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Abstract

Hydrological models used for flood prediction in ungauged catchments are commonly

fitted to regionally transferred data. The key issue of this procedure is to identify

hydrologically similar catchments. Therefore, the dominant controls for the process

of interest have to be known. In this study, we applied a new machine learning based

approach to identify the catchment characteristics that can be used to identify the

active processes controlling runoff dynamics. A random forest (RF) regressor has

been trained to estimate the drainage velocity parameters of a geomorphologic

instantaneous unit hydrograph (GIUH) in ungauged catchments, based on regionally

available data. We analyzed the learning procedure of the algorithm and identified

preferred donor catchments for each ungauged catchment. Based on the obtained

machine learning results from catchment grouping, a classification scheme for drain-

age network characteristics has been derived. This classification scheme has been

applied in a flood forecasting case study. The results demonstrate that the RF could

be trained properly with the selected donor catchments to successfully estimate the

required GIUH parameters. Moreover, our results showed that drainage network

characteristics can be used to identify the influence of geomorphological dispersion

on the dynamics of catchment response.
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1 | INTRODUCTION

It is argued that floods caused by extreme precipitation are becoming

more frequent due to climatic changes. In the last two decades, such

flood events have been the main reason for major flood damages in

Germany (Uhlemann, Thieken, & Merz, 2010). The increased rele-

vance of rainfall induced floods is caused by significant changes of pre-

cipitation extremes (Murawski, Zimmer, & Merz, 2016), and requires

reconsideration of flood forecasting systems. Especially the lead time of

forecast becomes more crucial for public safety and has to be

prolongated by improved hydrological models.

Inside the hydrological model, processes are numerically reproduced

in the chosen model structure and by the parameters that have been

fitted to data of past events. Because streamflow records are only

available as single point records, the required data base is rarely available

at the desired locations where flood risk assessments are needed.

A common strategy to overcome this problem is to utilize region-

alized data from stream gauging sites for ungauged locations. The

requirement for utilizing regionally transferred data is that the respec-

tive catchments have to be hydrological similar, i.e., the active pro-

cesses within these catchments are concurrent (Blöschl & Sivapalan,

1995). Although several studies have developed a framework for

defining hydrologic similarity in different climatic regions and spatial

scales (Wagener, Sivapalan, Troch, & Woods, 2007; Winter, 2001), to

date a clear definition for similarity and for a clear catchment classifi-

cation scheme has not been developed.
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On large scale (continental to global), several studies concluded

that classifications based on climate signatures, for example, annual

sum of precipitation or aridity index, were useful regarding runoff sig-

natures or parameter transfers (Addor et al., 2018; Bárdossy, Huang, &

Wagener, 2016; Beck et al., 2016; Carrillo et al., 2011; Kuentz,

Arheimer, Hundecha, & Wagener, 2017; Ragettli, Zhou, Wang, Liu, &

Guo, 2017; Sawicz, Wagener, Sivapalan, Troch, & Carrillo, 2011;

Singh, Archfield, & Wagener, 2014; Zhang, Chiew, Li, & Post, 2018).

Kuentz et al. (2017) amended these findings by stating that the link

between climate and runoff signatures was especially relevant for

long-term runoff signatures like flood marks. They also found that

flood flashiness indicators were linked to basin shape and baseflow

indices to soil or geologic characteristics.

Studies at smaller scales, performing parameter or runoff signa-

ture transfer within a defined region, found more variability than what

the results from the larger scale had suggested (Singh, Archfield, &

Wagener, 2014). However, on the smaller scale, several studies con-

firmed that runoff dynamics were connected to basin shape (flow

paths, concentration times, drainage density, etc.), land cover and soil

properties within climatically homogenous regions (Bárdossy, 2007;

Brunner et al., 2018; Drouge et al., 2002; Dunn & Lilly, 2001;

Grimaldi, Petroselli, Alonso, & Nardi, 2010; Singh, Archfield, &

Wagener, 2014; Soulsby, Tetzlaff, & Hrachowitz, 2010; Wigington,

Leibowitz, Comeleo, & Ebersole, 2013; Yadav, Wagener, & Gupta,

2007). Although studies from Steinschneider, Yang, and Brown (2015)

revealed that spatial proximity could be used to define reasonable

catchment groups, it was concluded by several other studies that

proximity is just a proxy for other driving factors (Sawicz et al., 2011).

This also confirmed the key statements of Winter (2001) and

Wagener et al. (2007) that a general classification framework should

take climate, geology, surface form and runoff signatures into account.

Although catchment characteristics can be linked to active hydrologi-

cal processes at the catchment scale by utilizing tracer data (Klaus &

McDonnell, 2013), the availability of such data is even more restricted

and its recording more expensive compared to streamflow gauging

data. At the basin scale, a clear connection between hydrologic pro-

cesses and catchment characteristics, derived from analysis of

streamflow data, remains thus to be identified.

This might go back to the fact that most previous studies either

transferred parameters for sophisticated hydrological models or

regionalized runoff signatures. As a result, findings were to a large

extent restricted by the procedure used, that is, the a priori perception

of the hydrologic process. Shen et al. (2018) and Mount et al. (2016)

specified an alternative approach for analysis. They suggested using

data-driven methods, Deep Learning in particular, as a new method of

scientific analysis. Key benefits were supposed to be design free of

preconception and the ability to adapt to specific problems. The learn-

ing procedure was basically a procedure of hypothesis-testing to pro-

vide new insights into hydrological processes. Mount et al. (2016)

complemented these findings by demonstrating that data-driven

models could be a useful supplement to classical physics-based

models. Even though data-driven models, especially machine learning

(ML) algorithms, were applied in many hydrological applications

(see Elshorbagy, Corzo, Srinivasulu, & Solomatine, 2010a; Elshorbagy,

Corzo, Srinivasulu, & Solomatine, 2010b; Solomatine & Ostfeld, 2008;

Yaseen, El-shafie, Jaafar, Afan, & Sayl, 2015 for reviews), their focus

was mainly on regression and classification results (Brunner et al.,

2018 and Heřmanovský, Havlíček, Hanel, & Pech, 2017), or on trained

model structures, for example, Singh, Archfield, and Wagener (2014)

analyzed the trained structures of a decision tree. These ways of using

ML for knowledge extraction are a first step towards exploiting the

potential of ML for process analysis.

The trained algorithms inherit a hypothesis about the processes

they were trained to be reiterated. This hypothesis emerged from a

competition between numerous other hypotheses within the training

phase. Herein lies the true power of ML-enforced analysis of pro-

cesses. Because the algorithm has no constrains in its ability to build

process abstractions, it will be able to test and discard more hypothe-

sis than a single human researcher could in a comparable amount

of time.

However, it has to be recognized that the result of a fitted algo-

rithm might not be transferrable in the most cases, due to the inherit

process uncertainty. ML-algorithms are usually trained for a single

purpose; therefore, results tend to overfit the problem. A solution for

this issue is the use of ensemble techniques and validation of the

results based on large data sets. Though analyses based on trained

ML-algorithms will benefit from the performed learning procedure,

they not only considered the regression and classification results from

a trained algorithm. In addition, they gained knowledge from analyzing

the internal structures of their decision trees. Such decision tree algo-

rithms are compelling for because they are easy to interpret. While

there are more powerful algorithms like artificial neural networks or

ensemble techniques as the random forest (RF), their internal struc-

tures are not understandable for the human logic (Kelleher, Mac-

Namee, & D'Arcy, 2015).

Here, we pursued a new approach for data-driven process

research. We studied the training phase of an RF that was trained to

characterize the runoff dynamics in a (pseudo)-ungauged catchment.

The training data was taken from gauged catchments in regional

neighborhood of the target catchment. The questions we asked was

“Which data set minimizes the parameter estimation error?” Using a

step-by-step analysis of the learning procedure, we assessed which

data sets should be used for an optimal training of the RF. The selec-

tion of ideal donor catchments, based on model performance, was

followed by an analysis of the catchments characteristics. The groups

of donor catchments as defined by ML were analyzed for homoge-

nous grouping of various catchment characteristics, that is, basin

shape (area, Horton ratios), land cover and soil properties. We thus

recreated the ML-derived classification with catchment characteristics

that could be used to identify donor catchments for an ungauged tar-

get catchment.

We used drainage velocity as a proxy for flow dynamics. In the

concept of the geomorphologic instantaneous unit hydrograph

(GIUH), drainage velocity defines the variance of catchment response

while the shape of catchment response is defined by the geomorphol-

ogy of the basin (Rodríguez-Iturbe & Valdés, 1979). Consequentially
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drainage velocity is directly connected to catchment response, that

is, the process of runoff concentration. Using drainage velocity

also offered other benefits that we subsequently implemented.

First, this parameter can be derived analytically from runoff and

precipitation data as well as it can be calibrated to a GIUH-model.

Second, the GIUH directly relates catchment properties to

discharge characteristics and is therefore a valuable tool for pre-

dictions in ungauged basins (Hrachowitz et al., 2013; Rigon,

Bancheri, Formetta, & de Lavenne, 2016). Yet, its application had

been limited due to missing solution for event-wise parametriza-

tion. The use of machine learning presents a major step forward to

overcome this problem.

Two basins in in south-east Germany were used in this study.

Uhlemann et al. (2010) found that the frequency of floods caused by

heavy rainfall significantly increased in this region. The basins of the

rivers Regen and the Upper Main are both situated in a mid-range

mountainous area of Bavaria.

2 | METHODS AND DATA

2.1 | Case study catchments

We used rainfall-runoff events in hourly temporal resolution from

33 gauges. Twenty-two gauges are located in the basin of the Upper

Main (Figure 1, upper left). The Upper Main basin covers an area of

4,223 km2. Runoff from the entire basin is observed at gauge

Kemmern at the outlet of the basin. Other gauges observe catchments

with an area from 11.1 km2 up to 500.4 km2. The basin is dominated

by agricultural land use, only the northern parts of the basin possess

larger forested areas. The Regen basin (Figure 1, lower left), is located

in the mid-range mountainous Bavarian forest. The largest catchment,

Marienthal covers the entire basin area of 2,590 km2. Data for

11 gauges were available in this basin.

For each gauge, continuous time series of hourly discharge were

available from 1999 to 2012. Additionally, interpolated time series of

hourly precipitation and temperature for each sub-basin were calcu-

lated by means of Thiessen polygons. We applied Thiessen polygon

interpolation in this study to preserve the natural variance of

observed precipitation measures. Possible precipitation volume errors

were accepted, as our analyses focused on runoff dynamics. The data

were provided by the Bavarian Ministry of the Environment (2018)

and data from German Weather Service (Deutscher Wetterdienst

DWD [German Weather Service], 2019). We extracted the five

highest flood events per year from the continuous discharge time

series. Once the flood time stamps of the highest flood values were

identified, we extracted the discharge and precipitation events manu-

ally. The number of events we looked at (five per year) was consid-

ered adequate considering the quantity of data needed for our data

base and the heights of the event discharge. A total of 831 events

have been extracted, with an average of 25 events per gauge. The

number of events varied from gauge to gauge because some events

were removed from the data set, as they were influenced by snow

impact. Floods caused or influenced by snow melt were excluded due

to our focus on rainfall-induced floods.

2.2 | Catchment characteristics

For each sub-basin, several catchment characteristics were calculated

in order to determine the catchment classification scheme (summa-

rized in Table 1). From Corine land cover data (Bossard, Feranec, &

Otahel, 2000), the percentage of agricultural (AGR) and forested

areas (FOR) were determined to characterize the land cover of the

F IGURE 1 (Left) Digital elevation model (from SRTM data) and gauges (triangles) in the case study basins Upper Main (upper left) and Regen
(lower right) located in south-east Germany. (Right) Land cover classes of the case study basins derived from CORINE land cover
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sub-basins. Topographical characteristics slope (SLO) and mean

elevation (ELE) as well as the basin area (ARE) were derived

from the DEM (Jarvis, Reuter, Nelson, & Guevara, 2008). The

soil was characterized with the total pore volume in the upper

2 m of the soil layer (TPV) (Federal Institute for Geosciences and

Natural Resources, 2006). Horton ratios of the drainage area RA,

stream lengths RL, the bifurcation ratio RB as well as the maxi-

mum flow length of the highest order stream within the basin

LMAX were determined as characteristics of the drainage system.

The drainage network and the Horton rations were calculated

following the methods proposed by Grimaldi, Petroselli, and

Nardi (2011) and Moussa (2009). The Horton ratios are the only

catchment characteristics affecting the simulation of the time

series directly, as they were used to parametrize the GIUH

(Section 2.2). All other characteristics were solely used for

catchment classification.

TABLE 1 Catchment characteristics of the Regen and Upper Main catchment

Characteristic ARE ELE SLO AGR FOR TPV RA RL RB LMAX

Unit [km2] [m a.s.l.] [�] [%] [%] [mm] [−] [−] [−] [km]

Regen

Chamerau 1,356.5 707.0 8.71 33 64 241.2 1.90 2.91 1.93 0.9

Eschelkam 178.0 531.0 6.02 62 37 174.7 2.52 3.57 1.23 8.8

Furth im Wald 276.6 538.9 6.47 61 37 193.9 2.50 3.56 1.39 8.7

Kienhof 2,174.1 623.7 7.55 43 54 250.8 1.81 2.80 2.11 0.9

Koetzing 224.4 701.4 10.30 28 69 238.6 1.78 3.03 1.51 3.6

Kothmaissling 405.0 520.7 6.45 60 38 216.8 2.51 3.57 1.57 8.7

Lohmannmuehle 115.9 858.1 8.79 12 84 260.1 1.72 2.36 1.16 1.1

Marienthal 2,590.4 595.9 7.03 44 53 258.5 1.69 2.61 2.19 0.9

Sägemuehle 839.3 753.4 8.54 28 69 246.9 1.53 2.58 1.42 8.4

Teisnach 626.6 781.8 8.42 24 73 250.0 2.07 3.16 1.77 4.3

Zwiesel 293.4 873.2 9.65 9 88 263.2 2.13 3.21 1.59 4.3

Upper Main

Adlerhuette 33.39 551.1 4.87 59 39 232.4 1.77 2.95 0.46 3.7

Bad Berneck 99.79 710.3 8.13 18 80 238.0 3.28 4.30 1.00 20.4

Bayreuth 340.28 488.0 5.02 56 35 232.1 3.10 4.20 1.90 16.8

Bernstein a.W. 35.38 611.5 7.88 29 68 186.8 3.23 4.27 0.90 20.2

Coburg 346.34 457.2 6.17 49 44 310.3 2.05 3.05 1.35 6.6

Friedersdorf 11.14 612.1 6.42 32 66 184.0 2.64 3.68 0.40 10.4

Gampelmuehle 62.2 455.0 3.93 70 28 204.7 2.76 3.90 1.18 8.6

Kauerndorf 246.23 516.8 5.74 61 36 259.3 2.39 3.44 1.32 12.2

Kemmern 4,223.84 432.9 5.39 54 41 330.7 2.22 3.27 2.40 8.2

Leucherhof 380.52 351.2 4.56 49 50 345.6 1.70 2.99 1.38 6.9

Lohr 165.3 366.0 4.18 46 54 417.7 1.67 2.96 1.14 6.9

Moenchroeden 70.7 433.3 6.50 37 51 216.3 0.74 2.44 1.00 1.5

Oberhammer 64.25 582.5 6.62 51 49 194.8 2.29 3.31 0.65 7.3

Oberlauter 31.56 457.9 6.48 41 59 207.2 2.10 3.20 0.70 2.4

Pfarrweisach 36.67 363.0 4.66 54 42 439.5 3.42 4.45 0.85 29.0

Rieblich 118.22 608.7 7.37 21 77 183.7 2.51 3.63 1.15 9.9

Schlehenmuehle 70.95 479.8 3.56 55 42 306.5 3.11 4.22 1.15 18.4

Unterlangenstadt 713.87 528.6 7.46 37 59 196.7 2.41 3.45 1.69 10.1

Untersteinach 73.52 635.7 8.42 33 63 203.3 3.03 4.12 1.28 14.0

Unterzettlitz 500.35 454.2 4.81 57 37 258.9 2.51 3.65 1.75 8.4

Wallenfels 96.45 576.5 9.27 22 76 186.0 2.62 3.66 1.02 10.2

Wirsberg 76.86 549.0 5.18 59 38 224.9 1.90 3.19 0.79 7.2

Note: Area (ARE), elevation (ELE) and slope (SLO) derived from DEM, share of agricultural (AGR) and forested areas (FOR) from land cover data, total pore

volume in the upper 2 m soil layer (TPV) from soil data. Horton rations (RA, RL, RB) and LMax derived from DEM and stream network.
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2.3 | Geomorphologic instantaneous unit
hydrograph model

A hydrological model was used to reproduce the flood events at hourly

temporal resolution. The modelling study was performed in a leave-

one-out procedure to test the ability of the model for runoff prediction

in ungauged basins. From the variety of existing GIUH models (Rigon

et al. (2016) and Singh, Mishra, and Jain (2014) provided a thorough

reviews), we chose the rather simplistic approach by Rosso (1984) due

to its common application and its quick and robust results. The ordi-

nates of the GIUH were calculated depending on time step t:

GIUH tð Þ= 1
kΓ nð Þ�

t
k

� �n−1

�e−t=k ð1Þ

with

n=3:29�R0:72
B �R−0:78

A �R0:07
L ð2Þ

k = 0:70�LMax

vD
R−0:48
B �R0:48

A �R−0:48
L ð3Þ

with vD being the drainage velocity in [m/s] of the considered event. The

constant numbers in Equations 2 and 3 are part of the model proposed

by Rosso (1984) and have been determined for multiple combinations of

RB, RA and RL. Although the model and the constants derived by Rosso

(1984) are commonly applied, the uncertainty concerning the constants

has to be noted. However, the Horton ratios of the majority of catch-

ments used in this study were within the parameter boundaries tested

by Rosso (1984). As Grimaldi et al. (2011) stated, the drainage velocity

should be considered as a calibration parameter, although it is connected

to the concentration time. In order to focus on runoff dynamics, we omit-

ted a runoff generation procedure and used empirical runoff ratios to

define effective precipitation values. Please note that the application of

the used GIUH-model is restricted to the simulation of rainfall-induced

flood events, based on the effective precipitation as no other storage

components for snowor groundwater are considered.

The performance of the GIUH-model was evaluated with the Kling-

Gupta Efficiency (KGE). This efficiency criterion combines three aspects

of hydrograph recreation: ratios α and β, of simulated and observed stan-

dard deviation σ and averages μ, as well as the linear correlation coeffi-

cient of simulated and observed hydrograph r (Gupta, Kling, Yilmaz, &

Martinez, 2009):

KGE=1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−αð Þ2 + 1−βð Þ2 + 1−rð Þ2

q
ð4Þ

with

α=
σSim
σObs

;β =
μSim
μObs

; r =
CovSim;Obs

σSim�σObs
ð5Þ

Due to the use of observed rainfall-runoff ratios to describe the

runoff generation process, the volume of the simulated and observed

hydrographs are identical. Hence, the performance criterion β of

Equation 5 is equal to 1 in all cases. The other components of Equa-

tion 5 are not affected by this decision, rather they are influenced by

vD and the Horton ratios.

2.4 | Drainage velocity and process indicators

In their original description of the GIUH, Rodríguez-Iturbe and Valdés

(1979) stated that the drainage velocity vD needed to be estimated for

each event individually. This requirement was one of the main

restricting factors for operational applicability of GIUH-models. In this

study, we performed parametrization of the GIUH by event with

ML. The algorithms were trained to predict vD from several process

indicators that will be introduced in the following.

To train the algorithm, a set of known vD values was required. For

each event of our data base, vD was calibrated with the BOBYQA

(Bound optimization by quadratic approximation) algorithm (Johnson,

2018; Powell, 2009). We used the KGE as the target function with a

minimizing target. The drainage velocity was scaled to a minimum of

0.01 m/s and a maximum of 2.0 m/s.

To estimate vD of an upcoming flood event, the following climatic

characteristics of the meteorological event have been used as predic-

tors. From the precipitation data of an upcoming event we calculated

the sum of precipitation VP [mm], the duration of the precipitation DP

[h], the average precipitation intensity of all values greater than zero

I0 [mm/h] and the maximum intensity IMAX [mm/h]. A moving sum

was applied to assess the minimum inter-event duration to sum 50%

of VP. The duration, normalized by DP provided the indicator D50

which we used to describe the temporal distribution of the precipi-

tation event. In addition to these basic parameters, the antecedent

precipitation index (API) for 30 days ahead of the event, was calcu-

lated. The API was calculated as the weighted sum of hourly inten-

sities, weighted by the inverse of their temporal distance to the

event beginning. The API was an indicator for the antecedent con-

dition of the catchment. Although other indicators (temperature,

snow cover, etc.) were derived, the performance of the RF did not

increase significantly, compared to the use of precipitation indica-

tors only. Consequentially, we only used the five indicators intro-

duced as predictors in the ML-study.

2.5 | Machine learning algorithm

From available ML-algorithms, we chose a random forest regressor

(RF) to estimate vD for each event based on the precipitation indica-

tors. The applied RF consisted of 1000 regression trees, each trained

with a randomly chosen subset of the given training data. In training

phase, a sequence of splitting rules is derived to minimize the regres-

sion error in each state. At each split, the training data (predictors and

target variables) are divided into two subsets, based on the attribute

of a certain predictors. The average of the given target variables in

the subsets are the prediction of the branches after the split. For each
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split, the mean squared error of the prediction is minimized. Due to

the randomly chosen subsets, each tree has different criteria for its

splits. Please note that the number of successive splits is limited to

five splits, in order to keep the trees simple. The limitation results in

the RF being immune to overfitting (Breiman, 2001).

As an alternative to the random forest procedure, we applied the

adaptive boosting strategy. Here the base estimators, again regression

trees, were trained in steps based on the errors of the preceding base

estimator. Due to the inferior results of adaptive boosting to the RF

with randomly chosen subsets, this strategy was discarded. For

detailed description and the theoretical background of the algorithms,

see (Breiman, 2001) details on implementation that were provided by

(Pedregosa et al., 2011).

We selected the RF due to its common application in hydrological

studies (Addor et al., 2018; Brunner et al., 2018) and their ability to

reduce process uncertainty from overfitting (Breiman, 2001). The use

of multiple base estimators trained to different data sets (i.e. subsets

of the complete training data) created a large ensemble of process

perceptions. This decreased the tendency of single-estimator algo-

rithms (like a neuronal network or a single decision tree) to overfit a

problem.

The ML-algorithms were evaluated with the mean absolute error

(MAE) as follows:

MAE=
1
N

XN
i=1

vD; i− v̂D; ij j ð6Þ

Since differences between all N true values vD;i (calibrated) and

the estimates v̂D; i were considered as absolute values, negative and

positive errors did not eliminate each other. Contrasting other mea-

sures that unify different aspects of model performance (e.g. mean

squared error [MSE] combining BIAS and error variance), the MAE

allowed a direct interpretation (Ramsay & Silverman, 2005).

2.6 | k-means algorithm

The k-means algorithm is a common tool used for supervised classifi-

cation of M objects into k clusters. Each object m is a vector compris-

ing several characteristics. In this study, catchments were clustered

based on selected characteristics taken from Table 1.

The k-means minimizes the intra-cluster variance, while maximiz-

ing the inter-cluster variance, giving a k disjoint clusters. The target

function Z of the algorithm is (Pedregosa et al., 2011)

Z =
Xk
i=1

X
xj∈Si

xj−μi
�� ��2 !min ð7Þ

The sum of the Euclidean distances between each object x to its

assigned cluster center μ within all clusters S are to be minimized. The

classification of the objects is iterated in order to minimize Equation 7.

At the beginning of each iteration step, the cluster centers μ are

calculated as the average of all assigned objects (note that in the first

iteration step, all objects are randomly classified). Then the distance

between each object and all available clusters is calculated. In the last

step of the iteration, the objects are assigned to the nearest cluster

center. This procedure is repeated until the classification is stable or a

maximum number of iterations (in this case 100 steps) is reached.

2.7 | Silhouette coefficient

The Silhouette coefficient was applied to search for dominant controls

on catchment grouping. For a known catchment classification, in this

case derived from the analysis of the algorithm training, the catchment

characteristic was assessed maximizing the following equation of the

silhouette coefficient s (Pedregosa et al., 2011; Rousseeuw, 1987):

s=
1
N

XN
i=1

b ið Þ−a ið Þ
max b ið Þ;a ið Þð Þ ð8Þ

with a being the mean distance between a characteristic x of the sub-

basin i and all other sub-basins belonging to the same cluster A. The

second variable b was the mean distance between the characteristics

x of sub-basin i and the sub-basins of the next nearest cluster (calcu-

lated over all clusters C, different from A):

a ið Þ= 1
Aj j−1

X
x jð Þ∈A

j 6¼i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x ið Þ−x jð Þð Þ2

q
ð9Þ

b ið Þ=min
C 6¼A

1
Cj j−1

X
x kð Þ∈C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x ið Þ−x kð Þð Þ2

q
ð10Þ

The silhouette coefficient is defined within the boundaries −1

and 1, with 1 being the ideal outcome and indicating a dense and

exclusive structure of the classification relative to the chosen catch-

ment characteristic x. Values around 0 indicate overlapping clusters.

3 | DEVELOPMENT OF A MACHINE
LEARNING BASED CATCHMENT
CLASSIFICATION SCHEME

Trained dependencies and structures of predictor interaction within

the machine learning algorithms are incomprehensible (Han & Kamber,

2010), with the exception of the CART algorithm. Hence, it is not rea-

sonable to evaluate the algorithm parameters, rather its functionality

offers insight into underlying processes.

The focus of this studywas put on catchment grouping, that is, hydro-

logic similarity. Following the argumentation of Blöschl and Sivapalan

(1995), we assumed that anML-algorithm trainedwith data from themost

similar donor catchment (within the training data) will show a superior

model performance, in comparison to ML-algorithms trained with less-

similar donor catchments. In this case, model performance is a proxy for
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catchment similarity. A ranking of catchments lowering model perfor-

mance can be interpreted as a ranking of similarity.

As first step, we analyzed the progress of predictive capability of

an RF with increasing amount of training data in the Regen basin.

Based on this assessment, we determined an empirical ranking of

donor catchments for each target catchment that minimized the

model error. Groups of catchments that served each other as donors

were merged into groups. In a second step, we analyzed the connec-

tion between the empirical classification and catchment characteris-

tics and developed the classification scheme. The findings were then

tested in the basin of the Upper Main.

3.1 | Analysis of the ML learning procedure

To determine the rankings for each catchment, we performed the follow-

ing analysis (Figure 2): One catchment was selected as target and was

removed from the training data set. Then each remaining catchment was

used as donor to individually train an RF. Each model was evaluated

with data withheld from the training data set. The best performing model

determined the most similar catchment.

Next, each of the remaining catchments was used to train a new

RF model in addition to the already determined donors. Again, the

best performing model indicated the next catchment in the empirical

catchment ranking. This procedure was repeated until a full ranking of

all available catchments was determined.

In order to evaluate and benchmark the results two alternative

rankings of donor catchments, based on common distance measures,

were determined. One was based on the distance of the sub-basin

centroids, assuming that catchment similarity could be defined by spa-

tial proximity. In order to take catchment nesting into account, we

chose a similarity measure based on the Top-Kriging method (Skøien,

Merz, & Blöschl, 2006) as second alternate ranking.

To visualize the learning procedure of the RF, the regressor was

trained step by step with an increasing amount of data. The data used

were either defined by the empirical order of donor catchments

(EMP), the centroid-order (CENT) or the Top-Kriging order (TOPK).

After each step, that is, after additional data were added set to the

training data, the RF was evaluated with the data withheld from the

target basin. Note that the data for evaluation were identical in all

steps of the analysis, that is, the validation was always performed on

the same data set. The development of the model error, expressed as

the MAE, is shown exemplary for two catchments in the Regen basin

in Figure 3, dependent on the number of used data sets for training.

The development of the model error shown in Figure 3 can be

considered representative for all catchments used. The uncertainty

belts were computed by repeated fitting of the RF to randomly

selected subsets of the chosen data. Results for catchment

Saegemuehle (short: Saegem), shown on the left of Figure 3, were con-

firmed to be representative for the majority of catchments used in this

study. The minimal MAE was achieved with the empirical ranking with

only 1–2 data sets for training. In catchment Saegemuehle, the mini-

mal MAE is ≤0.075 m/s, in Eschelkam ≤0.04 m/s, both catchment

have an average vD of ~1.4 m/s, giving a relative error lower than 5%.

With increasing training data, the model error increased. Because the

Validate

MIN
RF

RF

RF

Train
MAE(A)

Target basin

Donor A

Donor B

Donor C

MAE(B)

MAE(C)

F IGURE 2 Schematic depiction of the learning steps. Data from
each donor catchment were used to train an individual RF. All RFs
were validated with data from the target catchment. The minimal
model error MAE defined the best donor catchment

F IGURE 3 Progress of RF model error with increasing amount of data sets. Ranking of the data determined empirically (EMP), by centroid-
distance (CENT) and top-kriging weights (TOPK). Results shown for sub-basin Saegemuehle (left) and Eschelkam (right)

2456 OPPEL AND SCHUMANN



validation data were unchanged in each step, the only possible explana-

tion for the decrease is that redundant or misleading information was

added to the training data. In this context, connections between precip-

itation indices and vD caused other processes than those active in the

target basin are misleading information. If such information are present

in the training data, the performance of the ML-algorithm decreases.

Results for CENT or TOPK were very similar and led to higher

model errors. The increase of error as a function of increasing data

availability was not visible at first sight in most cases. Results from

sub-basin Eschelkam (short: Eschel) displayed in the right diagram of

Figure 3 showed a different result. In this particular case, all deter-

mined rankings led to the same result compared to the first three

steps. From there the ranking of donor catchment as well as the

model error diverged. This indicated that for Eschelkam donor catch-

ments in close spatial proximity delivered the best training data and

could be thus considered as similar. However, this result was only

obtained for three nested sub-basins, located at a tributary stream of

the Regen, which indicates that spatial proximity is proxy of another

factor defining the similarity of these three catchments.

3.2 | Catchment groups in the Regen basin

Based on the results obtained from the analysis of the learning pro-

cesses, we derived a catchment classification. Due to the noted

increase of the MAE as a function of increasing data quantities, we

considered two donor catchments as the optimum quantity for RF

training. This quantity was considered a compromise between sub-

basins like Saegemuehle (Figure 3, left side) that showed an increas-

ing model error with each added data set and other sub-basins like

Eschelkam (Figure 3, right side) that showed a stable, in some cases

decreasing, MAE for a data base of up to 4 basins.

The first explorative analysis of the results was to localize the

favored donor catchments. We created a map for each target

catchment and its two donors. These maps showed that three affinity

groups were present in the obtained empirical rankings. An RF to esti-

mate vD in a randomly chosen target catchment within one of these

groups was likely to yield minimum MAE if the training data were

taken from the remaining catchments within this particular group.

Following the assumption that the empirical ranking of donor catch-

ments was correspondent to their similarity, these groups could be

interpreted as similarity groups (Figure 4, left panel). Note that the

catchments are shown as sub-basin, yet the RF-regressors were fitted

to represent entire catchments.

Please note that catchment group 3 differed from the two other

groups. An RF for basins in cluster 3 were trained best with data taken

from cluster 1. Additionally, these sub-basins were not preferred as

training data for any other target sub-basin. The reason for this obvi-

ous anomaly will be discussed below.

The grouping showed that two headwater catchment groups and

a downstream catchment groups were present, although they were

not fully distinct. Group 1 contained mainly headwater catchments in

the eastern parts of the Regen basin. Group 2 mainly consisted of

catchments from the river Chamb (a tributary coming from the north),

for example, sub-basins Eschelkam (short: Eschel) and Furth im Wald

(short: Furth). Sub-basins that were not used as donors were mainly

located at downstream positions, merging both tributaries. It has to

be noted that the small headwater catchment Lohmannmuehle

(short: Lohman) was assigned to group 3 and Saegemuehle to group

2, although their location suggested otherwise. This led to the conclu-

sion that the location at a certain tributary was not a sufficient crite-

rion for the reproducibility of the empirical catchment grouping

obtained.

In order to determine the dominant controls on catchment simi-

larity, we calculated the silhouette coefficient following Equation 8,

for different characteristics (Table 1). Based on findings in the litera-

ture (Section 1), we selected the following characteristics: catchment

properties such as area (ARE), mean elevation (ELE) and slope (SLO),

F IGURE 4 (Left) Spatial distribution of catchment groups in the Regen catchment (left) manually defined following the ML analysis. (Right)
Silhouette coefficient of the groups for different catchment characteristics
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as well as land cover shares (agricultural area AGR, forested area

FOR). Additionally, we took into account the characteristics of the

drainage system, that is, the Horton rations introduced in Section 2.2.

Silhouette scores for each catchment characteristics were summarized

in the right panel of Figure 4. The positive values of the Silhouette

coefficients indicate that the obtained catchment grouping inherited a

strong distinction of LMax and weak structures for RL and RA. The

physical reality behind these statistical values is that the members of

the groups differ significantly in term of the maximum flow paths

lengths and drainage network density. Values close to and below zero

indicate an overlapping classification, that is, members of different

groups have similar elevation, pore volume, etc. To clarify these

results, the values of LMAX were plotted as a function of RL in Figure 5

including a marking of its catchment grouping. Note that the shown

cluster boundary lines represent the perpendicular bisectors of cluster

center distances. The distinction of the catchment classification

derived is obvious for LMAX (Figure 5). The distinction for RL is signifi-

cantly weaker.

Recall that the reproduction of the empirically defined classifica-

tion uses only catchment characteristics (Figure 5). It is also visible

that the catchments of group 3 possess a significant lower LMax than

all other catchments, with all values <2 km.

3.3 | Validation case study

To prove the validity of our findings, we applied the LMax–RL classifi-

cation scheme in a second case study. We transferred our findings to

the basin of the Upper Main and identified four catchment groups.

The members of each group have again been defined using the k-

means algorithm (Pedregosa et al., 2011). The results of catchment

grouping were summarized in the right panel of Figure 6. Spatial

arrangement of the catchments and groups in the Upper Main are

shown additionally in the left panel of Figure 6. Note that we added

an additional group to maximize the silhouette coefficient and to

reduce the number of catchments per group. Without the additional

cluster, catchment groups 2 and 3 would have been merged.

In the next step, we trained an RF for each sub-basin and used

the data from the remaining sub-basins within the particular cluster.

Cluster 4 was handled differently, due to its resemblance to group

3 of the Regen catchment. Analogous to the empirical ranking data

from these catchments, with LMax lower than 2–4 km, were not used

for training. The RF for these basins used data from the nearest clus-

ter for training.

In order to evaluate the model performance, we calculated the

MAE for the prediction of vD for the data withheld from the target

catchment (Figure 7). For comparison, we trained three additional RFs

with donor catchments defined by Top-kriging (TOPK), centroid-

distance (CENT) and the empirical ranking (EMP). The number of data

sets used for training was equal to the number of data sets as used

F IGURE 5 Drainage system characteristics LMax and RL for sub-
basins in the Regen catchment. Groups in the Regen basin obtained
empirically by ML analysis

F IGURE 6 (Left) Spatial distribution of catchment groups in the Upper Main basin based on similarity of RL and LMax. (Right) Drainage system
characteristics LMax and RL with grouping obtained by k-means algorithm
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with the RL–LMAX (RLM) similarity measure. Model error obtained with

the empirical ranking has been interpreted as a benchmark and was

plotted as bars. The competing similarity measures, resulting in differ-

ent model errors, are shown as scatters for each sub-basin.

In the Regen basin, we were able to reproduce the empirical

catchment classification with no exception. As a result, the MAE of

the RF trained with data defined by empirical order and by RLM

were closely related. Additionally the RLM catchment classification

outperformed models trained with data determined by CENT and

TOPK (Figure 7). The results for the catchment of the Upper Main

looked different, though, in most cases (16 out of 22) the RF

trained with data defined by RLM resulted in MAE values compara-

ble to the EMP benchmark. However, in two catchments, Bernstein

(short: Bernst) and Untersteinach (short: Unters), RLM trained

models performed worse than all other models. In four other catch-

ments, the RLM classifications were outperformed either by TOPK

or CENT.

The decrease of performance in the validation case study showed

that we did not fully encode the learning process of the machine

learning algorithm. Nevertheless, the classification schemes produced

satisfactory results in both case studies. It is important to note that

we were able to reproduce a catchment grouping that was determined

by a modelling procedure with catchment characteristics. Hence, we

conclude that the characteristics of the drainage system RL and LMax

are closely linked to the drainage velocity, a proxy for short-term run-

off dynamics.

4 | RESULTS OF ML SUPPORTED GIUH
MODELLING

In the previous sections, drainage system characteristics were identified

as dominant runoff controls for runoff dynamics. The classification

scheme we derived was used then to train an RF for each catchment

included in this study. We also evaluated its capability to estimate

drainage velocity parameters. Yet, the impact of the error on runoff

simulation results remained unknown. Therefore, we subsequently

applied the GIUH-model (Section 2.2) to all catchments. Runoff vol-

umes were determined analytically from observed discharge, due to the

focus of this study on runoff dynamics. The number of cascades n was

constant for all events within a single catchment (cf. Equation 2) while

the storage coefficient k changed as a function of the estimated drain-

age velocity vD for each event (Equation 3).

The average performance of the GIUH per catchment with RF-

estimated drainage velocities were summarized for the catchments

of the Regen (Figure 8) and for the Upper Main (Figure 9). The ratio

of simulated and observed standard deviation α (Equation 5), the

coefficient of correlation (Equation 5) and the KGE (Equation 4)

were given. The ratio of simulated and observed runoff volumes

was not displayed due to the use of observed flood volumes for

runoff generation.

In the Regen basin, two dependencies of model errors became

visible. The comparison of the performances of the RF (MAE in

Figure 7) and the GIUH (KGE-components in Figure 8) clearly shows

an inheritance between the models. GIUH-simulations for sub-

basins with the highest MAE performed worst in term of hydrograph

reproduction. Additionally, a dependence on drainage area became

visible (with exception to Lohmannmuehle). The inferior simulations

in sub-basins Chamerau, Kienhof, Lohmannmuehle and Marienthal

were mainly caused by RF estimation errors.

Results in the Upper Main basin (Figure 9) differed significantly

from the Regen results. First of all, the dependence on drainage area

vanished in this basin. Moreover, a clear connection to the MAE was

not visible. However, the connection to the parametrization error of

the RF became discernable, taking into account the average drainage

velocity of each sub-basin, that is, when the relative MAE was

F IGURE 7 MAE of RF prediction of vD in the Regen (left) and the Upper Main (right) basins. Algorithms trained with an equal amount of
training data but different donor catchment selection. Selection determined empirically (EMP), Top-kriging (TOPK), centroid distance (CENT) and
based on LMAX and RL (RLM) classification
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evaluated. Sub-basins with the highest variance of KGE values

(Oberlauter, Untersteinach and Pfarrweisach) exhibited the highest rela-

tive error. While the average relative error ranged from 10 to 30% in

the other basins, the error exceeded 100% in these catchments. These

results were a result of a mismatch between target and training vD

values. The average vD in these catchments were significantly lower

than in their assigned training data which indicated that these

catchments were incorrectly classified.

The catchments with the lowest performance were located at

the boundaries of the catchment groups (Figure 5). Oberlauter (short:

Oberl) is a member of Cluster 3, a cluster that has been treated differ-

ently than the other. All members of this cluster displayed noticeably

low KGE values. Untersteinach (short: Unters) and Pfarrweisach

(short: Pfarrw) were both members of Cluster 1, although, their catch-

ment characteristics, especially LMax differed significantly. While

Untersteinach defined the lower boundary of LMax in cluster

1, Pfarrweisach defined the upper boundary. It might be reasonable to

ask if Pfarrweisachwas a single sample of another cluster that is other-

wise not present in the used data set.

Overall, for the majority of catchments, the parametrization by

event brought adequate simulation results. The classification scheme

based on Horton's length ration RL and the maximum flow path length

LMax allowed the selection of suitable donor catchments for each

catchment. As an additional benefit, the classification allowed a prese-

lection of required data, reducing the effort for data preprocessing

(manual event separation, etc.)

F IGURE 8 Average performance criteria α, r and KGE of the GIUH model application in the catchments of the Regen basin. Catchments
sorted by drainage area from smallest to largest

F IGURE 9 Average performance criteria α, r and KGE of the GIUH model application in the catchments of the Upper Main basin. Catchments
sorted by drainage area from smallest to largest
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5 | DISCUSSION

5.1 | Limitations of the ML predictor

In previous sections (Sections 3.1 and 3.3), the performance of the RF

has been used as a foundation for process-related conclusions. From

the analysis of the learning curves, we concluded that with increasing

data from new catchments, redundant or misleading information was

added to training data set hence the performance decreased. In our

validation study, a decrease of the predictive performance has been

connected to an insufficient classification scheme.

However, another explanation for these outcomes could be an

insufficient capability of the model used, respectively the RF, to repro-

duce the full range of variation within the runoff dynamics. Hence,

further analyses of the RF performance were required to eliminate

this uncertainty.

As a consequence, the RF has been applied in a local application

at each gauge. Each RF has been trained with a randomly chosen sub-

set of 50% the available data. The RF has been evaluated using the

data withheld from the same gauge. With this procedure we analyzed

if the RF was capable to reproduce the variance of the observed vD

values. In order to reduce effect of the randomly chosen subset, this

procedure has been repeated 10 times.

If the results are compared to the range of observed values

(Figure 10), it can be concluded that the RF was generally able to

reproduce the variance of occurring vD values. A slight underestima-

tion of the full range of vD in sub-basins of Group 1 and 2 (left and

middle panels) is visible (Figure 10). This means that these sub-basins

offer a slightly wider range of variance than the RF could reproduce. It

has to be noted that the Box-Whisker plots of the observed and esti-

mated values shows different data sets. While the observed box con-

tains all available data points, the observed box contains RF-estimated

of 10 iterations, each with 25% of the available data. Hence, the

observed Box-Whisker contains more data points than the estimated.

But this only explains a small part of the lower variance. Our findings

indicate that a single algorithm is not sufficient to reproduce the full

range of hydrologic process heterogeneity, which is in concordance

with findings of Elshorbagy et al. (2010b).

Our results showed that the RF was capable to reproduce a large

amount of the natural heterogeneity. Additionally, the results showed

that with training data from the correct catchment, the RF is able to

reproduce the average of vD values, that is, would result in low MAE-

values. From this observation we can exclude limits of the ML-

predictor as the source of MAE-increase in Section 3.1. New data

sets, describing the connection of precipitation and vD, were added to

the training data in each step. The validation data set, that is, the vari-

ance of vD, was kept unchanged. An increase of the MAE, that is, the

prediction error is, hence, solely connected to wrong training data. In

this case, misleading connections exist between precipitation and

drainage velocity, that is, different active processes defining the

hydrograph from the catchment.

The RF has been tested in the Main basin as well. Results show a

comparable reproduction of variance by RF as in the Regen basin

(Figure 11). We conclude that we can exclude limitations of RF as an

explanation for the decreased performance of the model in the valida-

tion case study. However, there is another explanation that supports

our earlier conclusions (Section 3.3) (Figure 11). The variance of vD

values within the groups, which were used for the definition of

F IGURE 10 Observed (blank boxes) and RF estimated (grey boxes) vD values in the catchments of the Regen basin. RF trained with 50% of
available data of each sub-basin, validation (shown in grey boxes) for withheld data. Catchments grouped by ML analysis
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training data sets, is significantly larger in the Upper Main than in the

Regen basin. It is not the range of vD values solely that defines the

training result of RF, but rather the connection of precipitation indica-

tors and vD. The inter-group variance is another indicator for an insuf-

ficient classification scheme (as stated in Section 3.3).

5.2 | Process implications

We showed that an ML-algorithm could be trained to estimate runoff

dynamics of a flood, based on characteristics of the upcoming precipi-

tation event. Moreover, we were able to show that data from selected

neighboring catchments could be used to train such a model. Catch-

ment selection was based on characteristics of the drainage system,

LMax and RB, respectively. Robinson, Sivapalan, and Snell (1995)

showed that catchments response is either governed by hillslope

response or by network geomorphology. The latter is connected to

process of network dispersion. They defined a transition zone

between these types of response governance based on catchment

area. White, Kumar, Saco, Rhoads, and Yen (2004) found that the net-

work dispersion, that is, governance of the network geomorphology,

increases with higher Strahler-order rivers in the basin. The findings in

our study agree with these indications. In the Regen basin, we were

able to derive three groups that show different catchment responses

to similar precipitation inputs. Each group represents a different

degree of network dispersion. If the same range of hillslope process

heterogeneity is assumed, that is, the same range of hillslope drainage

velocity, the inter-group variance of vD values for the entire catch-

ments indicates a different degrees of network dispersion. Group

1 showed the highest influence of network dispersion, while Group

3 showed the least influence. Group 2 was located in transition.

The analysis of the Silhouette coefficients showed that the

groups differed significantly in terms of LMax and RL. Both characteris-

tics describe the channel network. Group 1 was associated with the

lowest LMax and RL values. The characteristics indicate that the highest

order streams are particularly short in these catchments and the aver-

age length of all order streams are more equally distributed than in

the other groups. Vice versa, catchments in Group 3 have a long

highest order stream and the average length of the streams increases

with the Strahler order. These findings show that confluences close to

the outlet of the basins, as well as an equal distribution of flow length

within the basin, increase network dispersion. A low LMax and RL indi-

cate that the runoff from a catchment is governed by dispersion and

hillslope processes are of minor importance. With an increasing LMAX

and RL, the relevance of hillslope processes increases.

Note that our results are limited to rainfall-induced flood events.

Flood events with other influences such as snow melt were excluded

from this study. Results might hence not be valid for these types of

events. Especially frozen precipitation has a significant influence on

hillslope processes and increases the residence time of the water on

the hillslope, giving lower vD values. To account for snow melt and the

related processes, the procedure needs to be repeated with an

extended hydrological model (snow routine) and additional data (such

as temperature, snow depths, etc.).

6 | CONCLUSIONS

It was the target of this study to identify dominant controls for runoff

dynamics on the basin scale. Therefore, we performed a leave-one-out

machine learning study in two basins in southeast Germany. Our find-

ings demonstrated that runoff dynamics for an upcoming flood event

could be estimated with a random forest solely based on precipitation

data. Additionally, the learning procedure of the used ML-algorithm

demonstrated that catchments with similar drainage systems character-

istics could be considered as hydrologically similar (in terms of runoff

dynamics). The similarity of catchments response was caused by an

increased influence of channel network dispersion. We found that the

F IGURE 11 Observed (blank boxes) and RF estimated (grey boxes) vD values in the catchments of the Upper Main basin. RF trained with
50% of available data of each sub-basin, validation (shown in grey boxes) for withheld data. Catchments grouped by RLM classification scheme
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distribution of flow length, as well as the presence of larger confluences

close to the outlet defined the influence of channel network dispersion.

Our findings were consistent with findings in the literature.

The transition from catchment response governed by hillslope pro-

cesses to dispersion governed response was beforehand explained by

drainage area. Our study showed that the transition can be described

better with characteristics of the drainage system, LMax and RL,

respectively. Our findings are supported by studies on hydrologic

similarity in meso-scale catchments which identified topography or

drainage characteristics as the relevant indicators for hydrologic simi-

larity. Although we showed in a validation case study in the Upper

Main basin that our classification scheme, based on LMax and RL, was

transferrable, our results are restricted to the natural conditions of the

basins used in this study. The Upper Main basin as well as the Regen

basin are located in a mid-range mountainous area and share the same

climatic conditions. Therefore, our findings on dominant controls on

runoff dynamics are, at this point, restricted to these specific condi-

tions. In future research, the proposed analysis of the ML-learning

procedure will be applied to a wider set of basins in different natural

and climatic regions. With this step, we will analyze the dependency

of local similarity on these conditions and identify the respective dom-

inant controls on runoff dynamics.

Beside our, locally and to rainfall induced floods constrained

results, we proposed a new way of process research. In this study we

gained knowledge from the analysis of a random forest and its training

procedure. More specifically we followed the question: how did the

algorithm learn and what data sources did it prefer? With a step-by-

step analysis of the training data and the performance of the ML-

based regression models, we drew conclusions about catchment

groups. Subsequently these groups were related to clusters of catch-

ment characteristics and we were able to build a catchment classifica-

tion scheme. The derived scheme proved to be valid in the validation

case study. Hence, we proved that our process assumptions, gained

through ML-model analysis, were valid.

We also demonstrated that two other benefits of ML as a supple-

ment for physically based hydrological models. On one hand, we

obtained an operational benefit because the RF performed a calibra-

tion of the GIUH-model by events in ungauged catchments with suffi-

cient performance, this being a problem that had been unresolved to

this point. On the other hand, its learning procedure allowed to draw

conclusions on runoff dynamics and catchment similarity. This dual

benefit, operational applicability of the hydrological model and pro-

cess analysis without a-priori process assumptions, showed the power

of ML-application in hydrologic analysis. We therefore propose the

use of machine learning and related analysis schemes, as applied in

this work, as new way of interpreting data and process research.

In ongoing and future research, we will apply the presented tech-

nique to a larger set of basins to test our results in different topo-

graphic and climatic regions. We will analyze the dependency of

dominant controls on runoff dynamics on catchment conditions and

locations. Another focus will be laid on the input data. In this study

we excluded snow-influenced floods, due to different active pro-

cesses. A classification of the remaining rainfall-induced flood events

will be introduced to consider flood types, that is, different active pro-

cesses (comparable to Oppel, 2019) which will reduce the estimation

errors of the RF. Additionally, we will include runoff generation as

target variable. In this study, we focused on runoff dynamics, a param-

eter of limited complexity compared to runoff generation parameters.

Furthermore future studies will be based on the analysis of a larger

set of ML algorithm. While we relied solely on RF in this study, we will

take other structures, like deep learning artificial neuronal networks,

into account in future. A larger ensemble will raise the probability of

finding the suited model for the represented catchment processes.
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