
1.  Introduction
Detailed modeling of subsolidus mantle convection is important for studying how terrestrial planets like 
Mars evolve over billions of years. Subsolidus mantle convection is governed by the conservation equations 
of mass, momentum, and energy appropriate for a highly viscous fluid (the mantle viscosity is of the order 
of ∼1020 Pa s) with negligible inertia (e.g., Breuer & Moore, 2015, and references therein). These non-lin-
ear partial differential equations are typically solved numerically using fluid dynamics codes (e.g., Hüttig 
et al., 2013; Kronbichler et al., 2012; Tackley, 2008; Zhong et al., 2008).

Model parameters and initial conditions, which are inputs to these simulations, are often poorly known 
and unconstrained. However, certain outputs of the simulations can be processed to arrive at “observables”. 
Indeed, several quantities, which can be inferred from remote or in-situ observations, are tightly related to 
the thermal evolution of the interior. Measurements of topography, gravity, magnetic and seismic fields, 
surface spectra, and surface images, as well as meteoritic data can all be employed to infer a series of funda-
mental constraints for the evolution of the interior (see Tosi & Padovan, 2020, for a review). These include 
crustal and elastic lithosphere thickness, duration and timing of volcanism, surface heat flux, amount of 
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6,130 two-dimensional simulations of the thermal evolution of Mars' interior. We quantify the possibility 
of constraining a parameter using the log-likelihood value from the MDN. Reference viscosity can be 
constrained to within 32% of its entire range (1019 − 1022 Pa s), when all the observables are available: 
core-mantle-boundary heat flux, surface heat flux, radial contraction, melt produced, and duration of 
volcanism. Furthermore, crustal enrichment factor (1–50) can be constrained, at best, to within 15%, and 
the activation energy (105 − 5 × 105 J mol−1) to within 80%. Initial mantle temperature can be constrained 
to within 39% of its range (1,600–1,800 K). Using the full present-day temperature profile or parts of it 
as an observable tightens the constraints further. The activation volume (4 × 10−6 − 10 × 10−6 m3 mol−1) 
cannot be constrained. We also tested different levels of uncertainty in the observables and found that 
constraints on different parameters loosen differently, with initial temperature being the most sensitive. 
Finally, we present how a joint probability model for all parameters can be obtained from the MDN.

Plain Language Summary  The mantle of rocky planets like Mars behaves like a highly 
viscous fluid over geological time scales. Key parameters and initial conditions for the non-linear partial 
differential equations governing mantle flow are poorly known. Machine Learning (ML) can help us avoid 
running several thousand computationally expensive fluid dynamic simulations each time to determine if 
an observable can constrain a parameter. Using an ML approach, we invert a set of synthetic observables 
such as present-day surface heat flux, duration of volcanism and radial contraction to constrain important 
parameters controlling the long-term evolution of the planet's interior, such as the reference mantle 
viscosity or the partitioning of radiogenic heat sources between mantle and crust. We demonstrate that 
by training a probabilistic ML algorithm on the data and applying it, we can quantify the constraints on 
parameters. This provides a high-dimensional framework for analyzing inverse problems in geodynamics.
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accumulated radial contraction, surface concentration of radioactive elements, or evolution of the mantle 
potential temperature. To some degree, all of these quantities are currently available for Mars (see Section 5 
for more details). However, in this work, due to limitations in the physics accounted for by our forward 
models, we will only consider synthetic observables, that is, quantities that are obtained from our forward 
models.

The inverse problem of constraining mantle convection parameters from observations is ill-conditioned due 
to missing or poor-quality observables as well as due to non-linearity. Hence, such studies in geodynamics 
are typically formulated in a probabilistic framework. In principle, standard Markov Chain Monte Carlo 
(MCMC) methods could be used to perform the inversion (see Sambridge & Mosegaard, 2002 for an over-
view). However, these require sampling several forward models, a task that can become impractical or even 
unfeasible when the forward evaluations are computationally expensive.

Attempts to address this limitation have ranged from modifying the method (e.g., Sambridge, 1999a, 1999b) 
to completely bypassing it. An example of the latter was Käufl et al. (2016) proposing Mixture Density Net-
works (MDNs, Bishop, 1994) as an alternative. They noted that while MDNs provide a more conservative 
estimate of the posterior probability than MCMC methods, they are computationally more efficient since 
the inversion is carried out solely using a set of forward models calculated in advance. Meier et al. (2007) 
used MDNs to invert surface waves data for obtaining constraints on crustal thickness. Subsequently, MDNs 
have been employed in several geodynamic studies. For example, de Wit et al. (2013) inverted body-wave 
travel-times to constrain the Earth's radial seismic structure using MDNs. Atkins et al. (2016) showed that 
mantle convection can also be investigated as a pattern recognition problem. They inverted reduced rep-
resentations of 2D temperature fields of simulations of the Earth's mantle to constrain convection param-
eters such as reference mantle viscosity, lithospheric yield stress and initial temperature. They argued that 
under the assumption of smooth probability distributions between training samples, MDNs need signifi-
cantly fewer simulations than MCMC methods for constraining mantle convection parameters. Baumeister 
et al. (2020) used MDNs to predict the distribution of the possible interior structures of extrasolar planets 
for given mass and radius.

Some other examples of Machine learning (ML) studies include Baumann  (2016), who approached the 
problem of constraining the dynamics and rheology of the lithosphere in collision zones using an unsu-
pervised classification algorithm called self-organizing map (Vesanto & Alhoniemi,  2000) and Shahnas 
et al. (2018), who used support-vector machines to estimate the magnitude of density anomalies from man-
tle temperature fields (see Morra et al., 2020, for a recent review on the application of data science tech-
niques in geodynamics).

The ability to learn complex non-linear mappings using ML methods can also be used to make MCMC in-
versions computationally feasible. Recently, Magali et al. (2020) retrieved temperature and viscosity fields 
generated with a numerical mantle convection model by inverting surface wave dispersion curves. The in-
version was carried out using MCMC random walks, which sample from a forward surrogate model based 
on Neural Networks (NN).

NN-based forward surrogates have also been used in other mantle convection studies. Shahnas and Pys-
klywec (2020) showed that NNs can be used for predicting the heat flux of steady-state simulations given 
parameters such as Rayleigh number and variable physical processes such as mode of convection. Agarwal 
et al. (2020) used an NN as a forward surrogate model to study Mars' thermal evolution. They showed that 
the NN is able to predict the entire 1D temperature profile of the mantle at any time in the evolution, from 
0 to 4.5 Gyr, with an average accuracy of 99.7%, given five key parameters: reference viscosity (ηref), activa-
tion energy (E), activation volume (V) of a temperature- and pressure-dependent diffusion creep rheology, 
crustal enrichment factor of radiogenic elements (Λ) with respect to a given bulk silicate abundance, and 
initial mantle temperature (Tini).

We now revisit the data set and the same five parameters used in Agarwal et al. (2020) and formulate this 
study as an inverse problem. Using MDNs, we study the extent to which the thermal evolution of a Mars-
like planet can be constrained. In particular, we systematically isolate the degree to which a parameter can 
be constrained using different synthetic observables (i.e., observables generated by the forward model). We 
also quantify the effect of uncertainty in these observables on the ability to constrain different parameters. 
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The approach is shown in Figure 1. We start the study by randomly generating several values of five pa-
rameters and feeding these to two dimensional (2D) forward simulations performed with our finite-volume 
mantle convection code GAIA (Hüttig et al., 2013) on a quarter-cylindrical grid. We then process the 2D 
temperature fields output by GAIA and laterally average them to obtain one dimensional (1D) temperature 
profiles. These temperature profiles, which are reduced representations of the full 2D fields, can be pro-
cessed even further to arrive at observables such as heat flux at the surface, core-mantle boundary (CMB) 
temperature, and elastic lithospheric thickness. We then employ MDNs to build an inverse mixture model, 
which learns to constrain the parameters directly from the processed, low-dimensional observables.

An obvious advantage of using the inverse approach is that we can remove any prediction inaccuracies 
in the observables (such as surface heat flux derived from the predicted temperature profile) from the ML 
surrogate and instead, directly use the data from the numerical simulations. The biggest advantage, though, 
is that we can directly test different numbers and combinations of observables as well as different sections 
of the temperature profiles to search for observational constraints on parameters governing mantle convec-
tion. With respect to Agarwal et al. (2020), to obtain a more balanced data set across the entire range of the 
various parameters, we re-ran the simulations with a higher grid resolution (300 × 392 nodes on a quarter 
cylindrical grid instead of 200 × 263). The higher resolution allowed us to overcome some numerical insta-
bilities arising in cases where the parameters led to extremely vigorous convection.

The present work builds upon the study of Atkins et al. (2016), extending it in several ways. We study if 
and how well the thermal evolution of a stagnant-lid planet like Mars (rather than a mobile-lid planet like 
the Earth) can be constrained using synthetic observables at present-day, after 4.5 Gyr of evolution (rather 
than after up to 3 Gyr). Also, we deliberately consider observables that could potentially be measured for a 
Mars-like planet, instead of a reduced representation of the entire temperature field. Depending on the size 
of such reduced representation, it can still contain rich information about the convection structures, while 
not being realistically observable. This can potentially lead to overly optimistic constraints on parameters, 
especially for planets with sparser observational constraints than Earth. Furthermore, we demonstrate how 
to quantify constraints on parameters, instead of visually inspecting the over 1,000 cases tested in this paper. 
Finally, we show how an MDN can be modified to obtain the joint probability distribution of all parameters 
instead of the marginal probability.
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Figure 1.  Illustration of our strategy for using MDNs to study constraints on Mars' thermal evolution. (a) We randomly generate several values of the following 
parameters: reference viscosity (ηref), activation energy (E) and activation volume (V) of diffusion creep, crustal enrichment factor (Λ) with respect to a given 
bulk composition of radiogenic elements, and initial temperature (Tini). (b) These are used as inputs to forward simulations run with the mantle convection 
code GAIA (Hüttig et al., 2013). (c) We then process the 2D temperature fields output by GAIA and (d) laterally average them to obtain 1D temperature profiles. 
(e) These temperature profiles, which are a reduced representation of the full 2D field, can be processed even further to arrive at observables such as heat flux at 
the surface, core-mantle boundary temperature, radial contraction, melt produced, elastic lithospheric thickness, and duration of volcanism. (f) We then train 
an MDN to build an inverse mixture model, which learns to constrain the parameters directly from the observables. 1D, one dimensional; 2D, two dimensional; 
MDNs, Mixture Density Networks.
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The outline of the paper is as follows. In Section 2, we explain the setup of the simulations used to gen-
erate the data. In the same section, we also visualize the data set and the processed observables. Then, in 
Section 3, we briefly present the basics of MDNs. In Section 4, we explain how we train our MDNs and 
define the degree to which parameters can be constrained. In the following subsections, we use this metric 
to explore which observables need to be measured and the required precision to infer different parameters. 
We also demonstrate that we have enough data for this study. In addition, we show, as a proof of concept, 
the potential of this procedure to search for possible observational signatures of parameters by looking 
at different parts of the temperature profiles. We also show how MDNs can be trained to obtain the joint 
probability distribution on all five parameters. Finally, in Section 5, we discuss in detail the next steps for 
inverting “real” data for Mars and then conclude by outlining the main findings and some interesting fol-
low-ups to this work.

2.  Data Set
2.1.  Mantle Convection Simulations for a Mars-Like Planet

The data required for training MDNs comes from a subset of 10,080 evolution simulations for a Mars-like 
planet. A detailed description of the setup of the simulations is presented in Agarwal et al. (2020), where we 
applied ML to the same data set, albeit for forward 1D surrogate modeling. Here, we list the main features 
of the mantle convection model as well as some important quantities in Table 1.

We treat the mantle as a viscous fluid with infinite Prandtl number and Newtonian rheology. Given the 
low dissipation number for Mars (∼ 0.13), we assume the extended Boussinesq approximation (e.g., King 
et al., 2010). The thermal expansivity and thermal conductivity are pressure- and temperature-dependent 
(Tosi et al., 2013a). This is also the case for the viscosity, which is calculated using the Arrhenius law for 
diffusion creep (Hirth & Kohlstedt, 2003) as follows

 
  

   
 

ref
ref

ref
( , ) exp ,E PV E P VT P

T T
� (1)

where T and P are temperature and pressure, ηref is the reference viscosity attained at reference temperature 
and pressure Tref = 1600 K and Pref = 3 GPa, respectively, E is the activation energy, and V the activation 
volume. All simulations are initialized with a profile consisting of a constant mantle temperature Tini sup-
plemented by an upper and lower 300-km-thick thermal boundary layer and a small random perturbation 
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Parameter Value Unit

Initial temperature difference between core and surface 2,000 K

Surface temperature 250 K

Core density 7,000 kg m−3

Mantle density 3,500 kg m−3

Core specific heat capacity 850 J kg−1 K−1

Mantle specific heat capacity 1,200 J kg−1 K−1

Reference thermal conductivity 4 W m−1 K−1

Reference thermal expansivity 2.50 × 10−5 K−1

Outer radius of the core 1,700 km

Planetary radius 3,400 km

Thickness of the crust 64 km

Reference pressure for viscosity 3 GPa

Reference temperature for viscosity 1,600 K

Table 1 
Fixed Parameter Values Shared by all Simulations as set by Plesa et al. (2015)
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to initiate convection. The mantle evolves in time due to the cooling core and decay of radiogenic elements. 
The bulk abundances of radiogenic elements, based on Wänke and Dreibus (1994), are modified via a crus-
tal enrichment factor Λ, under the assumption that a crust of a fixed thickness (dcr = 64 km) formed very 
early in the evolution (Nimmo & Tanaka, 2005). Partial melting further depletes heat-producing elements 
in the mantle and affects the energy balance as detailed in Padovan et al. (2017). Finally, we complete the 
model by adding two phase-transitions in the olivine system using the standard phase-function approach 
of Christensen and Yuen (1985).

The simulations were run using the finite-volume code GAIA (Hüttig et al., 2013) on a 2D quarter-cylindri-
cal domain with a grid resolution of 300 radial layers and 392 cells per layer. We considered all boundaries 
to be impermeable and free-slip. We assumed lateral walls to be insulating (i.e., with a zero heat flux across). 
We kept the surface temperature fixed at 250 K throughout the evolution and let the core-mantle boundary 
temperature evolve according to a standard core-cooling condition (e.g., Stevenson et al., 1983). Running 
several single-core simulations in parallel, we ended up generating over 10 TB of data after 1.7 million CPU 
hours.

2.2.  Calculation of Observables

The output of the numerical simulations (velocity, temperature, viscosity, etc.) at any given time t can be 
post-processed to arrive at certain quantities of interest, some of which might be directly or indirectly ob-
servable. We consider here the laterally averaged temperature field, resulting in a 1D profile T(r, t). Several 
quantities can be derived from T(r, t) such as surface heat flux Qs and CMB heat flux Qc:

 
 c c

c c
( , ) ( Δ , )( ) ,

Δ
T R t T R R tQ t k

R� (2)

 
 p p

s s
( Δ , ) ( , )

( ) ,
Δ

T R R t T R t
Q t k

R� (3)

where, kc and ks are the thermal conductivity at CMB and at surface, respectively, Rc and Rp are radii of 
the core and planet, respectively, and ΔR is the radial distance between two neighboring shells (uniform 
throughout the computational domain). One can also use T(r, t) to calculate the radial contraction of a 
planet (e.g., Grott et al., 2011; Tosi et al., 2013b). We consider the thermally induced radial contraction (and 
expansion) of the core and mantle as a post-processing step:

     
3

2pc
th c c c m2 2 c

p p

1( ) ( ( , ) ( ,0)) ( , )( ( , ) ( ,0)) ,
3

R
R

RR t T R t T R r t T r t T r r dr
R R� (4)

where αm(r, t) and αc are the coefficients of thermal expansion for mantle and core, respectively.

We calculate the elastic lithospheric thickness Te from T(r, t) based on the strength-envelope formalism 
(McNutt, 1984) and the same parameters and equations as used by Grott and Breuer (2010). This is given 
by the depth corresponding to the temperature Te at which the lithosphere loses its mechanical strength, 
that is:




  
  

    


1

e
gas

log ,
ni

i B iQ AT
R � (5)

where Qi, Ai and ni are rheological parameters specific for the crust (assumed to have a diabase rheology) 

and mantle, Rgas is the gas constant, σB is a bounding stress, and   is the strain rate. From Equation 5, we 
compute the mechanical thickness of the crust and mantle De,cr and De,m. The effective elastic thickness is 
then calculated as:
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where dcr is the assumed crustal thickness of 64 km.

We also consider the cumulative amount of the melt produced during the evolution and calculate an equiv-
alent thickness (Dmelt) as well as the total duration of volcanism as two possible observables. Details on how 
the melt volume Vmelt(t) is calculated can be found in Padovan et al. (2017) and Agarwal et al. (2020). The 
equivalent thickness is Dmelt(t) = Rp − Rmelt, where Rmelt can be obtained by solving the following equation:

 
 2 2

melt p melt( ) .
4

V t R R� (7)

It is worth noting that this model is simplified because the heat sources depleted at each time-step due to 
melt extraction are just lost in the current setup, instead of being redistributed into “new” crust. Further-
more, the duration of volcanism tvolc is the last time step at which melt was produced.

For a small number of specific parameter combinations (e.g., a very low reference viscosity and high activa-
tion energy) the iterative solver used by GAIA failed to converge. We filtered out such simulations by setting 
an upper bound for the root mean square of the magnitude of the non-dimensional velocity in the mantle 
urms. We empirically set the filtering criterion at urms ≤ 20,000 to ensure a balance between sufficient accura-
cy and number of lost simulations. 10,040 out of 10,080 simulations satisfied the criterion and are visualized 
in Figure 2 (even though, as we later explain that in this study we only consider the simulations that reached 
the end-time of 4.5 Gyr). The figure shows the evolution of CMB temperature (Figure 2a), mean mantle 
temperature (Figure 2b), CMB heat flux (Figure 2c), surface heat flux (Figure 2d), elastic lithospheric thick-
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Figure 2.  The data set consisting of 10,040 thermal evolution simulations with Mars-like parameters. For all simulations, the panels show the evolution of (a) 
CMB temperature, (b) mean mantle temperature, (c) CMB heat flux and (d) surface heat flux, (e) elastic lithospheric thickness, (f) thermally induced radial 
contraction, and (h) equivalent melt thickness produced. Panel (g) shows the present-day 1D temperature profiles plotted for the 6,130 simulations that could 
be run over the entire 4.5 Gyr of evolution. All the curves in panels a–h are colored by the value of the reference viscosity ηref going from blue (low) to yellow 
(high). 1D, one dimensional; CMB, core-mantle boundary.
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ness (Figure 2e), thermally induced radial contraction (Figure 2f), and cumulative melt produced from all 
simulations (Figure 2h). The “present-day” 1D temperature profiles from simulations that finished are also 
plotted in Figure 2g. All the curves are colored by just one parameter in this figure. As expected, for higher 
reference viscosities, convection is more sluggish resulting in a less efficient heat transfer. Hence, the man-
tle cools more slowly, or even heats up. A lower viscosity, on the other hand, corresponds to more vigorous 
convection as exhibited by cooler temperature profiles with steeper surface heat flux.

It is also evident that while mean mantle temperature, for example, exhibits a color-pattern, elastic litho-
spheric thickness, radial contraction and melt produced show almost no correlation to reference viscosity. 
The colors seem scattered instead of showing a pattern that transitions from low to high values of the 
parameter.

In order to keep the number of computations manageable, we limit our focus to observables that can be 
related to the present-day temperature structure of the mantle. We split the subset of the 6,130 simulations 
that reached the end time of 4.5 Gyr into three parts: training (80%), test (10%) and validation (10%). The 
data set is non-dimensionalized to be between 0 and 1 using the maximum and minimum of each parameter 
and observable. It is common practice in machine learning to ensure that all the parameters are of the same 
order of magnitude for numerical stability of the optimizer. It also makes the error function (Equation 20) 
comparable across different parameters. The non-dimensionalized data set is shown in Figure 3. For each 
parameter in different rows, these synthetic present-day observables are plotted: CMB heat flux (Qc), surface 
heat flux (Qs), radial contraction (Rth), elastic lithospheric thickness (De), equivalent thickness of the cumu-
lative melt produced (Dmelt), and duration of volcanism (tvolc). The degeneracy of the problem is clear from 
the plot. Several ranges of parameters can lead to the same observation. Furthermore, for each parameter, 
in the very last row, 1D temperature profiles at 4.5 Gyr are also plotted for reference. They are colored from 
blue to yellow: from the minimum value of that parameter to its maximum. Parameters like ηref and Λ seem 
to show a stronger pattern, while parameters like Tini seem to show highly degenerate patters.

3.  Mixture Density Networks
In this section, we outline the basics of Mixture Density Networks (MDN). For a more detailed explanation, 
we refer to the seminal paper by Bishop (1994). Consider a simple MDN, like the one illustrated in Figure 4. 
Here, only one hidden layer is shown. However, MDNs can have an arbitrary number of hidden layers. 
The MDN connects inputs o (observables) to outputs p (parameters) via a composition of neuron functions 
organized into multiple layers. Let i and j be indices for neurons of two consecutive layers of the MDN. The 
activation for neuron j in layer h depends on input i from the previous layer:

    
 

,j i ij j
i

a g a w b� (8)

where wij are “weights” that can be learned from the data and g() is the activation function, which allows 
modeling of non-linearities. In this study, we use tanh() as the activation function. Furthermore, bj are “bi-
ases” added to each neuron j in the given layer. They are also learned from the data and give the ability to 
translate the activation function to the left or to the right so that the origin of the activation function is no 
longer fixed at zero.

The problem of finding which parameters satisfy a given observable can be mathematically formulated as 
the conditional probability p (parameters|observables) or p(p|o):

( , ) ( | ) ( ),p p po p p o o� (9)

where, p(o,p) is the joint probability density and p(o) is the marginal probability density of observables. We 
can arrive at the conventional least-square formulation by assuming that the target data has the following 
distribution with a standard deviation σ:

   

          

2
/2 2 1

1 1( | ) exp ( ) p ,
(2 ) 2

c

k kc c k
p Fp o o� (10)
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where c is the total number of components of p. The function Fk is the mean of the target function and since 
it is unknown, it can be modeled by an NN ( , )k o w  from the training set  

1
,

nq q

q
o p , with n examples. One 

can find the optimal values *w   for ( , )k o w , by minimizing the negative log-likelihood:


    

1
ln ln ( | ) ( ).

n
q q

q
p pqp o o � (11)
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Figure 3.  Two-dimensional histograms of the non-dimensionalized present-day observables and the five parameters: 
reference viscosity (ηref), activation energy (E), activation volume (V), crustal enrichment factor (Λ) with respect to a 
given bulk composition of radiogenic elements, and initial temperature (Tini). The corresponding dimensional values 
are: ηref ∈ [1019, 1022] Pa s, E ∈ [105, 5 × 105] J mol−1, V ∈ [4 × 10−6, 10 × 10−6] m3 mol−1, Λ ∈ [1, 50], Tini ∈ [1,600, 
1,800] K. The observables are CMB heat flux (Qc), surface heat flux (Qs), thermally induced radial contraction (Rth), 
elastic lithospheric thickness (De), cumulative melt produced (Dmelt) and duration of volcanism (tvolc). For better 
visualization, the colorscale representing the number of simulations is normalized to each panel and is on a log scale. 
In the last row, 1D temperature profiles are also plotted. Unlike the previous panels, these are colored by the value 
of the parameter in the column: going from blue to yellow, that is, from low to high values of the parameter. 1D, one 
dmensional; CMB, core-mantle boundary.
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Substituting, Equation 10 into 11 leads to an optimization problem, which can be further reduced to

 
     

2

1 1

1 ( , ) p ,
2

n c
q q

k k
q k

o w � (12)

Since this is the only term that depends on weights w, thereby yielding the standard least squares problem. 
( , *)o w , however, approximates the conditional average of parameters given the observables and thus, is 

not suitable for capturing all the possible solutions in an ill-conditioned problem. Therefore, Bishop (1994) 
proposes modeling p (p|o) by a mixture of distributions:

 


 
1

( | ) ( ) ( | ).
m

i i
i

p p o o p o� (13)

Here, m is the number of mixtures, ϕi(p|o) the kernel function representing the conditional density and 
αi(o) the mixing coefficient, such that:



 

1
( ) 1,

m

i
i

o� (14)

which is achieved by using a softmax function on the network outputs 
ip :







 
 1

exp( )softmax( ) .
exp( )

i
i i m

j j

pp
p� (15)

In principle, many choices for the kernel function are possible. However, since theoretically a mixture of 
Gaussian distributions can approximate any given density distribution (Mclachlan & Basford, 1988), we 
consider only Gaussian kernels in this study:


  

    
  

2

/2 2
1 ( )( | ) exp .

(2 ) 2 ( )
i

i c c
i

p op o
o

‖ ‖
� (16)
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Figure 4.  Using a marginal Mixture Density Network (MDNs) (Figure 1f) to constrain different parameters governing 
mantle convection. The input nodes o (observables) are connected to the output nodes p (parameters) via neurons in 
hidden layers. Each connection is quantified by an adjustable weight (w), which is optimized over several iterations 
by back-propagating the error in the prediction of the MDN. In this study, we consider several different “observables” 
as inputs: for example, surface heat flux Qs, elastic lithospheric thickness De, as well as different parts of or the 
temperature profile T. For each parameter in p, say ηref, the network predicts three components per Gaussian: mean μ, 
variance σ and weight α. We maintain a fixed architecture with two hidden layers containing 12 and 6 neurons, and 3 
mixtures. These three mixtures (colored magenta, red, blue) are added to arrive at the combined probability distribution 
(black). We use the marginal MDN to train on only 1 parameter at a time, except in Section 4.5., where we use the joint 
MDN to train on all parameters at once.
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3.1.  The Univariate Case

In the case where we are constraining one parameter at a time (Figure 4), for each mixture i, the marginal 
MDN outputs three quantities: u

ip , 
ip  and 

ip . The mean μi, is taken directly as one of the network outputs:

 i ip� (17)

and variance is

  exp( ).i ip� (18)

Now, the log-likelihood can be calculated as

  


    
  1

ln ln ( ) | ,
m

q q
i i

i

qo p o� (19)

and its negative can be minimized, yielding the error function:

  


      
  1

ln ( ) | .
m

q q
i i

q i

qo p o� (20)

Calculation of derivatives of the error with respect to output parameters (such as 




q

ip


, 




q

ip


 and 




q

u
ip


) can 

be done analytically as shown in Bishop (1994). The error gradient can then be further propagated from 
mixture parameters to the neural network layers using back-propagation (e.g., Rumelhart et al., 1986; Wer-
bos, 1982). For convenience, instead of using analytical expressions, we calculate the necessary derivatives 
using Automatic Differentiation (AD), now offered by several ML libraries. Specifically, we use TensorFlow 
(Abadi et al., 2015), where one only needs to set up the computational graph by defining the MDN archi-
tecture and specifying the cost function. TensorFlow then, takes care of the rest by using AD and one of the 
several already programmed optimizers to minimize the cost function. We use simple gradient descent with 
the Adam optimizer in this study due to the small size of the data set, with a pre-fixed learning rate, which 
controls how large the optimization strides are.

To train and evaluate the performance of the MDNs, we split the data into three parts. Training set: 80% 
of the data is used to train the network, validation set: 10% is used to test different hyperparameters of the 
MDN such as number and size of hidden layers and further make sure the network is not overfitting and test 
set: the remaining 10% is used to evaluate the performance of the trained network and present the results. 
This last subset of the data is helpful in assessing how well the MDN performs, because it is not seen by the 
network at any point in training or development. We use two techniques to prevent over-fitting. First, we 
employ weight-decay by modifying the cost function in Equation 20 as done by Hjorth and Nabney (1999):

   
  

            
    

2
,

1 1 1
ln ( ) | ,

2

m n r
k jq q q

i i
q i j k

w
o p o� (21)

where the second term acts as a Gaussian regularizer and is summed over n training examples and r layers. 
The regularization parameter γ can be thought of as another hyperparameter of the MDN (like the number 
of hidden layers). Second, we only let the network train until the cost function on the test set starts increas-
ing beyond a certain threshold known as early stopping.

3.2.  The Multivariate Case

The marginal MDN illustrated in Figure 4 can be modified to predict the joint probability distributions for 
multiple parameters. Figure 5 shows the construction of a mixture of high-dimensional probability distribu-
tions. For m mixtures and c parameters, the network predicts mixture weights   m , means  m cμ   and 
l non-zeros components of a lower-diagonal matrix  m lσ  , where l is the sum of c diagonal components 
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and 
( 1)

2
c c

 non-diagonal components. So, for example, for three mixtures and five parameters the total 

number of trainable parameters would be 3 × (1 + 5 + (5 (5 − 1)/2 + 5)) = 63.

We construct the covariance matrix in a specific manner to ensure numerical stability during the training 
procedure. Our code uses Multivariate Normal Full Covariance from the TensorFlow Probability library 
(Dillon et al., 2017) to define a mixture of high-dimensional probability distributions during the construc-
tion of the forward graph. This function uses Cholesky decomposition on the covariance matrix Σ, such that

 T,Σ� (22)

where σ is a lower-diagonal matrix. Effectively, we train the MDN to calculate the lower-diagonal matrix σ 
and then use it to compute the covariance matrix. This ensures that Σ is a positive-definite matrix, a require-
ment for Cholesky decomposition. Also, before we multiply σ by its transpose, we take the exponential of its 
diagonal elements to ensure their positivity, as suggested by Kruse (2020).

Then, we can calculate the joint normal distribution ϕi (p|o) for mixture i:

   


 
    

 

T 1
1/2/2

1 1( | ) exp .
2(2 )

i i i ic
i

p o p Σ p
Σ

μ μ� (23)

4.  Results and Discussion
4.1.  Training Results

We test different combinations of observables to train ( , )o w  for one parameter at a time. Figure 6 shows 
how the training works. For given observables, weights of ( , )o w  are optimized to w* as per a stopping 
criterion of:
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Figure 5.  Using a Mixture Density Network (MDNs) to obtain the joint probability distributions of all five input parameters. The input nodes o (observables) 
are connected to the output nodes (trainable parameters) via neurons in hidden layers. For m mixtures and c parameters, the network predicts mixture weights 
  m , means  m cμ   and l non-zeros components of a lower-diagonal matrix  m lσ  , where l is the sum of c diagonal components and 

( 1)
2

c c
 non-

diagonal components. These components are used to calculate the mixture of the multivariate normal distributions. The mixture of normal distributions can 
then be visualized as a 2D joint probability distribution for two parameters (pi, pj) at a time, conditioned on the observables o and visualized at the means of the 
remaining parameters  , ppk i j k . In this subsection, we consider all the observables as inputs such as surface heat flux Qs, elastic lithospheric thickness De as 
well as two points Tpt, 1 and Tpt, 2 from the temperature profile at phase transition locations. 1D, one dimensional; 2D, two dimensional.
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train while: loss epoch loss epochvalidation validation   0 99.    0� (24)

Here, one epoch is when the optimization algorithm has trained over the entire training set. Since epoch is 
an integer, we take the floor of the product of 0.99 and the number of epochs that have elapsed. We found 
that a value of 0.00001 for the learning rate delivered optimal results. A higher learning rate led the network 
to sometimes miss the minimum during optimization. Then, one can visualize the marginal probability 
distributions of a parameter for each example ( | ) ( , *)p p o o w  in the training or the test set, as shown 
by Atkins et al. (2016). For each true value along the x-axis, we plot in Figure 6 the predicted probability 
distribution functions (PDFs) along the y-axis. For a perfectly constrainable parameter, such a contour plot 
would yield a diagonal line.

As a test to verify if our network predictions are indeed non-trivial, we also plot the PDFs from a so-called 
mean-predictor (MP). The MP is obtained by binning the data and obtaining the mean and standard de-
viation of each bin. In Figure 6, we select the mean and the standard deviation for each bin across all ob-
servables based on the observable-bin with the minimum standard deviation. It is clear from the PDFs of 
the reference viscosity ηref in Figure 6, that the MDN outperforms the MP baseline model. In other words, 
the results of the MDN are non-trivial. The MP can be thought of as a discretized form of a single-gaussian 
MDN, which looks at each bin to predict a quantity. It provides a very simple baseline to compare the results 
of the MDN with.

Instead of qualitatively inspecting hundreds of plots such as in Figure  6c to determine the strength of 
constraints on a parameter for several combinations of network architectures, observables, uncertainties 
etc., we quantify the strength of constraint using the log-likelihood (the negative of the error function in 
Equation 20. The higher the log-likelihood value is, the better can a parameter be constrained. This can be 
seen in Figure 7: row 2, where we plot the probability distributions obtained from the test set for each pa-
rameter and show to which value the corresponding log-likelihood value increased to over several epochs 
(Figure 7: row 1). In rows 3–6, we also plot some of the individual probability distributions (magenta, blue, 
red) obtained from the MDN, the combined distribution (black), as well as the actual corresponding value 
indicated by the gray line.
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Figure 6.  (a) Any number and combination of observables is selected to be input to the MDN. (b) The network is trained until the defined early stopping 
criteria for the loss function (negative log-likelihood) is met. (c) The trained network is used to obtain the marginal probability of a parameter for given 
observables and plotted along the y-axis for each true value of the parameter along the x-axis. (d) A mean-predictor (MP) can be built for comparison by binning 
the data and obtaining the means and variances in each bin. MDN, mobile density network.
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With this metric in mind, over the next subsections, we present results of such studies using a fixed net-
work architecture with two hidden layers consisting of a total of 18 neurons and with three mixtures. Upon 
testing different architectures, we found that the small size of the data set limits us to smaller networks. 
Further information on architecture selection can be found in the Supporting Information. In the following 
subsections, we present the results on the test set. Since the training of an MDN is a stochastic process, we 
repeat the training procedure five times and display the mean and the standard deviation of log-likelihood 
of all the runs for a particular training setup.
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Figure 7.  For the case where all observables are available, row 1 shows the evolution of the log-likelihood over epochs. It is the negative of the loss function 
and the higher it is, the better a parameter can be constrained. In row 2, all the probability distributions from the test set for each of the five parameters are 
visualized. In rows 3–6 some individual probability distributions (colored in magenta, blue and red) from the three mixtures are plotted as well as the combined 
(sometimes multi-modal) distribution (colored in black). The real values of each parameter are indicated by the vertical gray line.
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4.2.  Observational Constraints on Different Parameters

In Figure 8, we plot the log-likelihood of each of the five parameters for 
different numbers and combinations of observables. Here, we only plot 
a few cases. A complete list is available in the Supporting Information. 
We also show the log-likelihood of the prior distributions, or equivalent-
ly, for the case when “no observables” are available. The prior distribu-
tion is calculated using scikit-learn's Gaussian Mixture Model with three 
mixtures (see Supporting Information, Pedregosa et  al.,  2011). Ideally, 
the prior distribution of each parameter should be flat within the range 
across which the parameter is varied. While this was the case upon select-
ing the parameter values for the simulations, the actual distribution is no 
longer flat because, for some parameter combinations, the simulations 
did not reach the end time of 4.5 Gyr at which the observables are evalu-
ated. Nevertheless, one can still gauge how much the MDN has learned 
by subtracting the posterior log-likelihood from the prior log-likelihood.

It is clear that V is unconstrained from any of the observables for our cur-
rent setup of simulations. Furthermore, Tini cannot be constrained from 
just the present-day temperature profiles. Indeed, the “thermostat effect” 
(Tozer,  ), that is, the tendency for the mantle temperature to converge 
to similar values due the temperature dependence of the viscosity, is ex-
pected to prevent inferences of Tini from the final state of the system (e.g., 
present-day heat-flux, temperature profile, etc.). However, when the tem-
perature profile and the radial contraction are both available (Figure S2, 
row 2), Tini can be constrained well. Radial contraction of a planet pro-
vides a clue as to what the initial temperature was. Hence, the MDN is 
able to trace it from the present-day temperature.

E is weakly constrained, while ηref and Λ can be constrained well in this 
setup. This makes sense in view of the patterns shown in Figure 3. The 
activation volume V, for example, seems to have no correlation with any 
of the observables, while E exhibits a weak correlation. The fact that ηref 
and Λ are well constrained is also a confirmation of the visual patterns 
and correlations observed in Figure 3.

Figure 8 shows a general trend, namely that adding more observables improves the constraint for except 
for V. We also note that, with the exception of Tini, adding the full 1D temperature profile to the complete 
observables vector o improves the constraint on the parameter only slightly. This is because most of the 
observables are either directly derived from the temperature profile (e.g., Qs) or indirectly depend on it 
(e.g., Dmelt). In other words, a combination of all the possible observables helps cover several parts of the 
temperature profile.

Still, to determine the extent to which constraints on parameters are affected by the inclusion of different 
parts of the temperature profile (like location and temperatures of the phase transitions), we test the im-
pact of considering as observables different parts of the 1D temperature profiles. In Figure 9, we plot the 
log-likelihood of each parameter, given different percentages of temperature profile, either starting from the 
surface (Figure 9a) or from the core-mantle boundary (Figure 9b).

From the row 3 of Figure 8 and row 2 of Figure 9a, we notice that the surface heat flux is a very weak con-
straint. However, the top 20% of the temperature profile is sufficient for constraining Λ, while E and ηref ben-
efit from larger portions of the temperature profile. For both ηref and Λ, as soon as the temperature profile 
includes the entire thickness of the upper thermal boundary layer, the constraints dramatically improve. 
Still, we see that while peripheral parts (such as surface heat flux, CMB heat flux and CMB temperature) of 
the temperature profiles provide some constraints, more information vastly improves the inference of pa-
rameters. This is especially true for E and to some extent for ηref, whose observational signatures seem to be 
more distributed throughout the mantle rather than being radially concentrated within certain ranges. This 
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Figure 8.  Constraints on each parameter (x-axis) for different observables 
and some selected combinations thereof (y-axis) as defined by the log-
likelihood. The mean (above) and variance (below) of the log-likelihood 
for five runs on the test set are given. Here, Tprof is an abbreviation for the 
complete 1D present-day temperature profile. 1D, one dimensional.
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additional information can be provided in the form of specific depth-temperature values or other related 
quantities such as elastic lithospheric thickness, potential temperature and duration of volcanism.

To illustrate more quantitatively the accuracy in the inference of model parameters, we show some selected 
cases covering a wide range of log-likelihood values from Figure 8 and plot the MDN calculated probability 
distributions on the test set in Figure 10a. Within each test set, we also display the average standard devia-
tion ( ) of the combined mixture of the probability distributions. Typically, for a normal distribution, ∼95% 
of the data is contained within μ ± 2σ. Hence, in Figure 10b, we also plot the corresponding ± 2σ values 
divided by the entire range of the given parameter for different log-likelihoods. For the case where only Qs 
is available, ± 2σ spans 87% of the entire range of ηref and 74% of the entire range of Λ. However, if all the 
observables are available, one can constrain ηref within 32% of its range, Λ within 15% and Tini to within 39%. 
E can be weakly constrained within 80% its entire range, given that all the observables are available.

4.3.  Impact of Uncertainty in Observations on Constraints on Parameters

We also quantify the impact of uncertainty in the observations upon constraining the parameters. In Fig-
ure 11, we plot the negative log-likelihood of each parameter, given different magnitude of uncertainty in 
the observations. We do this by adding noise with a normal distribution  2

o(0,(noise ) )  to the entire 
data set, where σo is the standard deviation of each observable in o. This is done for the case where all the 
observables are available. Upon increasing σo, the constraint systematically weakens, albeit with a different 
rate depending on the parameter. For initial mantle temperature, the constraint is drastically diminished 
for even a low level of uncertainty of 0.1σo. For a potential real-world application, the noise will need to be 
added according to the proper uncertainty specifications (magnitude, distribution, etc.) of each observable. 
The noise in observations could potentially be compensated through more data, either through more simu-
lations or through more observables.
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Figure 9.  Constraints on each parameter from different parts of the temperature profile. The mean and variance of the 
log-likelihood for five runs on the test set are given.
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4.4.  Availability of Observables and Number of Simulations

We look at two further factors that can impact how well mantle convection parameters can be constrained. 
In Figure 12, we show how the constraint on different parameters changes with the total number of simu-
lations available (y-axis) and with increasing number of observables (x-axis).

The results are intuitive: more observables result in a tighter constraint. Similarly, more simulations also 
help tighten the constraints. Nevertheless, the improvements in the log-likelihood are asymptotic from ap-
proximately 120 simulations for ηref, E and V and from roughly 500 simulations for Λ and Tini. Clearly, train-
ing the MDN with just 56 simulations is not sufficient. The prior log-likelihood of 56 simulations is notice-
ably lower, suggesting that the distribution of training simulations in this data set is not as representative 
as the distribution of training simulations in other cases with more simulations. Therefore, improving the 
distribution of the training data set should improve the prior, as well as the posterior log-likelihood. For Λ, 
the log-likelihood given all observables increases by 0.45 ± 0.2 in going from 56 to 126 simulations. This is 
comparable to an increase of 0.34 in prior log-likelihood for the same case. So, the log-likelihood increase in 
this case can be attributed in large part to the improvement of the distribution of the training data.

However, that is not the only factor. After the underlying training distribution has reached a certain thresh-
old of prior log-likelihood or, equivalently, it has become representative enough then the number of simu-
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Figure 10.  (a) The probability density functions calculated by MDN on the test set for a few selected cases and the average standard deviation of the combined 
mixture. (b) ±2σ/range of parameter versus log-likelihood for a parameter. For the case where only surface heat flux is available as an observable, reference 
viscosity can be constrained within 87% of its entire range. With all the observables one can tighten the constraint on reference viscosity to within 32% of its 
entire range, crustal enrichment to within 15% and initial mantle temperature to within 39%. Activation energy can at best, be weakly constrained to within 80% 
of its entire range, which activation volume cannot be constrained at all. MDN, mobile density network.
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lations also plays a role. For Λ, the prior log-likelihood only increases by 
0.03, when going from 126 to 504 simulations. In contrast, the posterior 
log-likelihood given all observables increases by 0.74 ± 0.19. This effect is 
even more pronounced for Tini, where the prior-likelihood of 2,016 simu-
lations is higher than that of 56 simulations by 0.14, while the log-likeli-
hood given all observables improves by 2.98 ± 0.57. Thus, both the quali-
ty and quantity of the training examples are important.

It is worth noting that the single log-likelihood number over the entire 
test set does not provide granular insights into the sub-spaces where we 
might be lacking data. For example, from Figure 7: row 2, column 1 we 
notice that the MDN struggles to constrain low values of the reference 
viscosity. This is because there are fewer simulations run with such val-
ues where the mantle is convecting more vigorously.

Nevertheless, within the uncertainties of training MDNs, the constraints 
on all the parameters improve only asymptotically. We can thus conclude 
that, for this setup, we have enough data.

4.5.  Obtaining the Joint Probability Model

So far, we have limited our focus to how well individual parameters can 
be constrained from different observables. However, as pointed out by de 
Wit et al. (2013) and Atkins et al. (2016), the individual 1D probability 
distributions such as those visualized in Figure 7 are marginal and lack 
the covariances between parameters (cross-covariances).

de Wit et al. (2013) demonstrated that a higher-dimensional probability 
distribution can be constructed iteratively by multiplying a lower dimen-
sional marginal distribution with a higher-dimensional conditional dis-

tribution. One could, for example, multiply the 1D distribution p (ηref|o) with a 2D conditional distribution 
p(E|o, ηref) to obtain the 2D distribution p(E, ηref|o). In their case of 29 unknown parameters, this approach 
is reasonable since the number of trainable parameters required to build a joint probability distribution 
would explode.

For this study, though, where we only vary five parameters, it is feasible and more convenient to train the 
MDN on the joint five-dimensional probability distribution as described in Section 3.2. For convenience, we 
use the Keras MDN layer provided by Martin (2018) and replace the multivariate normal distribution whose 
covariance matrix contains only diagonal elements with the that of a full covariance matrix. Our code can 
be accessed here: https://github.com/agsiddhant/Inverse_Modelling_Mars_1D. The repository also con-
tains the data set used in this paper. We train the network in Keras API, which is built on top of Tensorflow 
backend (Chollet et al., 2015).

To ensure computational efficiency in training networks that predict 63 quantities per training example 
(Section 3.2), compared to only 3 as was the case in previous subsections, we train the MDN in mini-batches 
of 32 up to 50,000 epochs, while saving the trained model after each epoch only if the loss on the validation 
set dropped. Predicting 21 times as many quantities as before also means that larger network architectures 
are helpful. The input to the network consists of all the present-day observables: CMB heat flux (Qc), surface 
heat flux (Qs), radial contraction (Rth), elastic lithospheric thickness (De), equivalent thickness of the cumu-
lative melt produced (Dmelt), duration of volcanism (tvolc), as well as two temperature points at the reference 
depth of the phase transitions (Tpt,1 and Tpt,2). While, it is unreasonable to expect the full 1D temperature 
profile for other planets such as Mars, ongoing and future missions could reveal selected temperature-pres-
sure points at discontinuities from seismic data.

A simple trial-and-error approach of training MDN with different number of hidden layers (1–3), hidden 
units per layer (6–60) and mixtures (3–9) revealed that a network that is large enough, while at the same 
time not too large to train with a small set of 5,517 training examples, performs the best. Hence, we present 
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Figure 11.  Constraints on each parameter for different levels of noise 
added in the case where all observables are available including the 
temperature profile. The mean and variance of the log-likelihood for five 
runs on the test set are given.

https://github.com/agsiddhant/Inverse_Modelling_Mars_1D
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four examples on the predictions on the test set from a trained MDN with 3 mixtures and hidden units dis-
tribution across three hidden layers of [60, 60, 60].

In Figure 13, we plot the log-likelihood values on the entire test set (calculated using the trained MDN). 
Each point is a log-likelihood value for a specific combination of five parameters. The first thing that is 
obvious is the lack of data in some “corners” such as low reference viscosity and high activation energy, as 
expected. The second thing to note would be that for the remaining parameter-space, one sees no obvious 
patterns. However, upon careful examination one can observe, for example, that in the E − ηref plot, high 
reference viscosity tends to have higher log-likelihood values (darker dots). The same is true for Λ − ηref plot. 
Yet, it is interesting to note that ηref seems to be more dominant than Λ, since most high log-likelihood val-
ues occur at high ηref and low Λ values. This is lightly counter-intuitive, since a more enriched mantle (low 
Λ) has the same qualitative effect as having a low reference viscosity and thereby should make the mantle 
convect more vigorously (and more difficult to constrain).
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Figure 12.  Constraints on all parameters for different observables and varying number of simulations available. The mean and variance of the log-likelihood 
for five runs on the test set are given.
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We further explore a couple of examples from the test set (indicated by blue and red dots in Figure 13 and 
plot the joint probability distributions on a log10 scale. We also shade the background by the prior distribu-
tion of the training data obtained using a 3-mixture Gaussian Mixture Model for comparison. Since, visu-
alizing a contour plot in more than 2 dimensions is challenging, we plot 2D slices of the joint probability 
distribution for each combination of parameters in Figure 14. The 2D contours visualized are essentially 
slices taken from a higher-dimensional space at the predicted mean of each parameter (or each dimension) 
not represented in that panel. Also, while we do plot the probabilities down to machine-precision, we dis-
carded any mixture with a value below 10−8. This is because Gaussian mixtures below extremely low values 
can be dominated by the variances and cause visual artifacts in the plots. Fortunately, in both examples, this 
occurred for only 1 out of the 3 mixtures.

Visually inspecting Figure 14, the predicted probability distributions capture the actual value (marked by 
a blue cross or red plus sign). It is also possible to examine the covariances among different parameters. 
For parameters that are difficult to constrain such as E or worse yet, V, it is apparent that the probability 
distributions are “stretched” along these parameters. In other words, a wide range of these parameters can 
satisfy an observation. For better-constrained parameters such as ηref and Λ, for example, the probability dis-
tributions are smaller “discs”. Furthermore, these sometimes demonstrate positive or negative correlations.

Hence, such high-dimensional probability distributions can capture the inter-parameter correlations and 
the associated degeneracy, providing a more comprehensive picture of all the evolution scenarios that fit 
given observational constraints.
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Figure 13.  Log-likelihood values on the entire test set, plotted with respect to two parameters at a time. The darker a 
dot, the higher the log-likelihood value. The predicted probability distributions for example 1 (indicated by a blue cross) 
and example 2 (indicated by a red plus) are plotted in Figure 14.
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5.  Toward Using Real Data from Mars as Observables
The steps to be taken to invert actual, non-synthetic observables are not straightforward. On the one hand, 
some observables, such as the amount of accumulated contraction recorded by compressive geological fea-
tures (Knapmeyer et al., 2006; Mueller & Golombek, 2004; Nahm & Schultz, 2011) or the mantle potential 
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Figure 14.  Examples of high-dimensional probability distributions from the test set. The actual values of the 
parameters are indicated by a blue cross (a) and a red plus sign (b). The background is shaded by the prior log-
likelihood, whereas, the contour plot of posterior log-likelihood is given by the viridis colormap.
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temperature at a certain time in the past inferred from petrological anal-
yses of meteorites (Filiberto & Dasgupta,  2015), have global character. 
These can be inverted and interpreted even in terms of 1D parameterized 
convection models (e.g., Grott & Breuer, 2010; Morschhauser et al., 2011; 
Thiriet et al., 2018) or using suitably averaged 2D models such as those 
adopted in our study. On the other hand, several observables useful to 
constrain the thermal history of Mars are localized in space and time. 
Particularly relevant are (i) the thickness of the elastic lithosphere as-
sociated with the loading of surface features (e.g., Broquet et al., 2020; 
McGovern et  al.,  2002; Phillips et  al.,  2008); (ii) the surface heat flux, 
which can be inferred from the latter (unfortunately, the efforts of the 
HP3 experiment to obtain a measurement of the heat flux at the land-
ing site of the NASA mission InSight (Spohn et al., 2018) have not been 
successful); (iii) the local thickness of the crust, which can be obtained 
indirectly from gravity and topography data (e.g., Goossens et al., 2017; 
Wieczorek & Zuber, 2004), but which could be seismically detected in the 

future also by the InSight mission (Banerdt et al., 2020), possibly along with additional seismic disconti-
nuities bearing information on the interior temperature; (iv) indications of past volcanic activity at specific 
locations (e.g., Hauber et al., 2011; Werner, 2009). In order to invert these local observations, the MDNs 
would need to be trained on 3D data generated with simulations that are well representative of the Martian 
interior. The 3D models of Plesa et al. (2018) would provide a suitable starting point, although creating a 3D 
data set of comparable size to the 2D one used in this study, also spanning a similar range of parameters, 
is a significant computational challenge. Yet, it would provide the opportunity to place tighter constraints 
on key model parameters. Observations of the same quantity (say the elastic lithosphere) at multiple loca-
tions on a planet could also help one implicitly capture more information about the convection structures 
underneath.

Such an inverse study with 3D simulations can theoretically be performed in a similar fashion to this study, 
although, certain adaptations would be necessary. It is well known that incorporating prior knowledge of 
the data into the neural network architecture generically leads to both a more accurate and faster training 
process as well as to better generalization (Mitchell, 1980). For 3D simulations specifically, it is therefore 
desirable to choose a convolutional architecture (such as a convolutional neural network) to maintain the 
spatial correlations in quantities predicted by the simulations. Recurrent neural networks (or alternatively 
masked convolutional neural networks) are suitable candidates to model the time evolution of the simula-
tion. We refer to Goodfellow et al. (2016) for an accessible overview of these architectures.

With the availability of a suitable 3D simulations data set, one will also need to consider the noise associated 
with measured observables. For each synthetic observable that we considered, Table 2 shows the dimen-
sional values of the corresponding noise levels. Temperature estimates with uncertainties between ±50 
and ±100 K, corresponding to noise levels between ∼0.5 and 1σ0, can be considered realistic not only for the 
Earth (e.g., Boehler, 1996; Katsura et al., 2010), but also for Mars (Filiberto & Dasgupta, 2015). Similar to the 
temperature, determining the thickness of the elastic lithosphere to within 0.5−1σ0 at specific locations and 
the accumulated radial contraction appears to be possible (Grott & Breuer, 2010; Nahm & Schultz, 2011). 
However, measuring, for example, the surface heat flux with an accuracy of less than a couple of mW/m2 
(i.e., to within 1σ0) would not be within reach of the HP3 experiment of the InSight mission even if that 
were successful (the expected uncertainty of the experiment was in fact ±5 mW/m2 (Spohn et al., 2018)).

While we cannot invert real observables from Mars using our current 2D data set, we provide, here, an 
estimate of the constraints on all parameters with the assumption of knowing only four observables. Based 
on the above considerations, we restrict this analysis to the two temperature points, radial contraction and 
elastic lithosphere thickness. Specifically, for these quantities, we consider a conservatively realistic noise 
level of 1.0σo, as well as noise levels of 0.1σo and 0.5σo for comparison. Figure 15 shows the individual prob-
ability distributions along with the average standard deviation for each estimated parameter. For an uncer-
tainty of 1.0σo, ηref can approximately be constrained to within 52%, E within 75%, Λ within 54%. V cannot 
be constrained, and, as expected in light of results in Figure 11, the constraints on Tini are also lost at 1.0σo.

AGARWAL ET AL.

10.1029/2020EA001484

21 of 26

Observable 0.01σo 0.1σo 0.3σo 0.5σo 0.8σo 1.0σo

Qc (mW m−2) 0.01 0.1 0.4 0.6 1.0 1.3

Qs (mW m−2) 0.02 0.2 0.7 1.1 1.8 2.2

Rth (km) 0.14 1.3 4.1 6.8 10.8 13.5

De (km) 0.5 5.4 16.3 27.2 43.4 54.3

Dmelt (km) 1.0 10.0 29.0 48.3 77.3 96.6

tvolc (Gyr) 0.02 0.2 0.6 0.9 1.6 2.0

Tpt,1 (K) 1.0 10.0 29.5 49.1 78.6 98.3

Tpt,2 (K) 1.1 10.7 32.2 53.7 86.0 107.0

Table 2 
Dimensional Noise Levels Calculated for all Synthetic Observables
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6.  Summary and Conclusion
We used MDNs to study the constraints on parameters governing the thermal evolution of Mars. To train 
the MDNs, we used 6,130 simulations that ran over 4.5 Gyr from a data set of 10,040 evolution simulations 
with Mars-like parameters, run on a 2D quarter cylindrical grid. We used the MDNs to test different syn-
thetic observables (surface and CMB heat fluxes, elastic lithospheric thickness, radial contraction, duration 
of volcanism and amount of melt produced) and combinations thereof, to determine how well each of the 
five parameters can be constrained, as quantified by the log-likelihood (see Figure 7). The reference viscos-
ity (ηref) and crustal enrichment factor (Λ) are well constrained, as can be seen in Figure 8. Initial mantle 
temperature (Tini) can be constrained if radial contraction is available along with at least some portion of the 
temperature profile. However, the activation energy of diffusion creep (E) can only be weakly constrained. 
Activation volume (V) cannot be inferred using any of the observables for the current setup.

We also searched different parts of the temperature profile for observational signatures (see Figure 9). We 
found that the top 20% of the temperature profile is sufficient for constraining Λ, while for E and ηref, the 
availability of large portions of the temperature profile is advantageous. Furthermore, successively adding 
parts of the temperature profile to its peripheral components such as CMB temperature, CMB heat flux 
and surface heat flux, allows tightening the constraints on ηref, E and Λ. This suggests that using single 
pressure-temperature point(s) as observables (such as potential temperature) could also help the inversion 
of mantle convection parameters. This was further evidenced by the tight constraints on initial temperature 
obtained with the use of the two temperature points at phase-transition depths as observables instead of the 
complete present-day temperature profile when searching for the joint probability model.

We emulated uncertainty in measuring an observable by adding Gaussian noise to the observables for the 
case when all observables are available and by training the networks on the noisy data to test how it impacts 
the constraint on a parameter (see Figure 11). The added noise was quantified by a factor multiplied with 
the variance of the distribution of the observable (σo). We found that, in general, small uncertainties (up 
to 0.01σo) in the distribution of the observable are inconsequential to the inference of a parameter (as they 
can have a regularizing effect on the training of MDNs). With larger uncertainties (say 1σo), however, the 
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Figure 15.  The individual probability distributions from the test-set obtained by training an MDN jointly on all parameters, given four observables: thermally 
induced radial contraction (Rth), elastic lithospheric thickness (De), and two temperature points at reference depths for the phase transitions (Tpt, 1 and Tpt, 2). 
Three different noise levels are tested: 0.0σo, 0.5σo, 1.0σo, with the last one being conservatively realistic.
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constraints become weaker. Different parameters also have different sensitivities to the uncertainty in the 
observations, with the constraint on Tini being the one that is lost most rapidly as uncertainties increase.

We also tested two additional factors that can impact the constraints on all parameters, namely the availa-
bility of simulations and availability of observables. We observed that both increasing the number of simu-
lations and increasing the number of observables strengthen the constraints (see Figure 12). The results in-
dicate that already from a few hundred simulations, meaningful results can be obtained with five unknown 
parameters, which is encouraging in view of extending this approach to 3D simulations. We noted, however, 
an important caveat: the total number of simulations in the data set does not provide granular insights into 
the poorly sampled sub-spaces of the data set, such as low values of ηref and high values of E. The inference 
of parameters in these ranges is limited due to a relative scarcity of data. A generation of simulations that is 
distributed more uniformly would be desirable in future studies.

Finally, we demonstrated how the joint probability model of all parameters can be obtained from observ-
ables and discussed the information gained from this approach: namely the covariances among different 
parameters

This work for a Mars-like planet builds upon previous MDN studies of ill-conditioned inverse problems 
such as by de Wit et al. (2013) and Atkins et al. (2016). Several research questions remain open. For exam-
ple, how will varying more parameters such as number of phase transitions, bounding stress of the elastic 
lithosphere and the size of the core impact the constraints on thermal evolution? In this study, we varied 5 
parameters, but Atkins et al. (2016) varied 59 different parameters in their study of Earth's thermal evolu-
tion. That is a plausible explanation for why in Atkins et al. (2016), most parameters such as the reference 
viscosity were difficult to constrain even when using synthetic observations at times earlier than present 
day (≤3  Gyr) and despite using reduced representations of the 2D temperature fields. Having more un-
knowns increases the number of possible combinations of parameters that need to be sampled from. This 
can also increase the degeneracy of the problem, since more combinations of parameters can lead to the 
same observation.

This highlights the need for future studies on mantle convection searching for observational signatures in 
(1) a higher-dimensional space, in (2) fields other than just temperature (such as velocity or density) and in 
(3) time. (1) We also searched the 1D temperature profiles for observational signatures. However, laterally 
averaging the 2D temperature fields leads to a loss of information, such as convection structures (plumes 
and downwelling) that could potentially help constrain parameters like V, since V strongly affects the spa-
tial wavelength of convection. (2) We also limited our focus to temperature profiles and related observables. 
However, one could just as easily explore other fields and related quantities such as seismic velocities and 
gravity field. (3) Finally, we only inverted present-day observables. However, one could also include obser-
vations at different times, such as petrological constraints on potential mantle temperature and volcanic 
activity over the planet's history.

Furthermore, machine learning studies like the present one and the one by Atkins et al. (2016) are limited 
to the datasets used. To make the findings more widely applicable, one could create a more versatile data set 
that encompasses a broader number of parameters such as number and location of phase transitions and 
ratio of the radii of the core and the mantle. Furthermore, one could also include variable physical processes 
such as melting and mode of convection (Shahnas & Pysklywec, 2020).

MDNs and their corresponding log-likelihood function (Equation 13) provide a high-dimensional frame-
work for evaluating how well different observables and combinations of observables can constrain certain 
parameters. However, the high dimensionality of the problem also leads to a computational challenge. In 
this study, we performed selected computations. For example, in Figure  11, we only evaluated the case 
where we had the full data set of 6,130 simulations from which to train and test all the present-day ob-
servables available. We also trained the MDN only five times per combination. If one wanted to reduce the 
variance of the negative likelihood, one could run it, say, 10 times. So, ideally, we would have performed 
127 combinations of observables times 5 parameters times 8 sizes of datasets times 9 levels of noise times 
10 repetitions times 35 time-steps per simulation. These roughly 16 million combinations would take over 
1,000 years to train on a single GPU. The same challenge stands if one wanted to explore all the number and 
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combinations of different temperature-pressure points in the 1D temperature fields, or worse yet, of 2D or 
3D fields.

In addition to, or perhaps, instead of doing such machine learning computations on supercomputers, one 
can also consider more elegant approaches. For example, instead of training the MDN at a given time-step 
(like 4.5 Gyr in this study), one could just treat time as another variable in the observables vector and train at 
all time-steps at once. As for identifying the relevant portions of high-dimensional fields used by the model 
to predict, an interesting avenue of research could be to consider recent methods for explaining neural net-
works, for example, layer-wise relevance propagation (Bach et al., 2015; Montavon et al., 2019), and extend 
them to MDNs. The application of machine learning methods such as MDNs in the field of geodynamics 
has the potential to greatly enhance our understanding of complex ill-posed inverse problems such as the 
inference of the parameters governing mantle convection.

Data Availability Statement
The data set used to train, test and evaluate the MDNs is available on Github (https://github.com/agsid-
dhant/Inverse_Modelling_Mars_1D). The repository also contains all the codes used to train the MDNs. All 
figures in this paper can be reproduced using the codes and the python dictionaries provided.
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