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1   |   INTRODUCTION

The accumulation of soil organic carbon (SOC) is dis-
cussed as a possible solution to mitigate climate change 
(Minasny et  al.,  2017). Increasing SOC can rebuild soil 

fertility, reduce soil erosion, and increase yield stability 
(Bradford et al., 2019; Harden et al., 2018). The accumula-
tion of SOC requires a reduced decomposition of SOC and/
or an increased input of organic matter (OM), where the 
latter depends on the amount and quality of the OM input.
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Abstract
Organic amendments are important to sustain soil organic matter (SOM) and soil 
functions in agricultural soils. Information about the contribution of organic amend-
ments to SOM can be derived from incubation experiments. In this study, data from 
72 incubated organic amendments including plant residues, digestates and manure 
were analysed. The incubation data was compiled from three experimental setups 
with varying incubation times, soils and incubation temperatures, in which CO2 re-
lease was measured continuously. The analysis of the incubation data was performed 
with an approach relying on conceptual parts of C-TOOL, CCB, Century, ICBM, 
RothC and Yasso which are all well-approved first-order carbon models that dif-
fer in structure and abstraction level. All models are an approximation of reality, 
whereby each model differs in understanding of the processes involved in soil carbon 
dynamics. To accumulate the advantages from each model a model ensemble was 
performed for each substrate. With the ability of each carbon model to compute the 
distribution of carbon into specific SOM pools a new approach for evaluating organic 
amendments in terms of humus building efficiency is presented that, depends on the 
weighted model fit of each ensemble member. Depending on the organic substrate 
added to the soil, the time course of CO2 release in the incubation studies was pre-
dicted with different accuracy by the individual model concepts. Averaging the out-
put of the individual models leads to more robust prediction of SOM dynamics. The 
EHUM value is easy to interpret and the results are in accordance with the literature.
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For an efficient agricultural management that sustains 
soil organic matter (SOM) and closes the nutrient cycle, it 
is important to know the specific contribution from different 
organic materials such as manure, plant residues and recently 
also from digestates of biogas reactors to SOM (Larney & 
Angers,  2012). SOM is a composition of compounds with 
different turnover times in soil. Therefore it is important to 
assess specifically the contribution of added organic matter 
to the long-lasting part of SOM that is historically summa-
rized under the term ‘humus’ and which demands certain at-
tention within the debate about carbon sequestration. There 
are several attempts to use proxies like the C/N ratio, hemi-
cellulose or the lignin content to evaluate the contribution of 
OM to SOM. But those bio-chemical proxies have restricted 
capacity to predict the behaviour of OM reliable enough 
under microbial turnover (Lashermes et  al.,  2009; Morvan 
et al., 2005), since other factors like temperature, microbial 
communities etc. can influence the decomposition (Dignac 
et al., 2017).

Incubation experiments are a research tool to assess the 
quality of the added substrates with regard to humification 
and the microbial turnover within a certain time. Their re-
sults are often analysed with statistical methods including 
different kinds of non-linear regressions where usually only 
the carbon loss is determined, whereas the transfer from the 
added organic material (AOM) to SOM generation is not 
quantitatively included (Cotrufo et al., 2013). Furthermore, 
there is no well-approved solution to transfer the incubation 
results from statistical models to the field scale with regard 
to environmental conditions. Soil carbon models are usually 
developed for field conditions and reflect a complex under-
standing of the carbon turnover. The general model approach 
comprises a network of carbon fluxes between different pools 
which approximates in an abstract way the microbiological 
turnover processes in the soil. Consequently, carbon models 
are able to predict the retention of carbon in soils for spe-
cific site conditions. However, soil carbon models need to 
be parametrized in order to compute carbon fluxes and they 
require information about the quality of OM (Stockmann 
et al., 2013). Incubation experiments, where organic matter 
is mixed with soil and the resulting turnover is observed from 
the CO2 evolution over time may contain this information 
(Jha et al., 2012).

The general understanding of carbon turnover includes 
several ‘unknowns’ and its expression in models follows 
different concepts. Each model has distinct strengths and 
weaknesses to project the examined processes (Sulman 
et al., 2018). Therefore, it may be risky to rely on only one 
specific model. Model ensembles/averaging are a common 
method to aggregate the prediction of several models into a 
single prediction, which is expected to be at least as good as 
the prediction of a single model and also compensates partial 
weaknesses of a single model (Diks & Vrugt, 2010; Hagedorn 

et al. 2005). In addition to improving the prediction, the cal-
culated weights of a model averaging can be transferred to 
further purpose. The carbon models assign specific turnover 
characteristics to the underlying substrates, which can be 
used to evaluate the efficiency of a substrate to contribute 
to the long-lasting SOM. Thus, the model averaging weights 
might be used to aggregate the humus building efficiency of 
a substrate into a single value depending on the performance 
of each ensemble member.

In this study the following questions were addressed:

•	 How can soil organic carbon models be applied to incuba-
tion experiments?

•	 How can the humus efficiency of added organic matter be 
expressed with a single parameter based on the results of 
soil organic carbon models?

•	 Does a model ensemble increase the reliability of the qual-
ity assessment for organic amendments?

2  |   MATERIALS AND METHODS

2.1  |  Incubation experiments

In this study, data were compiled from three different incuba-
tion experiments with varying incubation time, soils and in-
cubation temperatures (Table 1). The first two data sets were 
obtained from the Institut für Agrar-und Stadtökologische 
Projekte Berlin (IASP) and are denoted by data1 and data2, 
the experimental setups vary in their incubation times. A 
data set that was already published by Sänger et al.  (2014) 
is denoted as data3 and data4, each with the same substrates 
but with different soils. The third data set was derived from 
the Humboldt University Berlin and is denoted as data5 and 
data6 with different incubation periods.

In total, data from 72 incubated organic substrates in-
cluding plant residues, digestates and manure were analysed 
(Appendix S1). The organic amendments were incubated to-
gether with soil in beakers. The moisture and the tempera-
ture were set to a constant state over the incubation time. In 
each experimental design, the accumulated amount of CO2 
released was measured over the incubation period. Therefore, 
different sampling techniques were applied, see Appendix S1. 
What all methods had in common was that cumulative CO2 
released from the added organic matter (AOM) was differen-
tiated from the soil born CO2 released by reference samples, 
where only soil was incubated without any organic amend-
ments, assuming no priming effects. Based on the amount 
of CO2 C evolved in each substrate, the cumulative amount 
of total evolved C was calculated for each observation over 
the entire incubation period. The CO2 C released from the 
organic substrates was calculated from the difference of CO2 
C released from the samples with and without AOM.
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2.2  |  Carbon models and their application to 
incubation data

In this study concepts of carbon models that follow first-order 
kinetics and are well established on a field scale, namely 
C-TOOL (Taghizadeh-Toosi et  al.,  2014), CCB (Franko 
et  al.,  2011), CENTURY (Parton et  al.,  1987; Parton et al. 
1994), ICBM (Andrén & Kätterer, 1997), RothC (Coleman & 
Jenkinson, 1999) and Yasso (Tuomi et al., 2011) are applied 
to the incubation data. Besides their handling of AOM, they 
differ in the number of conceptual SOM pools, their intercon-
nection and texture dependencies of turnover time as well 
as in the depiction of environmental influences on turnover. 
A detailed description of each model is beyond the scope of 
this paper, but the adaptations made to apply the models to 
the incubation data are described in the Appendix S1. Here it 
should be noted that the original model concepts are adapted 
to meet the requirements of modelling the incubation data. 
The adapted model concepts are referred to by their name with 
asterisk (*).

In order to apply the models to the incubation data with 
a unique algorithm and identical data structure, they were 
reduced to their core concept, as described in Appendix S1. 
Assuming optimal water supply during the incubation period, 
only the respective temperature and soil texture functions 
(when available) were considered. For each model, a maximum 
of two AOM related parameters were fitted. All other model 
parameters were left constant at the values according to the 
individual model publications. Following Sierra et al. (2012), 
each model was implemented as a set of ordinary differential 
equations in R (R Core Team, 2019) that were solved using the 
deSolve package (Soetaert et al., 2010). The parameter fitting 
was accomplished by using the Levenberg-Marquardt algo-
rithm implemented in the nls.lm function from the R package 
minpack.lm (Elzhov et al. 2016). The optimized parameters 
are described in Table  2 for each soil carbon model for the 
observed cumulative net CO2 production from AOM.

2.3  |  Evaluating the substrate quality in 
terms of humus efficiency

For a clear differentiation, italic miniscule is used to describe 
the original model pool names, whereas the concept applied 
here with more generalized pools to determine the humus ef-
ficiency are denoted with capital letters. AOM is defined as 
the substrate before incubation. FOM is denoted as the part of 
the substrate that still has the properties of AOM before mi-
crobial turnover and humus (HUM) that integrates all SOM 
pools after microbial turnover for a given time t.

(1)HUM t =
∑
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If a model does not include an explicit FOM pool, the most 
dynamic pool with the lowest turnover time is considered as 
FOM, this accounts for CENTURY, RothC and Yasso. Some 
substrates, especially manure, are subject to microbial turn-
over even before the material is added to the soil. Therefore, 
in several model concepts, a part of AOM is directly trans-
ferred to HUM without passing a FOM pool.

The models used to express the quality of AOM as matter 
transformation into SOM with two general approaches:

•	 Distribution: initial partitioning from AOM to one or two 
model pools

•	 Transformation: efficiency for production of HUM

In the first case, at the beginning of the incubation ex-
periment, a fraction or the total AOM is allocated between 
a FOM and SOM pool according to the structure of the 
specific model. In the second case, SOM pools are built up 
continuously.

During the simulation of an incubation experiment each 
model predicts the evolution of AOM into a designated FOM 
pool, one or more SOM pools and of course the amount of 
mineralized carbon (CO2).

The data used represent the difference of CO2 evolution 
between a treatment (soil + substrate) and the control ves-
sel (soil only). In order to represent the net-mineralization, 
priming effects were neglected and each model was initial-
ized with empty SOM pools that will fill up according to 
the individual model procedures. The amount of C which is 
lost from the added substrate (AOM in Equation 2) during 
the incubation, is transferred into several SOM pools or is 
released as CO2:

As mentioned above, the efficiency to build up HUM 
has to be quantified from two components. The first one is 

the quota (q) of added C that is immediately allocated to the 
SOM pools at the beginning of the incubation.

This reduces the amount of FOM for further decomposi-
tion to (1-q)*AOM.

The second component represents the dynamic transfor-
mation from FOM to HUM and is calculated as the relation 
between the rate of HUM production (dHUM) and the rate of 
FOM decomposition (dFOM). The sum of both components 
results in the humus building efficiency parameter EHUM:

For sufficiently small time steps the changes of HUM and 
FOM can be calculated with a negligible loss of SOM-C to 
CO2:

For all 72 substrates, the variable parameters of each 
model were fitted to find the best agreement between ob-
served and predicted CO2 production. The obtained model 
parameters were then used to model the CO2 mineralization 
for small time steps of 10–4 d. In this way, EHUM was calcu-
lated with each model for every substrate.

2.4  |  Model averaging and assessment

During the optimization for some models, the optimized pa-
rameters adjoin their thresholds for certain substrates. In this 
case, the models often insufficiently fit the data. To minimize 

(2)AOM − FOM t =
∑

i=1 . . p

SOMi t + C
C02

t

(3)q =
HUM (0)

AOM

(4)EHUM = q + max

(
dHUM (t)

dFOM (t)

)

∗ (1 − q)

(5)dHUM (t) = (HUM (t) − HUM (t −Δt)) ; t > 0

(6)dFOM = (FOM (t) − FOM (t −Δt)) ; t > 0

Model
Considered F pool 
of the model AOM assessment

Fitted 
parameters Min/max

C-TOOL fom Distribution
Transformation

fhum ≈0/1

kfom 0/10

CCB aom Transformation k10 0/0.5

k12 0/2.5

CENTURY m Distribution
Transformation

flig 0/999

kstr 0.24/4.8

ICBM y Transformation k10 0/0.3

k12 0/3

RothC rpm Distribution fhum 0.252/0.98

Yasso w Distribution pw 0/1

T A B L E  2   Overview of the models used 
and the fitted parameters; min/max describes 
the set thresholds for the parameters, the 
min value is numerically never truly = 0; 
FOM denotes fresh organic matter and 
AOM denotes added organic matter, for a 
description of the pools or the parameters 
see Appendix S1 or the publications
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the effect of parameters at their thresholds and to compensate 
individual weaknesses, the models were aggregated into an 
ensemble. Therefore, a model averaging method in analogy to 
the proposal of Bates and Granger (1969) as described by Diks 
and Vrugt (2010) was applied, but instead of the variance, the 
mean squared error (MSE) was used to calculate the weights 
(wi,s). With this method, models with the highest squared pre-
diction error get the lowest weight with respect to the dispro-
portional sensitivity to larger errors. For each combination of 
model i and substrate s the weight wi,s was calculated:

where n denotes the number of models within the ensemble.
As performance measure of the incubation fit the root 

mean square error (RMSE) was used since it has the same 
unit. The individual model results were compared with the 
ensemble prediction in order to evaluate the ensemble per-
formance to improve the prediction of the incubation data. 
Further on, the computed weights were applied to aggregate 
the model specific EHUM values for each substrate to obtain 
EHUM as a weighted ensemble value.

A model with a high weight for a substrate could provide 
the same information as others with lower weights, which is 
why another 6 ensembles were calculated, omitting one of the 
models each time. Afterwards the difference between EHUM 
over all models and EHUM with exclusion of the model i was 
calculated to get the influence of each model on the ensemble 
EHUM.

3  |   RESULTS

3.1  |  Model fitting and model performance

It is possible to adapt the concepts of the used models to the 
incubation data and to parameterize the underlying substrates. 
Nevertheless, the quality of the model fit varies between 
models and substrates due to the characteristics of the incuba-
tion process. However, each model performs best in terms of 
minimizing the RMSE for at least one substrate. Some mod-
els have explicit incubation trends (e.g. rapidly decompos-
able or slowly decomposable substrates) where they perform 

(7)w i,s =
1∕MSEi,s

∑
n
j=1

1∕MSEj,s

(8)influence model=i =
|
|
|
Ehum(1,..,6) − Ehum (1,..,i−1,i+1,..,6)

|
|
|

F I G U R E  1   Example of model results for the cumulative CO2 release with three different substrates, (a,d) digestate (ID: 18), (b,e) slurry (ID: 
22), (c, f) crop residue of sorghum (ID: 54) , see Appendix S1 for ID
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superior to other models. Figure 1 shows three substrates, a 
digestate with a slow carbon mineralization, slurry with an 
intermediate mineralization and crop residue of sorghum 
with a fast mineralization. It is shown that some models have 
difficulties with stable substrates (Figure 1a,d) while others 
struggle with easy decomposable substrates (Figure 1c,f) and 
most models fit substrates with an intermediate mineraliza-
tion sufficiently.

C-TOOL* fits the incubation data best when the measured 
mineralization rate reaches a constant state (Figure 1a). For sub-
strates where the mineralization still rises continuously at the 
end of the incubation period, C-TOOL* fits the incubation data 
worse compared to other models (Figure 1b). Due to the combi-
nation of a distribution and transformation approach during the 
AOM turnover, C-TOOL* is able to model highly decomposed 
organic matter like digestates and rotten yard manure.

The model performance of CCB* is also relatively robust 
but, the model reaches its limits with highly decomposed 
AOM, since its AOM turnover is solely based on an effi-
ciency approach (Figure 1a).

CENTURY* is challenged by strong mineralization rates 
at the beginning of the incubation and the approximation to 
the steady state, but works better on easy decomposable sub-
strates (Figure 1a,b).

ICBM*, on the other hand performs best when C min-
eralization is rising fast at the beginning of the incubation 
(Figure 1f), but also lacks the ability to simulate a stagnat-
ing C mineralization due to the efficiency approach of AOM 
turnover (Figure 1d).

Initially, RothC* predicted the mineralization dynam-
ics satisfactorily, but with advanced incubation time the 
predictions become almost linear (Figure 1e,f). Therefore 
substrates that show a pronounced saturation are not well 
represented.

Yasso* performs well compared to other models, when 
applied to highly decomposed materials (Figure  1d) like 
rotten farm yard manure or digestates. Due to the pre-
distribution of FOM into the defined HUM pool, however, 
Yasso* lacks the ability to simulate easily decomposable 
AOM (Figure 1f).

During optimization each model had reached its param-
eter limitation at least once. In this case, the model fits are 
deficient and the incubation data is not well represented 
(Figure 1). Relying solely on one model may, therefore, lead 
to an under- or overestimation of the incubation data.

3.2  |  Model specific diversity of EHUM

Figure  2 shows the distribution of calculated EHUM val-
ues for each model. In general, it shows very well how all 
model concepts designate high EHUM values to already 
pre-composed materials such as manure and digestates and 
low EHUM values to plant residues. But the model concepts 
differ in their overall conception of EHUM. Models such as 
C-TOOL*, CENTURY*, RothC*, and Yasso* have a lower 
threshold of EHUM unequal to 0 (Figure 2), where the mini-
mum EHUM value is equivalent to the parameter describing 
the flux of the chosen FOM pool to CO2. This parameter is 
texture dependent for C-TOOL* and RothC*, which leads to 
a slight shift in the possible flux from FOM to CO2, to be 
observed by C-TOOL* (Figure  2), where the EHUM values 
align at a lower threshold, although with less clay content the 
values would be even lower (red line).

Model concepts without an AOM distribution, like CCB*, 
CENTURY* and ICBM*, lack the ability to fit highly decom-
posed substrates adequately with fitted parameters adjoin-
ing the parameter thresholds. This leads to an insufficient 

F I G U R E  2   EHUM values for each 
model and substrate, line: model specific 
thresholds of EHUM considering texture 
dependency, RYM: rotten yard manure, 
DIG: digestate, FYM: fresh yard manure, 
SL: cattle slurry, RF: fine roots, LI: litter, 
CR: crop residue, RS: coarse roots, classes 
don´t consider material composition for 
example different plant residues
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representation of the incubation data and results in EHUM val-
ues of 1, even though more resilient substrates theoretically 
exist (like peat). In this case, the max EHUM is limited by the 
model structure.

Furthermore, the aggregation of all SOM pools into a 
HUM pool causes for RothC* information loss for high EHUM 
values. The optimized parameter fhum shifts C from rpm to 
hum for values higher than 0.772, but since both pools are 
considered as HUM pool EHUM will reach its maximum at the 
parameter value fhum = 0.772 (Dechow et al., 2019).

Only C-TOOL* and Yasso* have not adjoined the upper 
threshold of EHUM whereas CCB*, ICBM* and RothC* have 
not adjoined their lower EHUM threshold within the analysed 
substrates. This demonstrates that each single model has its 
strength and weaknesses with regard to the substrates anal-
ysed due to model structure and the intended purpose of the 
model. Nevertheless from each model concept follows a sim-
ilar EHUM value for a given substrate, with rotten yard manure 
and digestates as substrates with the highest humus efficiency 
and plant materials (except fine roots) with the lowest humus 
efficiency (Figure 2).

3.3  |  Ensemble performance

The averaging method applied leads to an overall robust per-
formance of the ensemble in displaying the incubation data. 
Compared with the single models, the ensemble scores 32 
times the lowest RMSE for the underlying substrates and 
never has the highest RMSE compared to a single model. 
The average RMSE over all 72 substrates was calculated, 
which is for C-TOOL* = 2.39, CCB* = 2.48, CENTURY* 
= 4.59, ICBM* = 4.30, RothC* = 4.11, Yasso* = 3.62, 
ensemble = 1.92.

Furthermore, the calculated weights were applied to the 
EHUM value each model supplies for a substrate. The average 
weight of the ensemble EHUM value, is compiled out of the 
analysed 72 substrates is, C-TOOL* = 28.4%, CCB* = 28.7%, 
CENTURY* = 7.9%, ICBM* = 13.3%, RothC* = 10.3%, 
Yasso* = 11.4%, which demonstrates that every model used 
contributes to the ensemble EHUM values.

Since the EHUM value varies between models, the influ-
ence of a model on the ensemble EHUM for each substrate 
was calculated. As a result one model was omitted and a new 
ensemble EHUM value was calculated, without the regarding 
model. The effect that the omission of one model has on the 
ensemble EHUM calculation is shown in Figure 3. The most 
influential model for the ensemble EHUM value compilation is 
C-TOOL*, followed by CCB*, ICBM*, CENTURY*, Yasso* 
and RothC*. Rather than the fitting performance, as described 
before, the information that one model provides to the EHUM 
value and the information that one model concept provides 
which is redundant and can be compensated by other mod-
els is shown in Figure 3. The most influential model for the 
ensemble EHUM value compilation is C-TOOL*, followed by 
CCB*, ICBM*, CENTURY*, Yasso* and RothC*. The aver-
age divergence of EHUM for one substrate, occurring when 
one model is left out of the ensemble EHUM calculation, is for 
C-TOOL* = 2.91%, CCB* = 1.42%, CENTURY* = 0.749%, 
ICBM* = 1.131%, RothC* = 0.429%, Yasso* = 0.659%, indi-
cating that this is a rather robust concept.

3.4  |  Humus efficiency of organic substrates

For a practical application, the ensemble EHUM concept with 
model averaging was applied to substrate classes. The classes 
were aggregated by their material origin, while differences 
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in species for plant material and composition among diges-
tates were not taken into account. Figure 4 demonstrates the 
weighted EHUM values for different substrate types. Rotten 
yard manure and digestates show the highest EHUM values 
followed by fine roots. Untreated animal faeces like slurry 
and yard manure have medium EHUM values whereas plant 
materials like coarse roots, crop residues and litter show the 
lowest EHUM values and cannot be distinguished statistically.

4  |   DISCUSSION

4.1  |  Carbon model adaptation to 
incubation data

Despite being developed for field application, the chosen 
model concepts were applied successfully to the incubation 
data while preserving the core concept of the models under 
the application of the same algorithm and data structure. 
Nevertheless, some models can be better adapted to the 
incubation data than others due to model complexity and 
the model structure. This especially accounts for the han-
dling of AOM, where a higher flexibility was required to 
deal with a bigger variety of substrates as by some models 
intended.

Commonly in incubation studies the incubation data gets 
analysed with some sort of regression where the results are 
presented as mineralization in per cent or as amount of miner-
alized C over the incubation time (Sänger et al., 2014). Those 
regressions are not transferrable to other substrates and serve 
only a descriptive purpose. Rather than developing models 
to predict the incubation data, the here used models are al-
ready successfully used in field studies and most parameters 

are derived from field experiments. This gives the models a 
high credibility, as well as involving more sophisticated pool 
interactions and SOC processes. Furthermore, a maximum of 
two parameters describing the decay were optimized thereby 
minor equifinality is expected compared to other approaches 
(Tang & Riley, 2020).

As a further advantage of using SOM models for incuba-
tion, the results from the model fitting can be used to trans-
fer observations from incubation experiments to field scale. 
Thus the calibration results for models on field scale can be 
validated and possibly improved.

4.2  |  Model and ensemble performance

The method applied for model averaging considers the results 
of model fits to the cumulative CO2 released, giving higher 
weights to models with a lower MSE. The MSE is sensitive 
to larger errors due to the squaring, therefore the influence of 
models with high prediction errors gets minimized.

The model averaging leads to a better prediction accuracy 
and the ensemble has the lowest RMSE for 32 substrates, 27 
times the second lowest, 11 time the third lowest and two 
times the fourth lowest RMSE. Also the average RMSE over 
all 72 treatments demonstrates that the ensemble is more 
robust in predicting incubation results than a single model 
concept and that some model concepts don't vary as much as 
others in their prediction accuracy.

In hydrological and meteorological forecasting, model 
ensembles are a common tool, to reduce model uncertain-
ties (Li et al., 2017) whereat this technique is not fully es-
tablished in SOC modelling yet. A recent study by Riggers 
et al. (2019) successfully used the same model compilation 

F I G U R E  4   Ensemble E
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like this study in an ensemble approach on a field scale. In 
this study the ensemble members were not weighted, rather 
the combination of models and different initialization 
processes were reduced to minimize the prediction error 
and to find a robust ensemble. The application of several 
models as an ensemble can help to balance the prediction 
errors of the individual models which result from the spe-
cific structure of their embedded processes, as well as from 
their individual parametrization or scope and the scale the 
models were developed for (Martre et al., 2015; Tebaldi & 
Knutti, 2007).

4.3  |  Concept of EHUM

In this study a method addressing the humus building effi-
ciency of AOM is presented, that evaluates the CO2 miner-
alization of AOM and then allows to draw conclusions about 
the substrate quality. Several carbon models were fitted to 
the cumulative mineralization and the resulting pool dynam-
ics of each model was used to evaluate the substrate quality. 
The obtained EHUM value describes the efficiency of a sub-
strate to generate new humus with a time independent metric 
that considers the incubation temperature during calculation, 
which allows the comparison of incubation experiments with 
different time spans and different incubation temperatures. 
Nevertheless a certain incubation period is required for the 
models to predict the incubation trend. There are several 
other methods which describe the humification processes like 
the E4/E6 ratio which is determined by the optical density of 
humic and fulvic acids, the Humification Index (HI) and other 
methods which mostly rely on chemical and physical prop-
erties of the substrates (Klavins et  al.,  2008). Additionally 
there exist also field experiments in which the application 
of organic substrates is compared to a control plot with no 
application of organic substrates (Kätterer et al., 2011). The 
focus of the presented approach is based on the incubation 
curve characteristics and the behaviour of SOM pools. In 
contrast to chemical analysis, EHUM also considers microbial 
turnover and incubation experiments are less costly and time 
consuming than field experiments. Some of the applied en-
semble members even employ mineralization processes with 
regard to soil properties. Therefore this new concept could be 
a valuable addition to existing methods.

Each model employed represents a slightly different un-
derstanding of the soil processes involved in soil carbon dy-
namics, which is why their model structure and interpretation 
of SOM generation varies. Aggregating several SOM pools 
into a single, conceptional HUM pool influences the EHUM 
value for each model differently. Thus, each model comes to 
slightly different predictions of EHUM. Some models show 
a restricted range for EHUM whereas others are theoretically 
able to display the complete expected scale of EHUM from 0 

to 1. This depends on the model structure and the selected 
approach of only one FOM pool, which was defined in this 
study to be the one with the fastest C turnover.

Based on the robust ensemble performance, the calculated 
weights are not applied in the first place to improve the over-
all prediction, but rather to evaluate the substrate quality in 
terms of the humus building efficiency using a model ensem-
ble. The influence of model concepts, which are not suitable 
for certain substrates, is thereby minimized in the calculation 
of the ensemble EHUM value. The averaging therefore leads 
to a more trustworthy prediction of the C dynamics from the 
incubation data and also prevents over-and underestimation 
of the EHUM value when model parameters reach their limits 
during optimization.

Computing power is hardly a limiting factor and it is pos-
sible to calculate complex models within a very short time. 
Nevertheless it is important to know how much informa-
tion a model contributes to the results of an ensemble and 
if a model can be left out of the ensemble formation. It was 
shown (Figure 3) that every model contributes to the ensem-
ble EHUM value. Within the combination of these six models, 
C-TOOL* has the biggest influence on the ensemble EHUM, 
followed by CCB*, ICBM*, CENTURY*, Yasso* and RothC* 
which can be compensated for the most part by other models. 
Whether a model can be omitted from the ensemble calcula-
tion is within the discretion of the user.

4.4  |  Application of the ensemble E
HUM

The 72 substrates analysed were classified by their origin 
in order to evaluate the EHUM value for practical applica-
tions. The values for each substrate class are in an expected 
order where more mature substrates have a higher EHUM 
and therefore a stronger resilience to microbial depletion 
(Bernal et al., 1998). Ajwa and Tabatabai (1994) found simi-
lar results for the mineralization of organic material in soil. 
Where C of plant material had a half-life between 39 and 
54 days, animal manure had a half-life which ranged from 
37 to 169 days, and for sewage sludge the half-life was 39 
to 330 days.

EHUM characterizes the humus efficiency of a substrate 
in one single value and is therefore easy to interpret. All ma-
ture substrates and animal faeces show a higher humus build-
ing efficiency compared to plant materials except fine roots 
(Figure 4). Digestates or animal faeces on the other hand, un-
dergo microbial turnover either in the digestive system and/
or in a bioreactor and therefore, the substrate contains more 
fungal and bacterial necromass as well as decomposition 
products, which are considered to be a main component of 
stable SOC (Kallenbach et al., 2015; Liang et al., 2017). An 
explanation for the higher humus building efficiency of fine 
roots compared to the other plant materials analysed, can be 
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found in Rasse et al. (2005), who pointed out, that the high 
resilience of roots against carbon turnover is due to the phys-
icochemical protection caused by the steady contact of roots 
to soil particles.

Alongside the chemical analysis of organic amendments 
like the C/N ratio, Lignin content etc. the EHUM value delivers 
an easy to interpret assessment to evaluate the quality of the 
organic amendments based on their behaviour in soils under 
controlled conditions.

For field management that aims at retaining or increas-
ing carbon stock the ensemble EHUM value can deliver 
valuable information about management options con-
cerning the choice of organic amendments. Knowing the 
humus efficiency, the quantity of newly applied organic 
amendments can be adjusted to cover the C demands and to 
conform to possible restrictions in terms of carbon dioxide 
mitigation goals. An organic amendment with lower EHUM 
value could be replaced by one with a higher EHUM value, 
which needs a lower application rate to reach an equal soil 
carbon stock. Nevertheless such a decision is complex and 
other nutrients like nitrogen and phosphorus have to be 
considered as well.

5  |   CONCLUSIONS

This study demonstrates that carbon models developed 
for field scale with different target environments and time 
scales are a suitable tool to predict carbon incubation data, 
derived from laboratory experiments. The pool structure 
of those models can be used to derive information about 
the efficiency of a substrate to build humus and be dis-
played in a single value which is easily comparable, which 
is not possible in the same manner with statistical models. 
Nevertheless some adaptations to the model concepts had 
to be made to cover the wide scope of organic amendments. 
Furthermore, substrate and model specific parameters de-
rived from incubation experiments can be used to improve 
modelling of SOC turnover at field scale with regard to 
the modifications of the model concepts made in this ap-
proach. This could be a cost and time efficient alternative 
to long term field experiments and could give insights 
into the dynamics of organic amendments which are not 
fully analysed yet. The presented approach could help to 
close the gap between laboratory experiments under con-
trolled conditions and field applications where much more 
influential factors need to be considered to evaluate the 
substrate quality. Furthermore, every model incorporates 
different mechanisms, with a different scope of applica-
tion. This diversity cannot be covered by a single model 
and therefore, ensemble approaches can be a useful tool 
for future SOC modelling challenges.
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