
1.  Introduction
The analysis of vegetation data based on satellite products has led to a consensus on a greening Earth. 
Changes in the terrestrial vegetation dynamics impact the Earth system (Intergovernmental Panel on 
Climate Change, 2014): changes in the Arctic tundra ecosystems can impact climate feedbacks as well 
as wildlife and human communities (Berner et  al.,  2020); an increase in greening could mean an in-
crease in the land carbon sink (Ballantyne et  al.,  2012; J. M. Chen, Ju, et  al.,  2019; Piao et  al.,  2020); 
and global greening can mitigate increasing global land surface air temperatures (Feng & Zou, 2019; Z. 
Zeng et al., 2017). Therefore, determining the amount of greening and where it is occurring is essential. 
Today, there is much debate about the attribution of these greening trends to potential causes such as 
CO2 fertilization, temperature rise, and land use intensification (C. Chen, Park, et  al.,  2019; Forzieri 
et al., 2017; Huang et al., 2017; Munier et al., 2018; Notaro et al., 2005; Yuan et al., 2019; Zhao et al., 2018; 
Zhu et al., 2016). A thorough review of the drivers of global greening can be found in Piao et al. (2020).

The common approach to quantify global greening is to analyze maps of statistically significant green-
ing or browning trends, where any grid cell with a p-value under the nominal   0.05  or   0.10  is 
considered statistically significant (C. Chen, Park, et al., 2019; de Jong et al., 2012; Feng & Zou, 2019; 
Forzieri et  al.,  2017; Munier et  al.,  2018; Xiao & Moody,  2005; Yuan et  al.,  2019; Z. Zeng et  al.,  2017; 
Zhang et al., 2019; Zhao et al., 2018; Zhu et al., 2016). These grid cells are then used in a subsequent anal-
ysis, for example, for attribution analysis. However, here the issue of multiple hypothesis testing arises, 
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potentially leading to inferred trends that are false positives: when performing hundreds of thousands of 
tests, which is the case of gridded datasets derived from satellite products - we expect %  of all grid cells 
to be significant just by chance (false positives). Due to spatial autocorrelation, these false positives may 
lead to the interpretation of spurious spatial patterns. In the case of global greening and browning, previous 
studies have reported (at   0.10 ) LAI trends in ∼40% of the terrestrial land surface (∼35% greening and 
∼5% browning). Therefore, we expect a fourth (0.10/0.40) of these trends to be false positives just due to the 
statistical testing mechanism.

The issue of multiple hypothesis testing has been raised in the environmental sciences, along with some 
common corrections for multiple hypothesis testing (Livezey & Chen, 1983; Ventura et al., 2004; Wilks, 2006, 
2016), but these methods have not been widely adopted. We focus on a permutation method that allows us 
to make inference on regions of significant greening or browning, as shown recently by Cortés et al. (2020). 
This novel statistical method shall allow us to define clear focal areas of greening that can then be used in 
subsequent analysis.

In this work, we reanalyze global greening trends based on the Boston University Advanced Very-High- 
Resolution Radiometer (BU AVHRR) LAI data set and validate the results with four other data products: 
NOAA CDR, LTDR, BU moderate resolution imaging spectroradiometer (MODIS C6), and SPOT. We per-
form a Mann-Kendall (MK) trend test, which is a common significance test for the slope estimated by the 
Theil-Sen method. The latter is a nonparametric estimator of a linear trend, which tells us how the average 
LAI changes with time, but is robust against individual outliers. We correct all analyses for the multiplic-
ity of hypothesis tests using a permutation method based on clustering. However, we also expect that the 
quantiles of LAI may behave differently than the mean over time. For example, an increase in the seasonal 
amplitude of LAI would make the 0.1 and 0.9 quantiles behave differently than the mean. To test this hy-
pothesis, we also aggregate our yearly data into the 0.1, 0.25, 0.5, 0.75, and 0.9 quantiles, and perform trend 
tests on these quantiles.

The study is structured as follows. The five data products used in this study are further explained in Sec-
tion 2. In Section 3, we detail our methodology. Our results and discussion are presented in Section 4, and 
we present our conclusions in Section 5.

2.  Data
We analyze five data products that all aim at improving the estimates of Leaf Area Index (LAI) around the 
globe. These datasets are derived from different satellite products and use state of the art methodologies to 
ensure the quality and consistency of their estimates. Our results are based on the BU AVHRR LAI data, and 
validated with LAI data obtained from the National Oceanic and Atmospheric Administration's Climate 
Data Record (NOAA CDR), the Land long Term Data Record (LTDR), BU MODIS C6, and SPOT/PROBA-V. 
Further details can be found in Table 1.
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Name Variable(s) Satellite Domain and resolution Reference

BU AVHRR LAI/GIMMS 3g V1 LAI AVHRR Global, 1/12°, bi-monthly, 1981–2018 Chen, Park, et al., 2019; Zhu et al., 2013

NOAA CDR LAI AVHRR Global, 0.05°, daily, 1981–2019 Claverie et al., 2016

LTDR LAI AVHRR, MODIS Global, 0.05°, daily, 1981–2018 Pedelty et al., 2007

BU MODIS C6 LAI MOD15A2H; MYD15A2H Global, 0.05°, 16 days, 2000–2019 C. Chen, Park, et al., 2019

SPOT/PROBA-V LAI MODIS, Cyclops Global, 0.5°, 10 days, 1999–2018 Baret et al., 2013

BU AVHRR, Boston University Advanced Very-High-Resolution Radiometer; GIMMS, global inventory modeling and mapping studies; LAI, leaf area index; 
MODIS, moderate resolution imaging spectroradiometer; NOAA CDR, national oceanic and atmospheric administration's climate data record; LTDR, land long 
term data record.

Table 1 
The Five Data Products Used for Analysis And Comparison
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3.  Methods
Before applying the trend test, we aggregate the data into yearly values using several descriptive statistics: 
the mean, the 0.1, 0.25, 0.5, 0.75, and 0.9 quantiles, and the interdecile range (defined as the difference 
between the 0.90 and 0.10 quantiles). The ability to detect trends is not affected by this averaging, and the 
trend estimates are comparable to methods which use the unaveraged time series (Forkel et al., 2013). We 
use all available LAI values in the given year, as this is better suited for a global study and avoids issues such 
as defining a growing season, dealing with multiple growing seasons, and dealing with growing seasons 
that span two calendar years (C. Chen, Park, et al., 2019). We test for a trend with the nonparametric MK 
trend test (Kendall, 1975; Mann, 1945). The MK trend test is commonly used as a test of significance for the 
Theil-Sen estimator, which is a nonparametric method to estimate a monotonic trend from a time series.

Temporal autocorrelation is accounted for with an AR(1)correction. Not accounting for temporal au-
tocorrelation can lead to increased false positive rates (von Storch,  1999). We follow the procedure 
outlined in von Storch  (1999): for each grid cell, we calculate the temporal autocorrelation at lag-1, 
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MK trend test is then performed on this new time series. This procedure is applied to all of the data in this 
manuscript.

To correct for multiple hypothesis testing, we apply a permutation method based on clustering. The permu-
tation test establishes a threshold for overall significance based on the number of contiguous (first-order 
queen neighbors) significant grid cells. The motivation behind this test is that the clusters formed by false 
positives are smaller than those formed where a true increase or decrease in vegetation exists. We perform 
3,000 permutations to determine the threshold for significance. At each permutation, all grid cells are per-
muted jointly, that is, using the same set of permuted time indices. This preserves the spatial correlation of 
the data. The MK trend test is performed on this permuted data, and the largest cluster of significant grid 
cells is recorded. The  1 th quantile of the 3,000 recorded largest clusters is the threshold for overall 
significance. In our original data, for each significant region we count the number of grid cells, and if it ex-
ceeds the threshold established by the permutation method, we declare this region significant. This method 
has been proven to control the probability of having false positives in the results, and has higher statistical 
power than comparable methods, such as Bonferroni and related methods (Cortés et al., 2020).

For a consistent comparison of greening trends in different LAI products, we also analyze the time period 
from 2000 to 2018 for all data products.

4.  Results and Discussion
We find consistent greening trends of the yearly LAI mean in the whole world: Asia (35% of overall glob-
al greening), Europe (32.5%), North America (13.3%), Africa (12.6%), South America (6%), and Australia 
(0.5%). These trends are detected mostly in the northern hemisphere (Figure 1). These greening patterns are 
consistent with those detected in other recent studies such as C. Chen, Park, et al. (2019); we detect the same 
greening patterns and, additionally, several more. Our results validate the main greening hotspots, but also 
suggest that other regions which have been discussed in other studies are not large enough to be statistically 
significant when analyzing the whole terrestrial land surface - for example, our study does not detect the 
greening and browning of Alaska (Berner et al., 2020; Forkel et al., 2013; Verbyla, 2008), the greening west-
ern Sahel zone (Dardel et al., 2014), and most of the greening of Australia (Ukkola et al., 2016). Our method 
assumes that false positive regions are smaller than true signal regions. It is reasonable to expect regions of 
greening to be much larger, due to the large scale global greening that has been reported. This is the case in 
our study, as evidenced by the detected greening across all continents. Nevertheless, there are still regions, 
as discussed previously, that are too small to be detected by our method when analyzing the whole world. 
Therefore, analyzing a smaller study region may reveal previously undetected trends.

We observe pockets of nonsignificant grid cells among the significant clusters. Because there is no wall-to-
wall ground truth validation, noise in the trend can cause some small pockets. Larger pockets can be attrib-
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uted to different biome types, caused by (sharp) elevation change in mountainous regions and different land 
use (e.g., urban vs. cropland).

We look only at monotonic trends for the whole period. Thus it is possible that there are strong piecewise 
trends (e.g., first greening, then browning) which lead to a nontrend overall. This has been observed by de 
Jong et al. (2012), who reported that 15% of the terrestrial land surface exhibits both greening and browning. 
The statistical testing of such trend changes, while taking into account the multiple hypothesis testing, will 
be an interesting follow-up study.

Not adjusting for multiple hypothesis testing can overestimate the global greening (Figure 2). After apply-
ing the correction, we detect greening in 15.3% of the terrestrial land surface, as opposed to 35.2% when no 
correction is applied. Similarly, greening within each continent can be three times larger or more when no 
correction for multiple testing is done. Particularly in Australia (26.1% reduced to 1%) and South America 
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Figure 1.  Significant LAI trends in each of the datasets, using the Mann-Kendall trend test, after correcting for 
multiple hypothesis testing. Green indicates a significant increasing trend at   0.10 . No browning is detected. Grid 
cells with no statistical significance are shown in gray. No hypothesis test performed for grid cells in white (barren 
land). Blue represents water. The distribution of significant greening by latitude is shown for BU AVHRR LAI. LAI, leaf 
area index.
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(26.7% reduced to 5.2%) we observe a great reduction in detected greening. We categorize areas as uncertain 
greening where there are grid cells whose trend signal is not strong enough to be detected by our method, 
but strong enough to be detected when performing no correction.

The discrepancy in the amount of overestimation by continent can be better understood by looking at the 
climate zones and land use type. This reveals that the uncertain greening occurs twice as much in non-
woody compared to woody vegetation (Figure 2c), while there is very little uncertain greening in crop land. 
This is in line with previous studies that have observed prominent greening in cropland (de Jong et al., 2011; 
Piao et al., 2020). Piao et al. (2020) also observe strong greening in afforested regions and biomes with low 
human footprint, which coincides with the bulk of the confirmed greening that we detect in temperate and 
continental climate zones. The overestimation is particularly large in nonwoody vegetation within tropical 
and dry climate zones (Figure 2c). In tropical regions, large uncertainty is caused due to the saturation of 
LAI in dense vegetation, in addition to cloud and aerosol contaminants, while uncertainties in semi-arid 
climate and sparse vegetation can be due to the sensitivity of the vegetation indices to change in soil back-
ground (Piao et al., 2020).
Using the mean or the median to aggregate yearly values can impact the results. Both mean and median 
detect similar greening regions, but browning is only detected when using the median (Figure 3). While the 
mean detects greening in ∼16.6 million km2 (273,247 grid cells) of the land surface and no browning, the 
median detects greening in ∼15.8 million km2 (258,385 grid cells) and browning in 1.1 million km2 (26,241 
grid cells) of the land surface. Two browning patterns arise when using the yearly median: one in Siberia 
and one in Canada. Previous studies have indicated a reversal or stalled greening in high latitudes (Gonsa-
mo et al., 2019), and it is argued that increased plant growth in spring and earlier start of the growing season 
leads to decreased summer growth and decreased peak season maximum plant growth. When correcting for 
multiple testing, the summarizing statistic should not be overlooked when analyzing global greening and 
browning trends. Previous studies commonly use the average, so a reanalysis using the median can poten-
tially reveal new browning patterns and reduce greening regions.

The mean is not sufficient to describe the LAI trends over time, looking at quantiles reveals additional 
greening and browning trends. While the upper quantiles (0.75, 0.90) detect similar greening regions as 
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Figure 2.  World greening, in millions of km2, by (a) total land area, (b) continents, and (c) Koeppen-Geiger (KG) 
climate zones versus land cover type. Darker shades indicate greening that remains after correcting for multiple 
hypothesis testing (   0.10 ), while lighter shades indicate the uncertain greening, that is, additional greening that is 
detected when no multiple testing correction is done. The KG climate zones are: A, Tropical; B, Dry; C, Temperate; and 
D, Continental. No browning withstands the correction for multiple hypothesis testing.
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the mean and median, the lower quantiles (0.10, 0.25) reveal browning trends in specific regional clusters 
around the globe (Figure 3). When we look at the distribution of Z-scores obtained from the LAI trends 
throughout the quantiles, there is a shift from most grid cells indicating browning at the 0.10 quantile to 
most grid cells indicating greening at the 0.90 quantile (Figure S1). The bulk of the distribution shifts from 
browning to greening, which hints toward an increase in the seasonal amplitude around the globe. We fur-
ther investigate this by analyzing the interdecile range, which shows the regions where we detect several 
regions of significant increase in the seasonal amplitude of LAI (Figure S1). An increase in seasonal am-
plitude has been previously observed and could be due to trends in deforestation, fertilization and climate 
change effects, and/or changes in management (Kraemer et al., 2020).

The growing season in the higher latitudes has been expanding (Wolfe et al., 2005; H. Zeng et al., 2011; 
Ziska et al., 2011). This can cause the browning trends at the 0.10, 0.25, and 0.50 quantiles in the northern 
latitudes, since more low LAI values are detected each year. Previously these values were missing (marked 
as NA in the datasets), and they did not contribute toward the yearly aggregate. We would expect the trends 
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Figure 3.  Significant LAI trends in the BU AVHRR LAI data set, after correcting for multiple hypothesis testing, using 
the (a) 0.50 quantile (median) and the yearly (b) 0.10, (c) 0.25, (d) 0.75, and (e) 0.90 quantiles. Green (brown) indicates 
a significant increasing (decreasing) trend at   0.10 . Grid cells with no statistical significance are shown in gray. No 
hypothesis test performed for grid cells in white (barren land). Blue represents water. LAI, leaf area index.
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at the 0.10 quantile to be the most affected, yet most of these are validated by being detected at the 0.25 
quantile. Unlike the median, the mean does not detect browning when analyzing yearly trends. This can 
be explained by the increase in peak summer vegetation which, as opposed to the longer growing season, is 
driving the greening trends in Eurasian boreal forests (Gao et al., 2020). The mean is more affected than the 
median by these summer peaks and therefore does not detect browning.

A large increase in the seasonal amplitude of CO2 (at least 50%) has also been observed at all latitudes north 
of 45°N, and to a lesser extent (∼26%) between 35°N and 45°N (Graven et al., 2013). It is argued that this in-
crease can be caused by the ecosystems growing and shrinking more than before. These ecological changes 
are corroborated by the increasing and decreasing vegetation trends found previously in the northern hem-
isphere (Myneni et al., 1997), which we confirm with our rigorous significance testing. Furthermore, the 
regions where we detect an increase in the seasonal amplitude of LAI are also concentrated north of 35°N.

When considering a comparable time span (2000–2018), there is no longer such consistency (Figure S2). 
Few regions are detected by more than one data product, e.g., greening in southeast China is only detected 
by BU AVHRR LAI and BU MODIS C6, and greening in northern Canada is only detected by BU MODIS 
C6 and SPOT/PROBA V. In contrast to all other datasets, the LTDR detects browning in the Amazon forest, 
central Africa, Madagascar, and India. These results can be caused by several effects. For example, when 
shortening the time span, there may no longer be enough evidence to detect many greening trends. To ex-
plore this hypothesis, we test all possible 19 year periods in the BU AVHRR LAI data, that is, we analyzed 
the trends from 1981 to 2000, 1982 to 2001, …, 2000 to2018. Only for 4 (out of 20) of these time periods we 
found few additional greening trends in the Sahel region (Figure S3). We find this still inconclusive – it is 
possible that the trends are missing due to a combination of (a) not enough data points and (b) a change 
in trend within the time series. Related to (b), abrupt and gradual changes in trend have been observed in 
large parts of the world by de Jone et al. (2012). A change in trend can also explain the browning found in 
the LTDR (e.g., greening from 1981 to 2000 can mask the browning from 2000 to 2018). The ability to detect 
a yearly trend is affected by this shortening.

All datasets that go back to 1981, BU AVHRR LAI, NOAA CDR, and LTDR, agree on the greening regions 
found in Europe, China, India, North America, Brazil, the Sahel, and Siberia. Thus we have more confi-
dence in these observed greening patterns. Investigating these regions further with trend-attribution meth-
ods is an opportunity for further research.

In this work, we have introduced a new step, correcting for multiple hypothesis testing, when analyzing 
global LAI trends. However, the principles are very generic and relevant to most of the spatiotemporal dy-
namics encoded today in the growing global multivariate Earth system data cubes (Mahecha et al., 2020). 
For all these data streams, the presented methodology offers a quantitative way to automatically detect 
regions of statistically significant trends in either direction while controlling the probability of detecting 
false positives. By controlling the probability of detecting false positives, we make the detected trends more 
robust.

5.  Conclusions
Many studies confirm that the Earth is greening but can differ in their explanation. We argue that a key step 
for analyzing the greening trends is missing - in our study we have introduced and applied a novel method 
that is often overlooked in a statistical analysis: a multiple hypothesis testing correction. In this work we 
apply a permutation-based correction to LAI trends and analyze yearly trends of the mean and the 0.10, 
0.25, 0.50, 0.75, and 0.90 quantiles.

We detect greening in 15% of the terrestrial land surface, as opposed to 35% when applying no multiple 
testing correction. Still, we detect several hotspots that now stand out more prominently and consistently 
across the five data products that were analyzed. This overestimation happens twice as much in nonwoody 
vegetation than woody vegetation, and particularly in tropical and dry climate zones. Greening detected in 
crop land is the most reliable. Browning is only detected when aggregating the yearly data using the medi-
an instead of the mean. Additionally, we observe an increase in the seasonal amplitude of LAI around the 
globe.
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Data Availability Statement
The NOAA Climate Data Record of Leaf Area Index available from https://data.nodc.noaa.gov/cgi-bin/
iso?id=gov.noaa.ncdc:C00898. The Land Long Term Data Record (LTDR) available from https://ltdr.
modaps.eosdis.nasa.gov/cgi-bin/ltdr/ltdrPage.cgi. The SPOT/PROBA-V data available from https://icdc.
cen.uni-hamburg.de/lai-spot-probav.html.
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