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Abstract
Motivated by prior research examining the myth of inertial stability as a radial
restoring force in the tropical cyclone boundary layer, we explore factors deter-
mining the vertical velocity at the top of the linear vortex boundary layer.
Possible applications of these findings to mature tropical cyclone vortices are
discussed briefly.
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1 INTRODUCTION

In a recent article Smith and Montgomery (2020), we
revisited the linear boundary-layer approximation that
expresses a generalized Ekman balance and used it to clar-
ify a range of interpretations in the previous literature on
the tropical cyclone boundary layer. Shortly after the arti-
cle was published online, we discovered a plotting error
in the vertical velocity, an error that spilled over into plots
of estimates for the vertical and total advection terms in
the nonlinear problem. While the changes in most of the
figures were not large and have been published as a Cor-
rection (Smith and Montgomery, 2021), our discovery led
us to explore in more detail the factors determining the ver-
tical motion at the top of the linear boundary layer. In the
present note, we present the new insights gained from the
foregoing exploration. In view of recent work highlighting
the utmost importance of the boundary-layer formulation
in tropical cyclone forecast models (Zhang and Rogers,
2019; Zhang et al., 2017; 2020), we hope that this extension

of our study will be of value. While we are aware of the
limitations of Ekman balance in the high wind region of a
tropical cyclone boundary layer (Smith and Montgomery,
2020), we believe it is useful to explore the predictions of
the model as a baseline for future analyses using nonlinear
boundary-layer models.

2 THE GENERALIZED EKMAN
BOUNDARY LAYER

As shown by Smith and Montgomery (2020), the axisym-
metric, tangential, radial, and vertical velocity compo-
nents, (u(r, z), v(r, z), w(r, z)), for the steady generalized
Ekman boundary layer on an f -plane, where f is the Cori-
olis parameter, assumed to be constant, are

v(r, z) = vg(r)[1 + e−z∕𝛿(a1 cos(z∕𝛿) + a2 sin(z∕𝛿))], (1)

u(r, z) = −𝜒vg(r)e−z∕𝛿(a2 cos(z∕𝛿) − a1 sin(z∕𝛿)), (2)
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F I G U R E 1 Isopleths of vertical velocity w in the r–z plane obtained from Equation 3 with the two tangential wind profiles shown in
figure 1 of Smith and Montgomery (2020). (a) Broad gradient wind profile (x = 1.6), (b) narrow gradient wind profile (x = 2.3). Contour
intervals: for w> 0, 0.02 m⋅s−1 for the broad profile or 0.05 m⋅s−1 for the narrow profile (red contours); for w< 0, 0.01 m⋅s−1 for the narrow
profile (thin blue contours) [Colour figure can be viewed at wileyonlinelibrary.com]

w(r, z) = 1
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𝜕
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𝛿

)]
, (3)

where r is the radius, z is the height, vg(r) is the gra-
dient wind, 𝛿 = (2K∕I)1∕2 is the vertical scale for the
boundary-layer depth, K is the local vertical turbulent dif-
fusivity for horizontal momentum (assumed independent
of height), 𝜁ag is the absolute vorticity of the gradient wind,
and a1, a2, and 𝜒 are known functions of radius that
involve the surface drag coefficient, Cd.

In their figure 2, Smith and Montgomery (2020)
showed solutions for the three velocity components for
two radial profiles of gradient wind typical of tropical
cyclones shown in their figure 1: a relatively broad profile
and a relatively narrow profile.1 The broad profile is con-
sistent with the radial structure of mature tropical cyclones
as observed by research aircraft (Mallen et al., 2005), while
the narrow profile is consistent with the structure of a
rapidly developing storm in its early stages, in which the
outer winds have not yet been appreciably amplified. The
corrected radius–height cross-sections of vertical velocity
are shown in Figure 1. While the structure of vertical veloc-
ity for the narrow profile is qualitatively and quantitatively
similar to that in the original article, the structure for the
broad profile is markedly different, with no region of sub-
sidence. The fact that these structures would be predicted
by the classical Ekman-layer solution led us to investigate
further the factors determining the vertical velocity in the
generalized Ekman solution.

1The formula for these profiles is vg(r)= v1s/(1+ sx), where s= smr/rm, r
is the radius, rm = 40 km and sm and v1 are constants chosen to make
v= vgm, the maximum tangential wind speed, when r = rm. The broad
profile has x = 1.6 and the narrow profile x = 2.3.

3 WHAT DETERMINES THE
VERTICAL VELOCITY?

The formula for the vertical velocity (Equation 3) is suf-
ficiently complex as it stands to obscure the main factors
that determine the vertical velocity, and even the factors
that determine the vertical velocity, w(r,∞), at the top
of the boundary layer. The formula for w(r,∞) is a little
simpler:

w(r,∞) = 1
r
𝜕

𝜕r

[ rKvg

𝜁ag𝛿
(a2 − a1)

]
, (4)

which may be expanded out to give

w(r,∞) =
K𝜁g

𝜁ag𝛿
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, (5)

where 𝜁g is the relative vorticity of the gradient wind and
𝜁ag = 𝜁g + f . Here, for utmost generality, we have allowed
the vertical turbulent diffusivity to be a function of r. The
first term is familiar from Ekman theory itself, in which 𝜁ag
is approximated by f , K is assumed to be constant and a no
slip boundary condition is assumed. In this case, a1 = −1,
a2 = 0 and the terms w2, w3, and w4 are all zero.

The second term on the right-hand side of Equation 5,
w2, is the contribution to w(r,∞) arising from the radial
variation of turbulent diffusivity. This contribution is zero
for the calculations shown in Smith and Montgomery
(2020), because K was taken to be constant for simplic-
ity. However, allowing K to vary radially might be quite
important (see Section 4). The third term, w3, is the con-
tribution to w(r,∞) arising from the radial variation of
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F I G U R E 2 Radial profiles of the vertical velocity at the top of
the boundary layer, w(r,∞) (labelled w), obtained from Equation 5
with the two tangential wind profiles shown in figure 1 of Smith
and Montgomery (2020), together with the separate contributions
from the terms w1, w3, and w4. The values (a) x = 1.6 and (b) x = 2.3
refer to the broad and narrow gradient wind profiles, respectively.
The thin black curves labelled w1+ 4 =w1 +w4 are referred to in
Section 5 [Colour figure can be viewed at wileyonlinelibrary.com]

relative vorticity of the gradient wind (note that, with f
assumed constant, 𝜕𝜁ag∕𝜕r = 𝜕𝜁g∕𝜕r). The fourth term, w4,
contains the effects of radial changes in Cd through the
dependence of a1 and a2 on Cd, which, in general depends
on surface wind speed.2 However, a1 and a2 depend on vg,
so that, even if Cd is taken to be constant, as in the calcu-
lations of Smith and Montgomery (2020), w4 also depends
on the radial gradient of vg.

Since the gradient wind profile for the broad vortex
used by Smith and Montgomery (2020) has positive rela-
tive vorticity 𝜁g at all radii, Ekman theory would predict
that w(r,∞)> 0 at all radii also. This observation raises
the question as to whether w1 is the dominant term in the
calculation of w(r,∞) for the generalized Ekman calcula-
tion. To investigate this question, we have computed the

2The formulae for a1 and a2 are given in Equation 6 below. The
dependence of a1 and a2 on Cd arises from the dependence of 𝜈 on Cd.
Here 𝜈 is a local Reynolds number multiplied by the surface drag
coefficient as defined below.

separate contributions to w(r,∞) from the terms w1, w3,
and w4 in the calculations relating to Figure 1 (because K
was assumed constant in these calculations, w2 is zero).
These, together with w(r,∞) itself, are shown in Figure 2.

It may be seen immediately that, for both narrow and
broad radial profiles of gradient wind, the answer to the
foregoing question is a resounding “no”, except at large
radii. In the case of the broad profile, w3 and w4 are oppo-
site in sign at radii beyond about 30 km. At large radii,
beyond about 300 km, they approximately cancel, where-
upon w(r,∞) is approximated well by w1. However, as the
radius decreases, w3 becomes larger in magnitude than w4
and the sum w3 +w4 makes a significant contribution to
w(r,∞), comparable in magnitude to w1. The upshot is that
the maximum in w(r,∞) is about twice as large as that of
w1 and it occurs at a somewhat larger radius, close to the
radius of maximum gradient wind (i.e., 40 km) rather than
well inside it. Note that the radius of maximum w1 occurs
well inside the radius of maximum gradient wind. In con-
trast, for the narrow profile, w3 and w4 are both negative
at radii beyond about 140 km and both are larger in mag-
nitude than w1. Moreover, for r > 140 km, w4 and w3 are
essentially comparable and thus w3 does not dominate the
expression for w.

It is worth noting that, for the same parameter values,
the maximum vertical velocity is about four times as large
for the narrow tangential wind profile as for the broad one.

4 EFFECTS OF RADIALLY
VARYING TURBULENT
DIFFUSIVITY

At this stage, it is pertinent to ask how much the vertical
velocity would be affected by variations in the turbulent
diffusivity with radius. These effects would lead to a
nonzero contribution from w2 in Equation 5, as well as
modifications to w1, w3, and w4 through their dependence
on K and 𝛿, which depends also on K. While the only
observational guidance that we are aware of to formulate
such a variation is that of Zhang et al. (2011), numerical
model simulations with a range of boundary-layer param-
eterizations do point to a substantial increase in K with
wind speed (e.g., Smith and Thomsen, 2010; Zhang et al.,
2017, their figure 1; Zhang et al., 2020, their figure 1). To
illustrate the importance of such variations, we show in
Figure 3 the vertical velocity at the top of the boundary
layer and the contributions to it from the terms w1 −w4 in
two calculations where K increases linearly with decreas-
ing radius. The slope is taken so that K = 10 m2 ⋅ s−1 at
radius 400 km and 50 m2 ⋅s−1 at radius 100 km. This postu-
lated behavior is consistent with the observed dependence
of K on wind speed shown in figure 10 of (Zhang et al.,
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F I G U R E 3 Radial profiles of the vertical velocity at the top of
the boundary layer w(r,∞) (labelled w) obtained from Equation 5
with the two tangential wind profiles shown in figure 1 of Smith
and Montgomery (2020), together with the separate contributions
from the terms w1 −w4 in the calculations, with a linear increase of
turbulent diffusivity with decreasing radius as described in the text.
The values (a) x = 1.6 and (b) x = 2.3 refer to the broad and narrow
gradient wind profiles, respectively. The thin black curves labelled
w1+ 2+ 4 =w1 +w2 +w4 are referred to in Section 5 [Colour figure
can be viewed at wileyonlinelibrary.com]

2011). The two calculations relate to the broad and narrow
vortices used earlier. The boundary-layer depth scale vari-
ations, 𝛿(r), implied by the variation of K and 𝜁ag are shown
in Figure 4.

When K increases with decreasing radius (i.e.,
dK/dr < 0), so does the boundary-layer depth scale, 𝛿, at
least at large radii (Figure 4). Subsequently, as the rapid
increase in 𝜁ag in the denominator of the formula for 𝛿

begins to dominate the increase in K in the numerator, 𝛿
begins to decrease as r decreases. Since a1 < 0 and a2 > 0,
all terms multiplying dK/dr in the expression for w2 are
positive, implying that w2 < 0. The effect is particularly
noticeable for the broad profile (Figure 3a), where it seen
that w2 is largest in magnitude at outer radii, but the large
subsidence implied there is mitigated by the effect of w4,
which is now positive (recall that w4 is mostly negative in
the case of constant K: see Figure 3a). Nevertheless, the
effect of increasing K with decreasing radius does lead to

F I G U R E 4 Radial profiles of the boundary-layer depth scale,
𝛿(r) with the two tangential wind profiles shown in figure 1 of Smith
and Montgomery (2020) and a linear increase of turbulent diffusivity
with decreasing radius as described in the text. The values (a)
x = 1.6 and (b) x = 2.3 refer to the broad and narrow gradient wind
profiles, respectively. The sign “−ve” is to remind the reader that
dK/dr < 0 [Colour figure can be viewed at wileyonlinelibrary.com]

subsidence at large radii for the broad profile, contrary to
the situation for constant K.

The contribution of w2 to w is much smaller in the case
of the narrow vortex (compare Figure 3b with Figure 3a).
It is worth noting that, for each tangential wind profile,
the maximum vertical velocity in the inner-core region
is hardly affected by allowing the value of K to decrease
with radius. In essence, this is because the generalized
Ekman solution is a local one and the values of K near the
maximum vertical velocity are similar.

5 COMPARISON WITH
PREVIOUS WORK

In a previous derivation, Kepert (2001) presented a for-
mula for w(r,∞) that appears to have a rather different
form from Equation 5. In our notation, this formula, his
equation 28, can be written

w(r,∞) = 1
r
𝜕

𝜕r

[Cdrvg

𝜁ag
(vg + 2v′(0))

]
. (6)

Kepert- remarked on the fact that this formula is nearly
independent of the diffusivity K, stating that only the
weak influence through v′(0) remains. The same remark
would not seem to be applicable to Equation 5, where
K appears explicitly as well as implicitly through the
dependence of 𝛿 and the coefficients a1 and a2 on K. How-
ever, using Equation 1 and the corrected expressions for
the coefficients a1 and a2, that is,

a1 = − 𝜈(𝜈 + 1)
2𝜈2 + 3𝜈 + 2

, a2 = 𝜈

2𝜈2 + 3𝜈 + 2
, (7)
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it follows that

vg + 2v′(0) = vg(1 + 2a1) = vg
a2 − a1

𝜈
. (8)

Since 𝜈 = Cdvg𝛿∕K, it is easily verified that Equations 5
and 6 are identical. As shown in Section 3, there are sev-
eral implicit dependences in the formula for w(r,∞) that
complicate interpretations.

In a more recent article, Kepert (2013) expanded out
his formula 6 to obtain, in our notation,

w(r,∞) = − 1
𝜁2

ag

𝜕𝜁ag

𝜕r
Cdvg(vg + 2v′(0))

+ 1
r𝜁ag

𝜕

𝜕r
[rCdvg(vg + 2v′(0))]. (9)

Again, using Equation 7, it follows that the first term
on the right-hand side of Equation 9 is w3 in Equation 5,
while the second term is simply the sum w1 +w2 +w4,
which is plotted as a thin black curve in Figures 2 and 3
(remember that w2 = 0 in Figure 2). Kepert refers to the
two terms on the right-hand side of Equation 9 as the
“vorticity-gradient term” and “stress curl term”, respec-
tively. Although Kepert’s decomposition of w(r,∞) is more
compact than that in Equation 5, it does not lead to a sim-
pler interpretation, because many effects are still implicit,
including that involving the radial variation of K. In par-
ticular, for the broad and narrow profiles studied here, one
cannot argue that either term in Equation 9 is everywhere
dominant over the other. This is true for calculations with
both constant K and variable K. Specifically, in the vari-
able K case, which is arguably most relevant for realistic
applications, the vorticity-gradient term fails to accurately
represent the frictionally induced subsidence beyond a
radius of 300 km in the broad vortex case and 125 km
in the narrow case, where this subsidence represents a
non-negligible sink to the boundary-layer energetics in
transporting dry air into the boundary layer (see Ooyama,
1997, section 3.4).

6 DISCUSSION AND
CONCLUSIONS

We have examined the factors that determine the struc-
ture of azimuthally averaged vertical velocity at the top
of a linearized Ekman boundary layer for two classes of
tropical-cyclone-like tangential wind profiles.

In the first class, the wind profile is a “broad” profile
and consistent with a modified Rankine vortex decaying
approximately as 1/(radius)0.6 outside the maximum wind
region. This profile is consistent with the radial structure of

mature tropical cyclones as observed by research aircraft.
In this case, linear Ekman theory predicts a weak rising
motion at all radii outside the radius of maximum tangen-
tial wind. This frictionally forced rising motion would tend
to induce deep convective and rainband activity outside
the main eyewall updraught, provided the thermodynamic
and environmental conditions are favorable to support
deep convective activity.

In the second class of vortex profiles, the tangen-
tial wind profile is relatively “narrow” and closer to a
one-over-radius dependence. This second wind profile is
consistent with the structure of a rapidly developing storm
in its early stages, in which the outer winds have not yet
been amplified appreciably. In this case, linear Ekman the-
ory predicts weak, but persistent, subsidence into the fric-
tional boundary layer that is associated with a slow radial
acceleration of air parcels down the effective radial pres-
sure gradient. Deep convection and spiral rainband activity
would tend to be suppressed in this case and we expect
the convective activity to be localized around the radius of
maximum wind.

We showed that the vertical velocity at the top of the
boundary layer can be written as the sum of four terms,
including one that reduces to the classical Ekman formula
in the Ekman limit, one characterizing the radial variation
of turbulent eddy diffusivity, one characterizing the radial
variation of absolute vorticity of the gradient wind, and one
that has no simple physical interpretation. We showed that
the term that reduces to the classical Ekman formula is not
the dominant contribution to the vertical velocity in the
vortex inner core for either the broad or narrow tangential
wind profile, but it is the dominant contribution at large
radii for both profiles. Significantly, the maximum vertical
velocity is about four times as large for the narrow tangen-
tial wind profile as for the broad one. If the turbulent eddy
diffusivity is allowed to decrease with increasing radius,
the maximum vertical velocity in the inner-core region for
each tangential wind profile is hardly affected by allowing
the value of K to decrease with radius: the largest effect is
at large radii.

Finally, we show that the decomposition of the vertical
velocity at the top of the boundary layer is not unique and
compare our decomposition with an alternative one that
has been used in the literature.
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