-aware and stochastic convective parameterizations for next-generation weather 
and climate models.

Population models including many small convective elements can give useful new insights into this prob-
lem, and potentially provide new pathways for convective parameterization. For example, rules of interac-
tion can be introduced that reflect known or observed physics, by which spatial patterns can emerge freely. 
Such rules are known from game theory (von Neumann, 1928; von Neumann & Morgenstern, 1944) and 
cellular automata (von Neumann, 1966; Gardner, 1970). A promising recent example is the lattice or mi-
crogrid approach (Dorrestijn et al., 2013; Khouider et al., 2010; Peters et al., 2017), which allows multiple 
cloud-scale structures to evolve naturally and gradually on a 2D grid. Other cloud-scale stochastic frame-
works were recently proposed by Plant and Craig (2008), Sakradzija et al. (2016), and Hagos et al. (2018). 
One step further downscale is the Lagrangian particle approach of (Böing, 2016), which tracks a multitude 
of interacting subcloud scale elements as they form larger clusters on the grid. Although yielding powerful 
results, what remains relatively unexplored is how such systems behave in the gray zone, in particular their 
stochastic and discrete behavior resulting from population subsampling in a too small gridbox. One also 
wonders if the often considerable computational burden of such multiobject approaches might limit their 
use as part of a convective parameterization.

To gain further insight, in this study a simple toy model is formulated for recreating populations of inter-
acting convective objects as distributed over a two-dimensional grid. A defining principle is its fully discrete 
formulation, aimed at capturing discrete behavior at small population sample sizes. Another primary goal 
is to achieve a formulation that is generally applicable to many types of convection and convective object 
definitions, with a computational efficiency that is as high as possible. Object births are represented sto-
chastically as a spatially aware Bernoulli process, taking the form of a binomial number generator. The 
same operator is applied to horizontal advection of objects between gridboxes, making this process similarly 
stochastic and discrete. An object age dimension is introduced, allowing discrete and explicit representation 
of life-cycle effects. The formulation of the framework allows for multiple coexisting cloud species, as well 
as interactions to take place between individual convective objects. The formulation in terms of a Bernoulli 
process at multiple points in the model considerably enhances the computational efficiency.

While some of these features have already been part of previously proposed convective population mod-
els, one of the main novelties of this framework lies in their combination, and in the way this is achieved. 
This introduces new behavior that is not just conceptual but also practical, adding new functionality in 
an efficient and general way which could potentially open new pathways to break the still existing con-
vective parameterization deadlock (Randall et al., 2003; Sherwood et al., 2014; Vial et al., 2016). The net 
behavior resulting from the combination of these individual population model components is at this point 
still unknown, and remains unexplored. The main goal of this study is to gain more insight into this new 
behavior, among others through example applications representing atmospheric convection. The thorough 
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evaluation and performance testing of this population framework as part of a full convection scheme, as 
required before implementation in any operational weather or climate model, is for now considered as a 
future research topic.

Section 2 presents the basic formulation of the framework. In Section 3, behavior as implied by the formu-
lation and its applicability to atmospheric convection is discussed, including an interpretation of implied 
scaling behavior, the advection operator, and the computational efficiency of the framework. Section  4 
demonstrates simple applications of the binomial framework on microgrids, defined here as two-dimen-
sional grids situated inside a gridbox of a larger-scale circulation model. This application is named BiOMi 
(Binomial Objects on Microgrids). The experiments are designed to represent atmospheric turbulence or 
convection, and include both single-species and multispecies setups. Opportunities created by introduc-
ing simple physics-based rules of object interaction are explored, including predator-prey behavior, spatial 
organization and convective memory. Section 5 interprets these results in the context of limitations in the 
formulation, and compares to other recently proposed stochastic frameworks for atmospheric convection. 
Section 6 then summarizes the main conclusions and provides an outlook on future steps inspired by this 
study.

2.  Formulation
In this section, the framework for describing an evolving population of objects on a discretized grid is 
defined. At its foundation is a prognostic budget for object number that is discrete and includes various 
sources and sinks. We adopt the following guiding principles in its formulation:

1.	 �The objects should have a stochastic birth rate and a finite lifespan
2.	 �The number of objects present in a gridbox should be both discrete and positive-definite, at any time
3.	 �The formulation should be general enough to be applicable to any type of convection

Adopting the first and second principles is motivated by our primary goal of capturing the type of stochas-
ticity that is introduced by the subsampling of populations in a too small gridbox. In this “gray-zone” range 
of resolutions, only a few objects are present at varying stages of their life-cycle, which may lead to discrete 
behavior in their averaged properties. Adopting a discrete approach has direct implications for the formula-
tion of all terms in the number budget.

Adhering to the third principle makes it necessary to refrain from defining any closures that reflect specific 
physics behavior, as this by definition would make the framework no longer generally applicable. Accord-
ingly, in this section the formulation of such physical parameterizations is for now left open. However, in 
Section 4 a few simple examples will be explored.

2.1.  A Discrete Budget for Object Number

Consider a three-dimensional space-time gridbox covering a square horizontal area ΔxΔy and time-step Δt, 
as depicted in Figure 1a. This grid box can contain a population of objects, potentially consisting of multiple 
species. The discrete number of objects of species i is indicated as ni, with I being the total number of dif-
ferent species. How exactly species are defined is left open at this point, to maintain general applicability of 
the framework. Note that the vertical dimension is omitted because the altitude of objects is not considered 
in this framework.

We now introduce a fourth dimension, which is object age k. The number of objects of species i in a gridbox 
can then be written as ni (x, y, k, t). All four dimensions are discretized. As a result, the k-dimension intro-
duces a discrete form of object age-dependence, with k being an integer number indicating discretized age, 
here referred to as an “age-stratum”. For simplicity all objects of a species i are assumed to have the same 
life-span τi, by which the number of age strata Ki is obtained through

K
t

i

i

� (1)
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In practice, the chosen time discretization determines how many age levels are maintained. The life times 
of objects are chosen to be a multiple of Δt, so that Ki is always an integer number.

The final step is to formulate a prognostic budget for each species i at each age level k. This gives

   Δ .ik ik ik ik ikn b d a t� (2)

The left hand side Δnik represents the change of ni at age level k per time step Δt. On the right-hand side, bik 
and dik represent changes in nik due to births and deaths respectively, aik represents net advection of objects 
from neighboring gridboxes, and tik represents the process of object aging. Hereafter, lower-case notation 
indicates the property of a gridbox, while upper-case notation reflects the integral or average properties of 
a much larger domain. To shorten the notation only the species and age indices i and k are carried as sub-
scripts. Each age level k thus has its own number budget. Note that all terms in 2 are still integer numbers.

2.2.  Object Births as Bernoulli Trials

The first step in the closure of bik is to assume that objects of species i have a unique reference birth rate 
per unit area and unit time when diagnosed over an infinitely large area. Let us write this birth rate as 

iB
. Because this rate depends strongly on the definition of the species, for now we assume this birth rate as a 
given, known property. By adopting this assumption we follow the recent study of Böing (2016).

Given 
iB , the next step is to consider a finite but still very large theoretical reference domain of horizontal 

size L in which the population of convective objects is still fully sampled. The average total number of births 
of species i within this reference domain during one time-step, Bi, can then be written as

  2 Δi iB B L t� (3)

A convenient choice of a theoretical reference domain would be the whole globe, as this represents the 
theoretical upper limit of grid spacing in any General Circulation Model (GCM) used for global weather 
and climate prediction. For smaller scale shallow convection one could also choose a smaller domain, for 
example, the subtropical marine Trade wind region where shallow convection dominates. When Bi is large 
and the reference domain is much larger than the individual gridbox, the binomial sampling approaches 
the Poisson distribution used by Sakradzija et al. (2015) to determine stochastic cloud births per gridbox.

Discretizing this reference domain at resolution (Δx, Δy, Δt) results in a number of gridboxes N,
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Figure 1.  (a) Schematic illustration of a population of objects of species i inside a three-dimensional space-time 
gridbox (red) with square horizontal area ΔxΔy and time-step Δt. (b) Schematic illustration of object age-dependence 
for a species i with five age strata (defined as discretized age, or an age level). The blue arrows indicate external 
sources and sinks of budget (2), while the green arrows indicate the internal aging process. Variables are explained in 
Section 2.1.
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
2

.
Δ Δ

LN
x y

� (4)

The total number of birth events in the reference domain, Bi, is spatially distributed over the grid, yielding 
an average number of birth events in a single gridbox, μi,

  i
i

B
N

� (5)

Let us assume for the moment that the spatial distribution is purely random (we will deviate from this 
condition later). Then for each of these Bi birth events the probability p that it takes place inside a specific 
gridbox is

1 / .p N� (6)

Note that probability p is the same for each species, and is purely a property of the discretized grid. In that 
sense it introduces scale-awareness, or awareness of the grid spacing, in the birth probability of objects. 
Dependence on species is introduced by Bi.

The key step in defining the stochastic birth generator is to assume that the number of births in an arbitrary 
gridbox is independent of other gridboxes and timesteps. This means that object birth events can be con-
sidered as single, independent Bernoulli trials, associated with a specific success/failure probability p. With 
that assumption the full set of Bi birth events that takes place within the reference domain then becomes a 
Bernoulli process. Adopting the configuration as defined above this can be written as the following proba-
bility mass function,

   
   
 

( )(1 )i B bb i
i

B
f b p p

b� (7)

where the binomial coefficient is defined as

 
    

!
! ( )!

i i

i

B B
b b B b

� (8)

where we assumed for convenience that Bi can be rounded to the nearest integer. Function fi(b) can be inter-
preted as the probability of b births of objects of species i in an arbitrary gridbox, given a reference domain 
with properties Bi and p. The mean μi of this binomial distribution, or its expected value, is defined as

  ,i iB p� (9)

which, according to (5) and (6), corresponds exactly to the average number of object births per gridbox. Note 
that the actual average number of births on the grid might deviate from this expected value because each 
gridbox is sampled independently.

In practice, in each space-time gridbox the integer number of births of objects of species i is determined 
by randomly sampling the binomial distribution (7). This can be written as a binomial number generator,

 1 , ,i ib B p� (10)

where  represents a single random sample of binomial function fi. The number of births bi1 thus estab-
lished for each gridbox can directly be used in budget Equation 2, with subscript k = 1 reflecting that all 
newly born objects enter the age array at the first (youngest) level. The birth rates bik for k > 1 are set to zero 
for the moment.
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2.3.  Object Life Cycle

The introduction of the age dimension k allows representing object 
life-cycle effects. At the start of every timestep, objects in one age level are 
time-shifted into the next (older) level. This process is illustrated in Fig-
ure 1b (green arrows). This process of object aging is included in budget 
(2) through the operator tik, defined as





  


   
 

, 1

, 1

for 1
for 2
for

ik

ik i k ik i

i k i

n k
t n n k K

n k K
� (11)

The time-shift out of the top (oldest) level represents object death due to 
old age,

 forik ik id n k K� (12)

Note that this death rate is automatic and discrete, in that it cannot create 
fractional object numbers. In this aspect it is different from Newtonian 
relaxation, which would be an alternative (but nondiscrete) formulation. 
Furthermore, the amount of deaths per turn is not determined by the 

amount of objects currently alive, but is directly determined by the amount of births Ki time steps earlier. 
The death rates dik for k < Ki, which represent deaths caused by processes other than aging, are set to zero 
for the moment.

2.4.  A Discrete Advection Operator

If horizontal advection is to be taken into account an advection approach must be chosen which preserves 
the total number of objects and their discrete nature. No fractions of objects are permitted.

The same Bernoulli process we use to distribute the number of births over a two-dimensional domain can 
be used to create a stochastic upwind advection scheme for discrete objects. At the core of this scheme is the 
assumption that the objects are randomly spatially distributed within each gridbox. From this assumption 
the probability of an object to be advected from one gridbox to another can be determined from the overlap 
area as shown in Figure 2. From this principle a conservative advection scheme can be derived that requires 
three sequenced Bernoulli trials per advected gridbox, age strata, and species.

The first step is to determine the arrival point 
1x  of the gridbox mid-point after translation from its original 

location 
0x  due to advection by the horizontal wind v ,

 
  1 0 Δx x v t� (13)

The new gridbox is centered around the arrival point 
1x , making it overlap with four gridboxes. When the 

displacement is smaller than the grid box there is chance objects will remain in the original gridbox, if the 
displacement is larger all objects will move outside. The overlap areas Aj are labeled in clockwise direction 
from the topleft one, and obey


 

IV

I
j

j
A A� (14)

where A = ΔxΔy. For each age level k, we now randomly select objects from the total number of objects in 
the original gridbox, nik, to arrive in each of these four areas Aj. To this purpose the binomial operator  as 
defined before is used,
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Figure 2.  Schematic illustration of overlap between a displaced gridbox 
and the underlying grid. The arrows represent the displacement over 
one-time step, which is simply the horizontal wind multiplied by the time 
step duration. Gray crosses mark the mid of the gridbox before and after 
displacement. See section 2.4 for full description.
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 
  

 
I

,I ,ik ik
Aa n
A

� (15)

 
  

 
II

,II ,I
I

,ik ik ik
Aa n a

A A
� (16)

 
   

  
III

,III ,I ,II
I II

,ik ik ik ik
Aa n a a

A A A
� (17)

The number of objects advected into AIV is then simply obtained as the residual,


  

III

,IV ,
I

ik ik ik j
j

a n a� (18)

While the clockwise ordering we used is arbitrary, it is critical that Equations 15–17 are calculated sequen-
tially to guarantee that the remaining number of objects advected into the final subgrid box IV is not neg-
ative. Calculating advection separately for each age level k ensures that age is conserved as objects are 
advected across the grid.

The introduced advection operator is a discrete and stochastic sibling to simple conservative semi-Lagrani-
gan schemes that use a constant subgrid reconstruction. Accordingly, for large number of objects per grid-
box, this discrete advection operator results in high gradient smoothing and fast dispersion. Less diffusive 
versions of the discrete advection operator can be derived using higher-order subgrid reconstructions (Stan-
iforth & Côté, 1990), which abandon the assumption that objects are randomly distributed within a grid cell. 
For low object numbers, the stochastic nature of the operator becomes more visible, with the mean over all 
objects no longer smoothly tracking the wind. These aspects will be further illustrated in Section 3.2.

2.5.  Object Interactions

The framework allows introducing interactions between objects in two different ways. The first option is 
to make birth probability p appearing in 7 dependent on the presence of other objects in the vicinity of 
the gridbox. These could be locally present, inside the gridbox, but also in a wider area, covering multiple 
adjacent gridboxes. The spatial extent of such impacts depends on the physical/dynamical nature of the 
interaction process of interest. The second option is to make the birth and death rates bik and dik dependent 
on the presence of other objects. This method is particularly suited to introduce interspecies interactions. 
For example, predator-prey dynamics can be introduced by making the death rate of one (prey) species de-
pendent on the presence of another (predator) species. In Section 4, simple applications of the framework 
will be demonstrated that include both forms of interaction between objects.

3.  Applicability to Atmospheric Convection
With the basic formulation of the framework concluded, some behavior can already be understood a priori 
its application in practice. These implied characteristics are what makes the frame work particularly suited 
to atmospheric convection. Stochasticity due to subsampling is the key to representing atmospheric con-
vection consistently throughout its gray zone of resolutions, while advection is a fundamental aspect of at-
mospheric modeling which previous population frameworks have completely neglected. Furthermore, due 
to considerable computational burden of numerical weather prediction and climate simulation, any frame-
work seeking to represent subgrid scale convection must be able to do so with as high efficiency as possible.

3.1.  Stochasticity due to Subsampling

Describing object births on the grid as independent Bernoulli trials directly controls the behavior of stochas-
ticity in object number at gridspacings at which the population is becoming subsampled. This is illustrated 
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in Figure 3, showing the binomial probability density function f(b) as defined by 7 for various gridspacings. 
Note that the shape of the distribution shifts from heavily skewed for small Δx to more symmetric for large 
Δx. Such shapes are similar to previously proposed stochastic convection schemes (Cohen & Craig, 2006; 
Plant & Craig, 2008).

Both the mean μi and the width 2σi increase with gridspacing Δx, which is expected because p increases with 
gridspacing through (6). This results in more births per timestep in larger gridboxes. A more useful expres-
sion of stochasticity is provided by the relative width of the pdf, σi/μi. This can be understood by considering 
the definition of σi for the binomial,

  
 

    
 

2 11 1i i iB p p
N

� (19)

The standard deviation σi normalized by the mean μi can then be written as

 


  
  

 

1
1

2
2 11 .i

i
i N

� (20)

Note that μi carries dependence on both spatial (grid) information and species properties, because it reflects 
that Bi births are randomly distributed over a discretized spatial domain. Through (5) this implies a relation 
for the average neighbor spacing li between objects born in the gridbox within the time-step,



  
         



11
22Δ Δ 1 .

Δi
i i

x yl
B t

� (21)
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Figure 3.  (a) Examples of binomial probability density f(b) as defined by 7 for various grid-spacings Δx = Δy, using a birth rate    10 2 110 m siB , a reference 
domain of size L = 1,000 km and an integration timestep Δt = 60 s. Results represent 106 independent draws. (b) Associated functional form of the normalized 
standard deviation of the binomial distribution σ/μ, as defined by 22. A pure powerlaw (black dotted) and modified powerlaw (black dashed) functional form 
are also shown, for reference.
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Here the neighbor spacing is assumed to be proportional to the square root of the area surrounding each 
object that is free of other objects (on average). Substituting the first part of 21 for μi in 20 then yields the 
following scaling relation,





   

        

11
2Δ 11i

i il N
� (22)

where we introduced Δ Δ Δx y  to shorten notation. On the right hand side only the variable li depends 
on the species, through the reference birth rate iB .

Each term between brackets in the product on the right hand side of 22 has its own specific meaning. The 
first term introduces a powerlaw dependency (with exponent − 1) on the ratio of grid-spacing Δ to the 
nearest neighbor spacing li, with larger values of (Δ/li) suppressing the normalized standard deviation. This 
reflects that the population of object births of species i is better sampled at larger gridspacings, reducing 
stochasticity in object number. The second term depends purely on the grid, and acts to bring the standard 
deviation to zero in the limit of the grid spacing approaching the reference domain size.

This behavior is illustrated in Figure 3b, showing the functional dependence of the normalized standard 
deviation on gridbox size Δ. In the range of gridspacings typical of operational GCMs the second term is 
almost a constant, because N ≫ 1. As a result, the dependence of the normalized standard deviation on 
grid-spacing approximately behaves as a powerlaw with exponent − 1. When N approaches 1 the variability 
is squeezed to zero.

The powerlaw scaling in the normalized standard deviation as implied by this formulation has recently 
been encountered in studies of the internal variability of shallow cumulus cloud size distributions. Neg-
gers et al.  (2019) performed subdomain analyses of unorganized shallow cumulus cloud populations in 
Large-Eddy Simulations (LES), and found that the variation across subdomains in the number of convective 
clouds of a given size follows scaling relation (22). This agreement provides support for the applicability of 
the Bernoulli process for reconstructing the stochasticity of such unorganized convective populations. Note 
that the framework also accounts for life cycle effects, which research has suggested is an essential and 
defining aspect of atmospheric convection as many of its properties depend on the stage of development 
(Chen & Houze, 1997; Genio et al., 2012). Also, the net episodic behavior in convective object number in an 
arbitrary domain that results from combining the binomial birthing formulation with life cycle effects is at 
the heart of gray zone problem (Honnert et al., 2020; Wyngaard, 2004).

3.2.  Discrete Advection

The internal dynamics of a convective cloud field can be quite complex. While the population as a whole 
is embedded in the larger-scale flow, local smaller-scale perturbations in the flow exist that directly result 
from convective activity (Blyth et al., 1988; Heus & Jonker, 2008; Wing et al., 2018; Zuidema et al., 2012). 
When considering the life cycle of an individual convective object, one can state that in general these objects 
move horizontally because they are advected by the local flow directly surrounding them. Note that this 
principle does not contradict the propagation of multicell convective systems, because this reflects an en-
tirely different process, namely the birth of new convective clouds in upstream areas that are lifted (Brown-
ing et al., 1976; Houze, 2014). The same applies to convective systems which are generated and maintained 
by permanent nonmoving orographic features, such as the infamous Hector the Convector phenomenon 
over the Tiwi Islands (Dauhut et al., 2016).

Taking this perspective, if the resolution of the model and the horizontal winds are high enough that the 
objects are expected to move between neighboring gridcells, advection should be taken into account. A de-
fining novelty of the population framework presented here is that it includes an advection operator, which 
is also stochastic and discrete.

To illustrate the numerics of the discrete advection operator we run a highly idealized experiment in which 
all objects are initialized in the same gridbox before being advected diagonally (Figure 4). Objects do not in-
teract with each other or have a life cycle, and all differences between the subplots of Figure 4 are due to the 
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differing number and duration of the timesteps. This testcase was designed to maximize advective diffusion 
in order to highlight the randomness and discreteness of the stochastic advection operator.

As expected, for a large number of objects per gridbox the discrete advection operator behaves as a contin-
uous first-order upstream approach with high gradient smoothing and fast dispersion (small blue dots). 
But in contrast to a continuous upstream approach, the discrete operator is positive definite. How strong 
and in which direction the dispersion acts depends on the angle of the grid to wind direction, gridbox size, 
and the timestep. The impact of changing the timestep is shown in Figure 4, illustrating that changing the 
timestep can not only affect the strength of the dispersion, but also the direction. As in the continuous 
analog, increasing resolution reduces diffusion (not shown). Despite this numeric diffusion, the mean over 
a sufficient number of objects will follow the wind direction closely. For low object numbers the stochastic 
nature becomes more visible, with the mean over all objects no longer smoothly tracking the wind (large 
white dots). A side effect of the stochastic nature is that an initially smooth field will become heterogeneous 
when advected. Similar to the stochastic subsampling this effect is more pronounced for low object numbers 
(not shown).

3.3.  Computational Viability

Given that efficiency is one of the core concepts of the introduced framework, this subsection briefly dis-
cusses the required processing cost and memory requirements of the framework and how they compare 
to Lagrangian approaches. Keeping the computational burden of an object population model as low as 
possible is prerequisite for any implementation as part of a convection scheme in an operational weather 
or climate model. Generally speaking this numerical requirement has often acted as a hurdle for adopting 
more complex approaches in subgrid paramaterization in general circulation models, and was argued by 
Böing (2016) to apply to Lagrangian particle models in particular.

3.3.1.  Processing

The binomial operator (10) is a cornerstone of the framework, being applied to represent both object births 
and object advection. A computational benefit of this operator is that the operational cost becomes inde-
pendent of the number of samples drawn from the distribution. This is a clear distinction from the Lagran-
gian particle approach in population dynamical modeling (Böing, 2016), which computes the evolution and 
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Figure 4.  Example of discrete advection of objects on a 5 × 5 rectangular 1 km grid using the same initial conditions and grid but differing time step. The blue 
and orange objects behave identically, and differ only in the amount (1,000 blue, four orange). Note. that the individual objects have no specific x and y location 
within each gridbox, and are only plotted as such for visualization purposes. The red square marks the gridbox in which all objects were initialized at t = 0, 
and shown are the locations after 12 min of diagonal advection. The black line with small black circles marks the mean location at each time step of the blue 
objects, the large white circles the mean of the large orange objects.
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movement of each particle individually. As a consequence, the cost of Lagrangian approaches scales with 
population size, while that of binomial approaches in principle scales with gridsize, species number, and 
age strata.

However, thanks to vectorization, the amount of CPU time needed to compute the binomial sampling need 
not scale linearly with gridsize, species number, and age strata. The results of the efficiency test shown in 
Figure 5 shed some more light on this possibility. In the first panel the time spent by the binomial operator 
for each gridbox is shown as a function of gridsize. As can be expected, applying the operator in a nonvec-
torized way (i.e., a sample at each gridpoint) keeps this cost per gridbox more or less independent of gridsize 
(panel a). As a result, the total cost for the whole grid increases linearly with the gridsize (panel b). However, 
while a vectorized application of the binomial operator is slower for a 1 × 1 grid, it strongly reduces the 
computational cost in regards to the gridsize for larger grids. The vectorized version is almost independent 
of gridsize up until 30 × 30, after which the vectorized version is 100× faster than the nonvectorized version 
(panel b). We suspect that the precise gridsize when the cost of the vectorized version begins to increase 
with gridsize is related to the CPU memory. The boost in efficiency due to the vectorized application, com-
bined with its independence on population size, is what allows the binomial approach to remain computa-
tionally viable as part of a convective parameterization, even for microgrids of substantial size. How these 
benefits hold up in practice will vary with hardware and implementation.

3.3.2.  Memory

The memory usage of the binomial framework is not determined by the number of objects as would be the 
case for a Lagrangian approach (Böing, 2016). Instead memory depends linearly on the amount of species, the 
number of age strata, and the gridsize used. To illustrate memory consumption let's use the advection example 
shown in Figure 4. A Lagrangian approach would require the age, x, and y location of each of the 1,004 objects 
to be tracked individually, resulting in the storage of 3,012 float values. Assuming an object lifetime of 24 min 
and a timestep of 12 min, as shown in the left subplot of Figure 4, the binomial memory footprint would be 
25 ⋅ 2 ⋅ 2 = 100 integer values (25 gridboxes, two species, two age strata). Reducing the timestep to 1 min while 
retaining a 24 min lifetime would increase the memory usage to 1,200 integers. An advantage of the discrete 
framework is that the memory required is static and evenly spread over the grid, which means it can be easily 
spatially decomposed into individual blocks with the rest of the atmosphere model to be run in parallel. In 
contrast, the memory usage of Lagrangian approaches grows and shrinks with the number of particles tracked, 
and particles moving from one memory domain to the other can complicate the parallelization process.
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Figure 5.  Results of a speed test of the binomial operator (10) as executed in Python on a single Intel i5-6400 2.7 Ghz CPU. (a) Time spent per gridbox as a 
function of gridsize, for a vectorized (v) and nonvectorized (nv) application. (b) Time spent for the full grid.
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4.  Simple Convective Experiments
In this section, the framework is further explored by means of simple experiments with four possible config-
urations, as applied to grids of small size (“microgrids”). All examples represent atmospheric turbulence or 
convection, which is also reflected in the definition of the species. Where possible a comparison is made to 
meaningful reference results, including LES results but also some well-known theoretical models. The pur-
pose is not to define ultra-realistic systems; instead, the goal is to explore basic behavior and highlight op-
portunities. Achieving a realistic configuration and calibration is for now considered a future research topic.

The framework as applied on microgrids is hereby named BiOMi (Binomial Objects on Microgrids). Mi-
crogrids are here defined as two-dimensional grids that can be included inside gridboxes of larger-scale 
circulation models. Using small grids keeps the examples discussed in this section as simple and easy to un-
derstand as possible. But another important motivation for using microgrids is the associated high compu-
tational efficiency, which could allow its application as part of a convection scheme in operational general 
circulation models used for weather forecasting and climate prediction.

4.1.  Exp 1: Single-Column Random Sampler

The first experiment demonstrates how the BiOMi framework can be used to introduce stochastic noise in 
existing convection schemes in operational weather and climate models. Spectral convection schemes are 
perhaps best suited to this purpose. This class of convective parameterizations has been around since the 
early days of numerical weather forecasting (Arakawa & Schubert, 1974). A key assumption at the foun-
dation of spectral schemes is the shape of the size distribution of convective elements that do the vertical 
transport. In the convective gray zone stochastic noise can be superimposed onto this spectrum to represent 
the impact of subsampling of the population (Neggers, 2015; Plant & Craig, 2008), for which the binomial 
number generator as proposed in this study can well be used.

As a demonstration a discretized spectrum of convective objects is considered, consisting of a histogram 
with 10 bins ranging linearly in size from 50 to 950 m. The reference birth rate of the objects is a power law 
of object size with a slope of −2,

 


   2100 50 .iB i� (23)

The proportionality constant λ is scaled such that the birth rate is on average 256 per gridbox for the 50 m 
objects. A 1 × 1 grid is adopted with a grid spacing of 5 km, which is in the middle of the deep convective 
gray zone (Arakawa et al., 2011). The reference domain is 1,000 km, and the object distribution is sampled 
50 times independently of each other to evaluate the stochasticity. In these 50 random samplings only 
the three smallest and most numerous object species are always present (Figure 6), with the ratio of sub-
sampling variance to mean number becoming larger for the rarer object species. This behavior is a typical 
feature of cloud size distributions as sampled in LES (Neggers et al., 2019). Due to the implied scaling as 
discussed in Section 3.1, decreasing the domain size would increase the variability for a given object size, in 
a way that also resembles LES. This dependence of the stochasticity in object number on domain size is an 
expression of scale-awareness and scale-adaptivity.

Coupling the binomial framework to an operational spectral convection scheme would introduce these 
features in a weather or climate model. The simple “offline” experiment discussed here also highlights how 
stochasticity due to population subsampling would be captured in the convective gray zone. At the same 
time, the average number of objects over the grid is preserved.

4.2.  Exp 2: Stochastic Predator-Prey System

This experiment is a translation of the continuous predator-prey system of Lotka (1910); Lotka (1920) and 
Volterra (1926) to a discrete analog in which births and deaths are determined from Bernoulli trials. The 
intent of this experiment is to highlight the stochastic nature and to illustrate how the individual species 
can interact while conserving their discreteness. The predator-prey system was chosen as it a widely known 
problem that has been used to model various features in meteorology. Predator-prey approaches have been 
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used in Meteorology to describe cloud microphysics (Wacker, 1995) and cloud precipitation interactions 
(Koren & Feingold, 2011; Pujol & Jensen, 2019). The Lotka-Volterra equations were used by Nober and 
Graf (2005) and Wagner and Graf (2010) to describe individual clouds competing for convective instability, 
in an analog to various animal species competing for a limited food source.

We will split this experiment into two halves. First we will look at the classic predator-prey equations in 
Section 4.2.1 which has been intensively studied. Both in regards to stochasticity (Aguirre et al., 2013), and 
how it can be translated to a system of stochastic cellular automata by Guinot (2002) who studied under 
which conditions the behavior of the cellular automata matches that of the continuous equations.

4.2.1.  Classic Predator-Prey

According to the classic formulation of the predator-prey equations, the prey x grows exponentially with a 
rate of α but is reduced by the hunting of the predator y which kills according to the product of prey and 
predator and β. The predator's growth is linked to the amount of hunting through δ, and the predator dies 
off with an exponential decay of strength γ. The equations have a periodic solution around a stable point 
when the populations of prey and predator, as well as the four parameters, are all positive:

   
dx x xy
dt

� (24)

   
dy y xy
dt

� (25)

To switch to our discrete framework, we neglect the age dimension and only look at the total number of prey 
n1 and predators n2, which simplifies Equation 2 to:

   1 1 1 2 2 2Δ , Δ .n b d n b d� (26)

Bernoulli trials are used to determine specific numbers of births and deaths over Δt by sampling from a N 
times larger reference domain with the probability p = 1/N that each birth or death of the reference domain 
occurs in a specific gridbox:

       1 1 1 1 2Δ , Δ , ,b n N t p d n n N t p � (27)
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Figure 6.  (a) Scatter plot illustrating all objects of one of the 50 samples included in subplot (b). The x and y position of each object is randomized for 
visualization. (b) Object size distribution statistics of 50 random samplings of objects as detailed in Section 4.1 with the parameters listed in Table 1. The larger 
the objects are, the lower their birth rate.
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       2 1 2 2 2Δ , Δ , .b n n N t p d n N t p � (28)

Due to the number of deaths being stochastic the populations can become negative, which we avoid by in-
troducing a limiter. The introduced stochasticity breaks the even cycle of the continuous solution, visible in 
the peaks and dips of the discrete prey in the ensemble quickly dispersing in the example shown in Figure 7. 
The discrete nature is most visible in the less populous predator population. Once the predator population 
reaches zero the predator is extinct and can no longer recover. Once extinction occurs the prey can grow 
exponentially, as visible in the straight lines leaving the plot domain in Figure 7. Note that extinction can 
occur in the continuous formulation as well when stochastic perturbations are added (Aguirre et al., 2013). 
The prey can also go extinct, though it is rarer for the parameters and initial conditions we choose to show.

4.2.2.  Cloud Predator-Prey

This experiment is a modified version of the classic system to show in a very simple manner how the equa-
tions could be applied to a convection scheme. The prey now represents small clouds which feed on thermal 
instability, and predators are large clouds, representing the minority of small clouds which turn into larger 
and longer lasting clouds. This experiment is inspired by the idea of cloud types competing for convective 
instability used by Nober and Graf (2005) and Neggers (2015). We modify the classic equations by removing 
exponential growth, dropping δ, and make α, which represents the thermal instability the small clouds feed 
on, a function of time. This results in:

   ( )dx t xy
dt

� (29)

   
dy y x
dt

� (30)

We follow the same steps used in Section 4.2.1 to transform the continuous equations into a discrete and 
stochastic model, and use a sine function for α(t) in a crude imitation of the diurnal cycle of incoming solar 
radiation. An example of what this model can produce is shown in Figure 8, again using a 36 member en-
semble with the same domain sizes as in Section 4.2.1. The small clouds form quickly after sunrise, leading 
to a peak in their number early in the day. The larger clouds are smaller in number and grow slower, but 
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Figure 7.  A 36 member ensemble of the predator prey system discussed in Subsection 4.2.1 using the parameters 
α = 1, β = 0.03, γ = 1.5, δ = 0.75 for Equation 24. Initial conditions are 64 (prey) and 16 (predator). Continuous solution 
is integrated numerically, discrete ensemble is generated using the values listed in Table 1.
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last somewhat longer than the smaller clouds which disappear almost immediately after sunset. A peak of 
small clouds early in the morning and a delayed shift to larger clouds in the afternoon is realistic behavior 
known from LES studies of shallow convective days (e.g., van Laar et al., 2019). The stochastic nature of 
the model is evident in the spread, with the discrete nature most obvious during the slow decay of the large 
clouds once the small clouds have disappeared.

While this simplified experiment yields interesting results it remains a proof of principle with many ques-
tions still unanswered. For example, which physical/dynamical processes do the prescribed interactions 
represent, would the method remain computationally efficient if many interacting species are employed, 
and how far horizontally should interactions extend? Some of these questions we will expand upon in Ex-
periment 4.

4.3.  Exp 3: A DownScale Energy Cascade

In the third experiment, the model is configured as an ecosystem consisting of five species, without spatial 
interaction. The goal of this simple experiment is to mimic the downscale energy cascade typical of atmos-
pheric turbulence (Frisch, 1995; Kolmogorov, 1941a, 1941b). To this purpose each species represents an 
individual size-class of turbulent structures. Only the largest species experiences births, which is conform 
the idea that the turbulent energy in an unstable turbulent layer is injected at the largest possible scale. At 
the end of its life-cycle the object then breaks up into two objects of half its size, which are injected as births 
in the species-category one size-class smaller,

casc
1 1,102 ,i ib d� (31)

where we used that Ki = 10 for all species. This additional birth process is added to the default birth term bi1 
in budget (2). This process is applied at all scales (species), which in effect establishes a simple form of spe-
cies interaction in downscale direction across the spectrum. This process is analogous to the flow of energy 
across the inertial subrange in turbulence. When an object of the smallest species dies it is simply removed 
from the grid, a process analogous to viscous dissipation of turbulent kinetic energy at molecular scales.
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Figure 8.  Median and 10–90 percentile spread of a 36 member ensemble of the discrete predator prey system described in Section 4.2.2. The dashed black line 
shows the prescribed cycle of thermal instability which determines the growth rate of the small clouds (α(t) in Equation 29). The large clouds in turn feed on 
the small clouds.
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To give the experiment another twist, the births of the largest size-class (i = 5) are only allowed to occur in 
a single specific gridbox (3, 3). For all other species,  0iB  everywhere on the grid. This means the other 
(smaller) species can only form through the cascade process described by 31. In addition, a weak mean 
wind is applied, so that the objects are slowly advected in the direction marked by the arrow in Figure 9. 
As a result of the advective diffusion illustrated in Section 3.2, the population starts to resemble a widening 
plume initiated at a fixed location and being advected downwind. This could be a chimney, a forest-fire, or 
a convective cell creating a slowly dissipating outflow or anvil cloud. All other settings of the BiOMi model 
as used for this five-species experiment are summarized in Table 1.

Figure 9a shows a snapshot of the population of objects during this experiment, an animation of which 
is also provided as a digital supplement to this paper (supporting information ). Similar to Exp 1 multiple 
species are present, but they now cover multiple gridboxes. The results highlight the stochastic nature of 
both object birth and advection. The largest objects (green) are born in a single gridbox. As they age, they are 
advected by the mean wind, but also break up into two objects half their size (red) when they complete their 
life-cycle. This process continues across multiple life-cycles. As a result, the distance from the birthing-grid-
box becomes proportional to age, on average. However, because advective movement contains a random el-
ement, this creates a spreading plume of particles that “dissipates” when the life cycle of the smallest objects 
has been completed. Figure 9b shows the associated size density of object number, which carries a clear 
exponential dependence. Such exponential functionality in the spectrum is typical of a turbulent energy 
cascade. The spread in object number is caused by the stochastic birth rate and also decreases exponentially 
with size (i.e., it is constant on the logarithmic y-axis). This reflects that all objects have the same life span.

4.4.  Exp 4: Spatial Organization in a Single-Species Population

The fourth experiment considers only a single species, here assumed to represent the smallest building 
block of convection: the short-lived bubble or thermal (Hernandez-Deckers & Sherwood, 2016; Morrison 
& Peters, 2018; Scorer & Ludlam, 1953). Simple rules of spatial interaction are introduced to let thermals 
respond to each other's presence, by which they can collaborate or compete to let larger-scale coherent 
convective structures self-organize and emerge on the grid. This behavior introduces convective memory 
that acts on time-scales much longer than the life-time of individual objects. The use of such rules is known 
from cellular automata, there often referred to as “transition rules” (Bengtsson et al., 2011; Gardner, 1970).

Two rules of interaction are adopted, both working through the probability field p. These rules reflect atmos-
pheric physics and dynamics, and are inspired by the recent study by Böing (2016). The first rule reflects the 
“pulsating growth” behavior as observed in individual shallow cumulus clouds in nature and in LES, con-
sisting of a series of subsequent individual pulses (Anderson, 1960; French et al., 1999; Heus et al., 2009). 
The idea is that the first pulse breaks down preexisting instability, favoring subsequent thermals to thrive 
and thus form “thermal-chains” (Blyth & Latham, 1993; Damiani et al., 2006; Varble et al., 2014). On a mi-
crogrid this behavior can simply be introduced by perturbing the p field at locations where objects already 
exist. The perturbation-field pi′ surrounding a single gridpoint containing nik objects could be modeled as 
follows:

  i f p ik
k

p C f n� (32)

where fp is a two-dimensional spatial impact field of radius rf. In this experiment, f is assumed to be 
cone-shaped,

    

1 / for
0 for

f f
p

f

r r r r
f

r r� (33)

where r is the distance to the gridpoint of interest, and Cf is a constant of proportionality carrying the effi-
ciency of objects in modifying their environment. The perturbation field pi′ is calculated at every gridpoint 
and added to the spatially uniform reference probability p = 1/N, yielding a new cumulative field pc that 
can be spatially heterogeneous.
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The second rule is a constraint on the perturbed p field which ensures that averaged over the whole grid 
the mean birth rate always equals 

iB . To this purpose, the new cumulative probability field including all 
perturbations, pc, is suitably normalized,

p
N

p

p


1 c

c

,� (34)

where the brackets indicate the average over the grid. Comparison to (6) shows that the grid-dependent 
probability 1/N is multiplied by a spatially varying factor. This means that while on average the birth rate of 
the number of objects on the grid Bi remains controlled by external forcings, locally strong deviations can 
develop in the p field. In effect, this reduces the probability p in areas where few objects are present. This 
behavior can be interpreted as environmental deformation caused by convective objects through for exam-
ple gravity waves and compensating subsidence (Bretherton & Smolarkiewicz, 1989).

The model settings for this single-species experiment are also summarized in Table 1. An important dif-
ference with the third experiment is that the mean wind is zero, so that objects stay quarantined in their 
gridbox. In addition, object births are not limited to a specific single gridbox but can freely occur everywhere 
on the grid. Thermal size is implicitly assumed to be on the order of the grid-spacing (∼ 100 m). As a result, 
any coherent spatial structures resulting from object interactions can be resolved. The thermals are short-
lived while their spatial impact does not exceed beyond 3× their size. As a consequence, thermals have to 
cooperate to let larger-scale structures emerge on the grid.

Animations of Exp 4 for two gridsizes are provided as digital supplements to this paper (supporting infor-
mation). Figure 10a shows a snapshot of the 100 × 100 gridsize experiment at 13 h after initialization. At 
this time spatial organization is apparent in the population, featuring dense clusters but also areas that 
are almost free of objects. In those areas the probability of birth is very low. By eye this spatial distribution 
including both dense and sparsely populated areas is not unlike the organization visible in high-resolution 
satellite images of Trade wind cumulus cloud populations (Bony et al., 2020).

Figure 11 shows results from a cluster analysis of this population, using the density-based GRIDCLUS al-
gorithm (Schikuta, 1996). The clustering threshold is n > 1, meaning that only gridboxes are included that 
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Setting Unit Exp 1 Exp 2 Exp 3 Exp 4

Gridsize 1 × 1 1 × 1 15 × 15 100 × 100

1,000 × 1,000

Δx, Δy [m] 5,000 1 100 100

L [m] 1,000,000 5 1,000,000 1,000,000

Δt [s] 60 1/10 60 60

I 10 2 5 1

τi [s] 60 – 600 600

Ki 1 – 10 5


iB [m−2 s−1] ∝ (100 ⋅ i − 50)−2


1 1 2( , )B g n n   6

5 5 10B   7
1 2 10B


2 1 2( , )B f n n

Interactions None Interspecies Interspecies Spatial

(u,v)adv [m s−1] (0, 0) (0, 0) (0.3, 0.2) (0, 0)

rf [m] − − – 300

Cf − − – 2,000

Note. Exp 2 is an exception in that it is nondimensional, age is neglected, and birthrates are derived from differential 
equations as explained in Subsection 4.2.

Table 1 
Configuration of the Four BiOMi Experiments Discussed in Section 4
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have two or more objects in them. Figure 11a shows the resulting clusters on the grid, while Figure 10b 
shows the associated size density of cluster number, with size calculated as the square root of the cluster 
area. In contrast to Exp 3, a clear powerlaw dependency is apparent, featuring a negative exponent. This 
means that small clusters are very frequent and big clusters are rare. Such powerlaw scaling is frequently 
observed for shallow cumulus cloud fields in nature (Benner & Curry, 1998; Neggers et al., 2003; Wood & 
Field, 2011). The widening spread at large cluster sizes shows that the clusters at those sizes become sub-
sampled, which is a defining feature of the convective gray zone (Neggers et al., 2019).

Another important aspect of the clustering behavior is highlighted by Figures  11b, showing convective 
memory on the grid as expressed by the time evolution of the size of the largest cluster, lmax. Two grid-
sizes are compared, one with a mesoscale domain size (D = 10 km) and one with a macroscale domain 
(D = 100 km). Both domains feature a gradual increase in lmax. However, on the mesoscale domain the 
growth of lmax is markedly slower, featuring temporary peaks and failing to grow beyond 1.5 km. This sug-
gests that the cluster growth becomes limited by the domain size. This is not the case for the macroscale 
domain, where growth is unimpeded and follows a parabolic evolution (see also the provided animation).

At this point, it makes sense to qualitatively compare this behavior to LES results. Figure A1 shows the time 
evolution of the size of the maximum convective cluster in two experiments of the RICO shallow cumulus 
case. Clusters are defined as enclosed areas in two-dimensional fields of the vertically projected cloud core, 
the latter here defined as gridboxes with both cloud condensate and positive buoyancy (Siebesma & Cui-
jpers, 1996). This definition is applied to exclude stratiform cloudiness. The same behavior as produced by 
BiOMi is apparent, with the largest convective cluster growing gradually in size over a period of 10 h or so. 
This expresses the gradual emergence of larger clusters in the LES, and is a form of convective memory. An-
other feature that is similar is the largest cluster size being inhibited in the experiment with small domain 
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Figure 9.  (a) Snapshot during an experiment with Binomial Objects on Microgrids (BiOMi) in the five-species energy-cascade configuration as described in 
Section 4.3 with an arrow showing the wind speed direction advecting the objects. The number of each species per gridbox is shown, with each species having a 
different size and color. The position of each object within the gridbox is randomized, for visualization. (b) Associated size density of object number. The y-axis 
is plotted in log scale to highlight exponential dependency. The 25%–75% range is shaded in red, the maximum and minimum range in blue, and the median is 
shown as a dotted black line.
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Figure 10.  (a) Snapshot during an experiment with Binomial Objects on Microgrids (BiOMi) in the single-species configuration with two rules of interaction 
between objects, as described in Section 4.4. The position of each object within the gridbox is randomized, for visualization. The coloring indicates the 
number of objects in a grid cell, to highlight clustering. (b) Associated size density of cluster number. Log scale is used on both axes for highlighting powerlaw 
dependency. The 1%–99% and 25%–75% ranges are shaded blue and red, respectively, while the median is shown as dotted black.

Figure 11.  Results of cluster analysis using threshold n1 > 1. (a) Spatial distribution of the clusters at the last timestep for the experiment with the 10 × 10 km 
domain (100 × 100 gridsize). Each cluster is assigned a unique color. (b) Time evolution of the size of the largest cluster on the grid. Results with two domain 
sizes are shown, 10 × 10 km (dark blue) and 100 × 100 km (light blue).
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size. While these similarities are encouraging, differences also exist, such as the magnitude of lmax being 
larger in the LES. This at least partially reflects that various processes are not captured by the two simple 
rules of interaction. These might include precipitation effects, cold pool dynamics and stratiform cloudiness 
that become apparent in the second half of the simulation.

Despite these differences, the agreement on basic behavior with LES does suggest that under simple rules 
of interaction, convective memory can be created and carried on the microgrid. Introducing this behavior 
in convective parameterizations is a long standing ambition that has not yet been achieved (Grabowski 
et al., 2006; Khairoutdinov & Randall, 2006). If population models on two-dimensional microgrids can solve 
this problem is a future research topic.

5.  Discussion
5.1.  Limitations

The formulation of the framework contains a few important limitations. These were consciously intro-
duced, in order to explore a system that is as low-complexity and transparent as possible. However, it is 
important to consider these limitations and their impact on the results. In addition, possible future modifi-
cations can be considered that might make the system better reflect realistic conditions.

The first limitation is the assumption of a constant object birth rate 
iB  which is sufficient for the purposes 

of this study. However, what external factors control this birth rate remains a fundamental question and 
depends strongly on the definition of the species to be represented by the model. In the case of surface-driv-
en convection in a viscous fluid, the number of plumes has been observed to depend on the heating rate at 
the surface, as expressed by the surface Rayleigh number (Zhong, 2005). Dependence of object birth rates 
on thermodynamic conditions can be investigated using large-eddy simulations, for example for convective 
cloud populations (Garrett et al., 2018). Such dependencies can easily be implemented in this framework.

The choice to adopt a discrete formulation introduces opportunities but also makes the framework less 
flexible in some regards. For example, the object lifespan must be a multiple of the timestep, which suggests 
that adaptive time-stepping would no longer be possible. However, this could be remedied by applying sep-
arate timestepping for the microgrid.

The use of the binomial advection operator introduces some numerical diffusion which is an unavoidable 
side effect of any Eulerian advection scheme. The strength and direction of the diffusion is dependent on the 
horizontal gradients, grid spacing, timestep, and the angle between grid orientation and wind. To achieve 
a controlled and consistent diffusion one could easily combine the advection operator with aspects of the 
classic Gaussian plume model (Sutton, 1932) that is often used to model dispersion in the atmosphere.

The rules of interaction between convective objects as adopted in Exp 4 are still very simple. While being 
successful in demonstrating opportunities, important interactions acting in atmospheric moist convection 
in nature are still missing. These include i) latent heat effects due to cloud formation, ii) impacts of wind 
shear on spatial organization, iii) formation of cold pools due to evaporation of precipitation. Additional 
rules can well be added in the system, possibly inviting or requiring additional layers to represent more 
complex three-dimensional flow structures. But before introducing such rules they should be carefully cal-
ibrated and trained against relevant datasets, ideally carrying information on spatial organization. For ex-
ample, machine learning could be applied to train the framework against high-resolution satellite datasets 
of cloud populations. This is a future research topic.

5.2.  Comparisons to Other Stochastic Frameworks

The BiOMi framework as applied in the previous section shares some features with other recently proposed 
population models, but also differs in some key aspects. These similarities, differences and novelties are 
briefly highlighted here, for reference.

The STOMP framework (STOchastic Model for Population dynamics of convective clouds, Hagos 
et al. (2018) is at its core also discrete and stochastic, consisting of size distributions of convective cells that 
interact by exchanging “convective pixels.” In contrast to BiOMi's predetermined number species that can 
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represent differing convective objects, STOMP is explicitly defined in terms of cloud size distributions. Bi-
OMi also differs fundamentally by the inclusion of an explicit age dimension, the use of binomial sampling 
to determine births and advection, and the possibility to use a microgrid spatially. As a result, objects in 
BiOMi can overlap, allowing in principle the representation of thermal chains that are oriented vertically, 
as illustrated in Exp4.

Recent studies by Stechmann and Hottovy (2016) and Khouider and Bihlo (2019) proposed stochastic mod-
els based on principles from statistical mechanics that represent convective regimes as phase transitions. Bi-
OMi adheres to this principle, in that spatial patterns associated with convective regimes can freely emerge 
on the grid under certain rules of transition. A key conceptual difference concerns the main stochastic 
budget equation; while these models use integrated humidity as a prognostic variable, BiOMi considers the 
evolution of object number. These interacting objects can also freely move around on the grid, taking object 
life cycle into account as an additional dimension. This in effect combines an object-based approach with a 
microgrid approach, which is a novelty. The representation of horizontal movement is another difference, 
which in BiOMi takes place through stochastic advection instead of stochastic diffusion. Finally, the rules of 
transition reflect different processes. While in the above studies the rules reflect behavior of cloudy areas as 
embedded in open- or closed cell stratocumulus, in BiOMi Exp4 the rules reflect the physics and dynamics 
of individual sub cloud-scale convective thermals in fair-weather cumulus cloud fields.

A cloud population model with a stochastic scale-aware birthrate very similar to that of BiOMi was devel-
oped by Sakradzija et al. (2015) for use in a shallow convection scheme (Sakradzija et al., 2016; Sakradzija 
& Klocke, 2018). In their approach, the cloud birth rates are sampled from a Poisson distribution instead of 
a binomial, and further differs from BiOMi in that each cloud has an individual continuous duration and 
there are no fixed species. For a high number of clouds, their approach requires a large amount of memory 
as the birth time and duration of each cloud is saved individually, although reduced complexity can help in 
making such schemes more efficient (Machulskaya & Seifert, 2019).

6.  Conclusions and Outlook
In this study, a computationally efficient stochastic binomial framework is formulated for representing dis-
crete populations of convective objects on a two-dimensional grid. A defining feature of the BiOMi frame-
work (Binomial Objects on Microgrids) is its binomial number generator based on a Bernoulli process. 
This stochastic and scale-aware operator is applied to both object birth and object advection, by which 
discreteness in object number is preserved in both processes. A discrete prognostic budget for object num-
ber is combined with an age dimension, allowing representation of life-cycle effects. In addition, multiple 
co-existing species can be represented, making the framework suitable for multiple modes of application. 
Interactions between objects can be introduced in various ways, by adopting concepts from population 
dynamics and cellular automata. Finally, due to its reliance on binomial sampling the BiOMi system is also 
computationally cheap to operate.

The combination of these features makes the BiOMi framework particularly applicable to atmospheric 
turbulence and convection. This is illustrated by testing the framework in various simple configurations. 
Characteristic convective behavior that is reproduced includes i) classic predator-prey behavior, preserving 
discreetness and introducing stochastic variations; ii) gray zone behavior as expressed by stochasticity in 
convective object number, iii) the downscale energy cascade and advective dispersion typical of atmos-
pheric turbulence; and iv) spatial organization in convective clusters resulting from interactions between 
individual thermals. We find that the spatial arrangement of binomially generated population of clusters 
on a microgrid is a form of convective memory, evolving over timescales much longer than the lifespan of 
individual objects.

While the BiOMi framework has many possible applications, its potential use as part of a convective param-
eterization for weather and climate models has always been a primary motivation behind this study. The 
high computational efficiency should facilitate this effort. These opportunities are further explored in an 
ongoing related study, in which the BiOMi system as applied to a population of single-sized, short-lived but 
interacting convective thermals is coupled to a size-resolved spectral convection scheme (ED (MF)n, Neg-
gers (2015)). BiOMi then acts to provide cluster size densities that emerge on its microgrid, replacing one of 
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the existing closures at the foundation of the scheme. In effect, this equips the spectral scheme with subgrid 
convective memory and introduces awareness of spatial organization.

BiOMi offers further opportunities when applied within GCM gridboxes. First, existing convection schemes 
can be equipped with the framework in one dimensional (1D) random sampler mode, as explored in Exp 
1, to introduce stochastic noise in the gray zone. Second, the microgrid can be used to make surface-atmos-
phere interactions more sophisticated. For example, awareness of small-scale surface heterogeneity can 
be introduced by coupling the BiOMi microgrid to similarly high-resolution maps of surface properties. 
Convective triggering can then respond in areas which are known to affect this process, such as mountains 
or areas of different vegetation.

Appendix A:  Clustering analysis in LES
Figure A1 shows results from a cluster analysis of simulated cloud populations for a prototype marine shal-
low cumulus case based on the RICO field campaign (Rauber et al., 2007). The simulations are generated 
with the Dutch Atmospheric Large-Eddy Simulation code (DALES) (Heus et al., 2010). The exact case con-
figuration as described by vanZanten et al. (2011) is applied, while the double moment warm microphysics 
scheme of Seifert and Beheng (2001) is used. Two square domain sizes are simulated, with horizontal sizes 
L = 12.8 km and L = 102.4 km and a ceiling of 5 km. These domain sizes are chosen to approximately 
match the BiOMi Experiment 4 as described in Section 4.4. Clusters are defined as enclosed areas in the 
two-dimensional field of the vertically projected cloud core, defined as LES grid points which have cloud 
condensate and are also positively buoyant. Using this definition excludes stratiform cloudiness, and yields 
convective clusters that are conceptually comparable to the object-clusters emerging on the microgrid in 
Exp 4.
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Figure A1.  Large-Eddy Simulations (LES) results for the RICO shallow cumulus case. Shown is the time evolution of 
the size of the largest convective cluster in the domain. Clusters are calculated from the projected cloud core area, as 
explained in the text. Results for two domain sizes are shown, 12.8 × 12.8 km (dark blue) and 102.4 × 102.4 km (light 
blue).
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Data Availability Statement
The Gauss Center for Supercomputing e.V (www.gauss-centre.eu) is acknowledged for providing comput-
ing time on the GCS Supercomputer JUWELS at the Jülich Supercomputing Center (JSC) under project 
CHKU28 for the LES experiments used in this study. The BiOMi code used to prepare this manuscript 
is archived and freely accessible at https://doi.org/10.5281/zenodo.3932807. The BiOMi code repository is 
managed on Github at https://github.com/pgriewank/BioMi. Animations of Exp 3 and Exp 4 with the Bi-
OMi framework as discussed in Section 4 are provided as supporting information to this publication.
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