
1.  Introduction
Land use changes are important drivers of anthropogenic climate change. For example, deforestation or af-
forestation can highly affect the carbon uptake and storage capacities of an ecosystem (Schimel et al., 2001). 
Net ecosystem exchange (NEE), the difference between carbon dioxide (CO2) uptake through photosynthesis 
and respiration within an ecosystem (Luyssaert et al., 2007), represents a major feature of the global carbon 
cycle and, thus, helps to assess ecosystem services and the impact of land use changes on them (negative NEE 
= CO2 uptake, positive NEE = CO2 emission) (Abdalla et al., 2013; Schmitt et al., 2010; Xu et al., 2017).

The eddy covariance (EC) technique is the most direct way of measuring CO2 fluxes; however, it provides 
point measurements from a sparse network of stations each representing a footprint with an along-wind ex-
tent typically less than 800 m (Chen et al., 2009). Top-down approaches for spatial NEE assessment include 
global atmospheric inversion models from satellites such as GOSAT and OCO-2 (H. Wang et  al.,  2019), 
which are especially useful for areas with limited or no EC coverage (Kondo et al., 2015) but are restricted 
to a coarse spatial resolution. Thus, bottom-up approaches scaling up EC measurements are expedient to 
quantify CO2 fluxes for larger areas (Denman et al., 2007; Xiao et al., 2012), though they are also challenging 
due to the high spatiotemporal variability of those fluxes (Borchard et al., 2015; Kondo et al., 2017).

Abstract  This paper discusses different feature selection methods and CO2 flux data sets with a 
varying quality-quantity balance for the application of a Random Forest model to predict daily CO2 fluxes 
at 250 m spatial resolution for the Rur catchment area in western Germany between 2010 and 2018. 
Measurements from eddy covariance stations of different ecosystem types, remotely sensed vegetation 
data from MODIS, and COSMO-REA6 reanalysis data were used to train the model and predictions 
were validated by a spatial and temporal validation scheme. Results show the capabilities of a backwards 
feature elimination to remove irrelevant variables and an importance of high-quality-low-quantity flux 
data set to improve predictions. However, results also show that spatial prediction is more difficult than 
temporal prediction by reflecting the mean value accurately though underestimating the variance of CO2 
fluxes. Vegetated parts of the catchment acted as a CO2 sink during the investigation period, net capturing 
about 237 g C m−2 y−1. Croplands, coniferous forests, deciduous forests and grasslands were all sinks on 
average. The highest uptake was predicted to occur in late spring and early summer, while the catchment 
was a CO2 source in fall and winter. In conclusion, the Random Forest model predicted a narrower 
distribution of CO2 fluxes, though our methodological improvements look promising in order to achieve 
high-resolution net ecosystem exchange data sets at the regional scale.

Plain Language Summary  Whether ecosystems absorb or emit CO2 plays a major role in the 
global carbon cycle and impacts climate change. This exchange is already measured at scattered stations, 
but creating spatially resolved data sets remains a challenge. In this paper, we used satellite images of 
vegetation and meteorological data to predict the CO2 exchange of the Rur catchment area near the 
German-Dutch-Belgian border for every day from 2010 to 2018. In order to assess the prediction quality, 
we compared actual measurements from several stations within the catchment with the predictions at the 
locations of these stations. Results show that our method could increase prediction quality compared to 
previous process-based models, though the error remains rather high. Vegetated parts of the catchment 
including coniferous forests, deciduous forests, grasslands, and croplands were all CO2 sinks on average. 
In late spring and early summer, they were the strongest sink, but in fall and winter a CO2 source.
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Process-based biogeochemical models have been widely applied for this purpose (e.g., Post et  al.,  2018; 
Xiao et  al.,  2011), but subject to assumptions and model parametrizations. Data-driven machine learn-
ing techniques such as Random Forest (RF) are another promising approach to predict NEE as they can 
grasp even highly nonlinear relationships to explanatory variables as is usual in environmental data (Cutler 
et al., 2007). Previous attempts using statistical modeling include nonspatial predictions of NEE at the EC 
tower scale (Dou et al., 2018; Safa et al., 2019; Zhou et al., 2019). Other attempts aimed at upscaling of car-
bon fluxes to the continental or national scale (Papale et al., 2015; Sun et al., 2011; Xiao et al., 2008) or the 
globe, most notably the FLUXCOM approach (Bodesheim et al., 2018; Jung et al., 2011, 2020). Upscaling 
to the regional scale at high spatial resolution has rarely been done although NEE estimates of heteroge-
neous regional and local ecosystems are of high value for assessing ecosystem services in spatial planning 
(Tammi et al., 2017). Furthermore, products at a finer spatial resolution are less prone to contain mixed 
pixels with contamination of the main land use class by, for example, roads, settlements, or tree rows. 
Zhang et al. (2011) developed a regression model for the U.S. Great Plains based on EC towers representing 
grassland only. Post et al.  (2018) already upscaled NEE to the study area of this analysis, though with a 
process-based model.

Spatial cross validation, that is, excluding whole locations from model training and testing the model on 
them, is crucial for a realistic assessment of the reliability of spatial predictions beyond the locations of 
training data. A substantial performance decrease is to be expected in comparison to a random split of data 
points into training and test sets, which hence overrates model performance due to spatial autocorrelation 
(Meyer et al., 2018; Roberts et al., 2016). Tramontana et al. (2016) conducted a profound cross validation 
analysis for spatial predictions of various carbon and energy fluxes with the conclusion that NEE is espe-
cially difficult to predict. Feature selection of explanatory variables, on the other hand, can considerably 
improve data-driven model performance as it reduces overfitting and removes irrelevant or redundant vari-
ables (Hall & Smith, 1999). Meyer (2018) proposed a sequential feature selection algorithm based on spatial 
cross validation to remove spatially autocorrelated predictors. In contrast to this, conventional feature se-
lection as implemented in the caret package (Classification And REgression Training, Kuhn, 2020) is based 
on internal cross validations within the training data, and hence fails to improve model performance when 
testing on locations not used for model training (Meyer et al., 2019). Genetic algorithms like the Guided 
Hybrid Genetic Algorithm (GHGH, Jung & Zscheischler, 2013) are useful for very large numbers of features 
(>100), though generally they do not rely on spatial cross validation. Quality of EC data is another issue for 
upscaling attempts, especially when aggregating half-hourly to daily fluxes. While data quality improves 
when excluding low-confidence values based on quality control, too small data set. also limit the learning 
capacities of machine learning algorithms (Ließ et al., 2012). A common practice is to indicate daily data 
as missing if more than 20% of half-hourly values are missing or of low quality (Tramontana et al., 2016; 
Yuan et al., 2010). However, to our knowledge a sensitivity analysis to different percentages has not been 
done before.

In conclusion, NEE upscaling with data-driven methods at high spatiotemporal resolutions and incorporat-
ing different land uses remains a major task to be handled in order to approach the goal of flux information 
“everywhere, all of the time” (Baldocchi, 2014). Thus, the objectives of this paper are i) to perform upscal-
ing of daily NEE over heterogeneous landscapes of the Rur catchment in western Germany for the years 
2010–2018 with a RF model incorporating EC measurements, remote sensing and reanalysis data and ii) to 
assess the impact of EC data quality and feature selection on the model performance.

2.  Data and Methods
2.1.  Study Area

The Eifel/Lower Rhine Valley Observatory covers the Rur catchment located near the German-Bel-
gian-Dutch border and is one of four Terrestrial Environmental Observatories (TERENO) in Germany 
(Zacharias et al., 2011). These areas were selected for the TERENO network because they are representa-
tive of typical landscapes found in Central Europe (Bogena et al., 2016). The catchment covers an area of 
2,354 km2 and can be divided into a northern lowland part with intensive agriculture and a relatively high 
proportion of built-up areas and a southern low mountain part where pastures and forests prevail, as shown 
in Figure 1. Based on a simplified land cover classification by Lussem and Herbrecht (2019), the catchment 
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consists of 27.6% grassland, 25.7% cropland, 17.7% deciduous forest, 8.5% coniferous forest, and 20.4% oth-
er land cover types including urban areas, open cast mines and water bodies. Mean annual temperatures 
range from about 7.5–10.2°C, increasing from south to north. Mean annual precipitation decreases from 
1,200 mm in the southern low mountain parts to 700 mm in the north (Baatz et al., 2014).

2.2.  Eddy Covariance Data

CO2 flux measurements from nine EC stations covering different land cover types and elevations within 
the study area have been used for model training and prediction (see Table 1 for details and abbreviations). 
The nine stations are all part of the TERENO network (Zacharias et al., 2011). Measurements from these 
stations were processed with the TK3 software (Mauder & Foken, 2011); 20 Hz frequency data were hereby 
processed to 30 min fluxes and corrected for storage terms to obtain NEE values. All processing and quality 
control schemes were carried out according to the standardized strategy presented by Mauder et al. (2013), 
which also includes a test on developed turbulence after Foken and Wichura (1996). Detailed measurement 
and processing descriptions can be found in the references listed in Table 1, a short description of each site 
is given here.

RO is an extensively managed grassland site, which is cut several times per year and mostly consists of 
ryegrass and smooth meadow grass (Lolium perenne, Poa pratensis). The EC tower was placed in the mid-
dle of two neighboring pastures with slightly different management regimes (Borchard et al., 2015; Korres 
et al., 2010). RU3 is a grassland site with similar characteristics (Post et al., 2015), while RU1 is a grassland 
site at significantly lower elevation (Lussem & Herbrecht, 2019). SE, ME, RU2, and RU4 are cropland sites 
with rotating crops, mostly sugar beet, winter wheat and winter barley (Eder et al., 2015; Lussem & Her-
brecht, 2019; Post et al., 2015; Schmidt et al., 2012). WU1 is located above a planted spruce forest (Picea 
abies) of uniform height (Graf et al., 2014), while nearby WU2 is placed in an 8.6 ha area which was defor-
ested in 2013 to allow a natural succession toward a European beech forest (Ney et al., 2019; Wiekenkamp 
et al., 2016). Currently (2020), spontaneous vegetation of the deforested area consists mostly of grass, shrubs 
(e.g., Cytisus scoparius) and young trees (Sorbus aucuparius, Betula pubescens).

EC data were aggregated from half-hourly fluxes to daily data. As only high to moderate quality EC data 
were used (quality flags 0 and 1), frequent gaps were created. The number (n) of days containing all 48 
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Figure 1.  Elevation from SRTM data (Jarvis et al., 2008) and eddy covariance (EC) stations used for training within the Rur catchment area (left), the location 
of the study area and the FLUXNET stations within Germany (middle) and simplified land cover classes after Lussem and Herbrecht for the Rur catchment 
(2019) (right).
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half-hourly intervals (100%) was only 386 for all TERENO stations combined, which is about 3.2% of all pos-
sible days and constitutes the first data set. Additional data sets were created with a varying number of miss-
ing 30-min intervals allowed: minimum 45/48 (93.75%) intervals of high to moderate quality (n = 1,035; 
8.5% of possible days), 42/48 (87.5%) (n = 2,032; 16.6% of possible days), and 36/48 (75%) (n = 3,996; 32.7% 
of possible days). For the calculation of these daily NEE values, gap-filled data inferred with the REddyProc 
package (Wutzler et al., 2018) were used. In case gap-filled data were not available, the mean was calculated 
of all nonfilled values of each respective day. Based on the minimum of reliable half-hourly values included, 
these data sets are referred to in this paper as 48, 45, 42, and 36, respectively.

Forest sites were underrepresented in the TERENO data, as only one coniferous forest site and no deciduous 
forest site were included. To achieve a better representation of each ecosystem type and to broaden the en-
vironmental envelope, we added daily NEE data with variable ustar-thresholds of six further stations (two 
coniferous forest, two deciduous forest, one grassland, one cropland site) from the FLUXNET2015 database 
(Pastorello et al., 2020), as shown in Table 1. Because quality-flag schemes may have differed among these 
sites, we filtered the FLUXNET data according to the relative uncertainty instead. In order to create data sets 
of equal proportions as the 48, 45, 42, and 36 data sets, we took the X days with the lowest relative uncertain-
ty, with X being 3.2%, 8.5%, 16.6%, and 32.7%, respectively. Finally, these FLUXNET data sets, were added 
to the 48, 45, 42, and 36 data sets. The sensitivity of each of these data sets with a varying quality-quantity 
balance to the RF performance was then further evaluated with the feature selection and cross validation 
strategies described below.

2.3.  Raster Data

Explanatory variables were compiled from various sources and were of different spatial and temporal res-
olutions, as shown in Table 2. These variables were chosen because they are regarded to potentially affect 
NEE, and were selected by availability for the whole time period 2010–2018. Vitale et al.  (2016) showed 
that variations of vegetation indices such as Leaf Area Index (LAI) can highly influence carbon fluxes. 
Ishtiaq and Abdul-Aziz  (2015) concluded that meteorological parameters have a strong linkage with 
CO2 fluxes, especially “radiation-energy” components. Datetime variables such as Day of Year can also 
be a useful proxy for estimating CO2 fluxes (Acosta et al., 2018). We used the following remotely sensed 
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Name ID Sensing period Ecosystem type Elevation (m) Latitude Longitude Documentation

TERENO

Merzenhausen ME 05/2011–12/2018 Cropland 92 50.9297879 6.2969924 Eder et al. (2015)

Rollesbroich RO 05/2011–12/2018 Grassland 514 50.6219142 6.3041256 Gebler et al. (2015)

Ruraue RU1 10/2011–08/2017 Grassland 101 50.8636289 6.4274571 Schmidt and Schween (2018)

Engelsdorf RU2 08/2012–10/2012 Cropland 108 50.9115426 6.3088546 Schmidt (2019)

Kall-Sistig RU3 08/2012–07/2013 Grassland 499 50.5026827 6.525401 Post et al. (2015)

Niederzier RU4 04/2013–07/2013 Cropland 101 50.8795149 6.4498871 Schmidt (2014)

Selhausen SE 04/2011–12/2018 Cropland 101 50.8658521 6.4473198 Schmidt et al. (2012)

Wüstebach forest WU1 06/2010–12/2018 Coniferous forest 624 50.5049269 6.33096248 Graf et al. (2014)

Wüstebach deforested WU2 09/2013–12/2018 Deforested 628 50.50305 6.33596 Wiekenkamp et al. (2016)

FLUXNET

Gebesee DE-Geb 01/2002–12/2014 Cropland 162 51.09973 10.91463 10.18140/FLX/1440146

Grillenburg DE-Gri 01/2004–12/2014 Grassland 385 50.95004 13.51259 10.18140/FLX/1440147

Hainich DE-Hai 01/2002–12/2012 Deciduous Forest 430 51.07921 10.45217 10.18140/FLX/1440148

Leinefelde DE-Lnf 01/2002–12/2012 Deciduous Forest 451 51.32822 10.3678 10.18140/FLX/1440150

Oberbärenburg DE-Obe 01/2008–12/2014 Coniferous Forest 734 50.78666 13.72129 10.18140/FLX/1440151

Tharandt DE-Tha 01/2002–12/2014 Coniferous Forest 385 50.96256 13.56515 10.18140/FLX/1440152

Table 1 
Description of the Eddy Covariance Stations Providing CO2 Flux Data Used for Model Training
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MODIS Version 6 products: MCD18A1 for downward shortwave radiation (2018 only) (D. Wang,  2017), 
MOD44B for percent tree cover, percent nontree vegetation and percent nonvegetated land cover (Dimiceli 
et al., 2015), MCD15A2H for LAI and Fraction of absorbed Photosynthetic Active Radiation (FPAR) (My-
neni et al., 2015), and MYD13Q1 and MOD13Q1 for Normalized Difference Vegetation Index (NDVI) and 
Enhanced Vegetation Index (EVI) (Didan, 2015). All of these data sets were quality controlled to exclude 
contaminated pixels with the quality assurance raster included in the MODIS products. Subsequently, for 
NDVI, EVI, LAI, and FPAR a Whittaker smoother (Atzberger & Eilers, 2011) was applied to fill gaps and 
smooth out noise in the data occurring from undetected clouds. Finally, these vegetation data sets were 
linearly interpolated in time from 8-day to daily data.

Daily gridded data for the meteorological variables air temperature and relative humidity in 2 m, soil tem-
perature, precipitation, zonal, and meridional wind speed in 10 m, long wave upward and downward ra-
diation at the surface and net shortwave and longwave radiation at the surface were obtained from the 
COSMO-REA6 regional reanalysis data set (Bollmeyer et al., 2015) and were regridded with Climate Data 
Operators (Schulzweida, 2019). Furthermore, daily downward shortwave radiation from 2010 to 2017 was 
acquired from the Heliosat (SARAH-2) Surface Solar Radiation Data Set (Pfeifroth et al., 2019), other vari-
ables include a digital elevation model from the Shuttle Radar Topography Mission (Jarvis et al., 2008), and 
soil moisture and potential evapotranspiration from the German Weather Service (DWD, 2019) based on 
Löpmeier (1994).

REITZ ET AL.

10.1029/2020JG005814

5 of 16

Nr. ID Name Source
Temporal 
resolution Spatial resolution Unit

1 NDVI Normalized Difference Vegetation Index MODIS 8 days 250 m

2 EVI Enhanced Vegetation Index MODIS 8 days 250 m

3 LAI Leaf Area Index MODIS 8 days 500 m m2/m2

4 FPAR Fraction of absorbed Photosynthetic Active 
Radiation

MODIS 8 days 500 m %

5 Tree Percent_Tree_Cover MODIS Yearly 250 m %

6 NonTree Percent_NonTree_Vegetation MODIS Yearly 250 m %

7 NonVeget Percent_NonVegetated MODIS Yearly 250 m %

8 SWI Downward Shortwave Radiation Heliosat (2010–2017) MODIS (2018) Daily 0.05° (Heliosat) 5 km (MODIS) W/m2

9 SWB Net Shortwave Radiation COSMO-REA6 Daily 6 km W/m2

10 LWI Downward Longwave Radiation COSMO-REA6 Daily 6 km W/m2

11 LWU Upward Longwave Radiation COSMO-REA6 Daily 6 km W/m2

12 LWB Net Longwave Radiation COSMO-REA6 Daily 6 km W/m2

13 Precip Precipitation COSMO-REA6 Daily 6 km mm

14 Tair Air Temperature (2 m) COSMO-REA6 Daily 6 km K

15 Tsoil Soil Temperature COSMO-REA6 Daily 6 km K

16 rH Relative Humidity (2 m) COSMO-REA6 Daily 6 km %

17 u Zonal Wind Speed (10 m) COSMO-REA6 Daily 6 km m/s

18 v Meridional Wind Speed (10 m) COSMO-REA6 Daily 6 km m/s

19 ETpot Potential Evapotranspiration DWD Daily 1 km mm

20 Soilm Soil Moisture DWD Daily 1 km %

21 Month Month Monthly Static

22 Season Season 3 months Static

23 DoY Day of Year Daily Static

24 DEM Elevation SRTM Static 30 m m

Table 2 
Predictor Variables Used for Model Training
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Raster data were used and further processed at two different steps in the analysis, to i) extract values at the 
coordinates of each site for model training and validation, and ii) predict NEE for the entire catchment area. 
For the latter, all raster sets were homogenized to the same extent and same spatial resolution of 250 m with 
bilinear interpolation of the raster package in R (Hijmans, 2020).

2.4.  RF Model

RF is a machine learning method based on an ensemble of many binary decision trees. The algorithm was 
introduced by Breiman (2001) and is widely used for classification and regression in ecology (e.g., Aide 
et al., 2012; Prasad et al., 2006; Tramontana et al., 2016). Each decision tree is grown with a random subsam-
ple with replacement of the input data, called bootstrapping (Efron, 1979). At each node in the decision tree, 
a threshold of a randomly selected explanatory variable is ascertained to split the data into the two most 
homogeneous subgroups, i.e. with the lowest variance. The leaf nodes at the end of the tree do not further 
split the data but contain predictions of the target variable. This value is the mean of the target variable of 
all elements in the corresponding subgroup. For the final prediction, results of all trees (in this case 500) are 
averaged to overcome weaknesses of single trees. One consequence of this algorithm, however, is that pre-
dictions cannot be out of bounds of the training range. In this study, we used the implementation of the RF 
code in the randomForest package in R by Liaw and Wiener (2002) to predict NEE in a regression approach. 
In order to identify an ideal number of predictor variables used at each split node (“mtry”), model tuning 
was conducted with the caret package, which is a wrapper to perform model tuning for various predictive 
models.

In order to perform feature selection, we first split the data into spatial and temporal folds (described in the 
next section in detail) with the CAST package (Meyer, 2018). In a next step, we applied the forward feature 
selection (FFS) procedure of this package with root mean squared error (RMSE) as performance metric 
to punish high errors in particular. The advantage of CAST FFS is that feature selection results are based 
on spatiotemporal cross validation rather than on training data only. However, as FFS sometimes selected 
very few variables with unsatisfactory performance (see Section  3.1), a slightly modified version of this 
procedure has been devised and compared to FFS. We applied a backward feature elimination (BFE), which 
starts with all features and iteratively removes the worst feature based on a spatial or temporal cross vali-
dation. Conversely, FFS iteratively adds features to the best combination of two features. Since RF relies on 
randomization, results can significantly differ between model runs. Hence, each iteration within BFE was 
repeated five times to average out such randomization effects. This leads, however, to a significant increase 
in computation time. The general algorithm of the BFE procedure is described in Table 3. To illustrate the 
impact of these two feature selection procedures on model performance, model runs without any feature 
selection were evaluated too.

2.5.  Cross Validation

In order to assess RF performance beyond the scope of training data, NEE predictions have been cross-vali-
dated for (a) spatially and (b) temporally independent test sets. The additional FLUXNET data from outside 
the catchment were only used for training, whereas the TERENO data were used for training and testing. 
Figure 2 displays the cross validation strategies in a schematic way. Especially spatially independent test 
sets may be important for the assessment of the upscaled NEE predictions presented in Section 3.2 because 
they simulate predictions for pixels without any information used for model training. These cross validation 
strategies have been performed for all different NEE data sets and feature selection methods.

a)	 �Data were split into folds by station ID. Stations were only considered for leave-out if they i) were not 
the only station of their land cover class to ensure that the class was still contained in the training data 
when excluding the station and ii) had data spanning over at least three years to ensure representative 
results. Therefore, five stations (SE, RU1, ME, RO, and WU1) were regarded, though all other stations 
were included for training.

b)	 �Data were split into folds by year. Each fold containing one year of data was left out once and predicted 
by a model trained with the other years. 2010 has only been regarded for training and not for testing as 
only data from one TERENO site was available for 2010.
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We used the coefficient of determination (R2), the mean absolute error (MAE) and RMSE as metrics to 
evaluate model performance.

The relative importance of selected variables for model building was assessed through RF's internal variable 
importance metric implemented in the randomForest package. For this, data points of each variable are ran-
domly permutated and the relative increase of the mean squared error (MSE) based on an internal cross val-
idation within in the training data is measured. This error is assumed to increase if the variable is important.
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Algorithm 1

01:    Split data into spatial or temporal folds [CAST]

02:    Do 5 times with all predictor variables:

03:                       Train and test model with a leave-one fold-out cross validation [caret]

04:                       Calculate RMSE over all folds

05:    Get previous ← Averaged RMSE over five repetitions

06:    For each remaining predictor variable do:

07:                       Exclude variable

08:                       Do 5 times:

09:                                          Train and test model with a leave-one fold-out cross validation [caret]

10:                                          Calculate RMSE over all folds

11:                       Average RMSE over 5 repetitions

12:    Get bestSubset ← variable subset with lowest average RMSE

13:    Get bestRMSE ← RMSE of bestSubset

14:    If bestRMSE < previous: stop

15:    Else: previous ← bestRMSE

16:           repeat from step 06 onwards with bestSubset

Abbreviation: RMSE, root mean squared error.

Table 3 
General Algorithm of the Backward Feature Elimination (BFE), the Indications in Square Brackets Refer to the 
R-Packages Used for the Respective Step

Figure 2.  Schematic depiction of the spatial and temporal cross validation (CV) strategies that have been applied for 
this analysis. t1, t2, and t3 refer to three different time steps (years in our case), while ta refers to the FLUXNET data 
which are outside the timespan of TERENO data (prior to 2010) and tb refers to the years included in the TERENO data 
(2010–2014). The figure was recreated and modified after Meyer et al. (2018).



Journal of Geophysical Research: Biogeosciences

3.  Results
3.1.  Cross Validation Results

We evaluated NEE predictions with a leave-one-fold-out cross validation by withholding either sites (spatial 
cross validation) or years (temporal cross validation). Table 4 summarizes the spatial and temporal cross 
validation results of different NEE data sets and feature selection methods. The results indicate that spatial 
prediction was generally more difficult than temporal prediction. Models trained with the 48 data set had 
the lowest RMSE values, though with the 45 data set slightly higher R2 could be obtained. Especially for 
temporal cross validation, RMSE/MAE and R2 did not coincide well with each other. The feature selection 
methods FFS and BFE were either closely in line with each other or BFE gave considerably better results 
than FFS. In these cases, FFS always selected less variables than BFE. Furthermore, BFE always performed 
better than no feature selection, indicating that BFE is more suitable than FFS or no feature selection for 
this analysis. Few patterns can be observed regarding selected variables, most notably that elevation was 
selected for every model with temporal cross validation, though very seldom for spatial prediction. The 
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Cross validation Data set Feature selection RMSE MAE R2 n Var Variables selected

Spatial

48 FFS 2.96 2.25 0.35 6 9,12,19,22,24

BFE 2.72 1.9 0.41 15 2,5:7,10:12,14:20,22

None 3.01 2.19 0.34 24 1:24

45 FFS 2.88 2.07 0.43 10 2,5,7,8,12,14,19:21,23

BFE 2.84 2.07 0.42 10 5,7,11,12,14,17,19:22

None 3.16 2.24 0.34 24 1:24

42 FFS 3.18 2.23 0.34 9 1,2,5,7,8,12,15,21,22

BFE 3.2 2.25 0.33 14 1,2,5:8,12,14,:16,19,21,23

None 3.32 2.37 0.31 24 1:24

36 FFS 3.4 2.42 0.32 10 1,2,5:9,11,21,22

BFE 3.4 2.41 0.32 17 1:3,5:9,11,14:18,20:22

None 3.51 2.54 0.3 24 1:24

Temporal

48 FFS 2.54 1.89 0.31 8 5,6,8,9,16,19,22,24

BFE 2.55 1.78 0.32 11 1,5,8,14,16,19,21:24

None 2.91 2.02 0.24 24 1:24

45 FFS 2.67 1.84 0.46 8 1,5,10,17,19,21,23:24

BFE 2.59 1.79 0.5 15 1,5:8,11,12,15,17,19:24

None 2.66 1.82 0.46 24 1:24

42 FFS 3.01 2.08 0.44 12 1,2,6:9,14,17:19,23:24

BFE 2.95 2.05 0.45 14 2,5:9,11,14,15,17,18,21:22,24

None 3.06 2.1 0.43 24 1:24

36 FFS 3.34 2.32 0.44 13 1:3,5:8,11,17:19,21,24

BFE 3.32 2.28 0.44 16 2,3,5:11,14,17,18,21:22,24

None 3.41 2.39 0.42 24 1:24

Note. Performance is displayed as root mean squared error (RMSE; in g C m−2d−1), mean absolute error (MAE; in g C 
m m−2d−1) and coefficient of determination (R2). n Var gives the number of selected variables, variables selected lists 
which variables were selected by the Nr. Stated in Table 2. RMSE, MAE, and R2 values are reported as averages of the 
respective folds.
Abbreviations: BFE, backward feature elimination; FFS, forward feature selection.

Table 4 
Cross Validation Results for Different NEE Data sets and Different Feature Selection Methods
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variables LAI, FPAR, and Precip, however, were almost always exclud-
ed. For the final upscaling we selected the model with the best RMSE by 
spatial cross validation in order to optimize it for spatial prediction and 
avoiding high errors. Hence, we chose the model trained with the 48 data 
set and tuned with BFE.

The relative importance of selected variables was assessed by the impor-
tance function of the randomForest package. As shown in Table 5, the most 
important variables were EVI and ETpot. Figure 3 displays an assessment 
of the quality of NEE predictions in comparison to observed TERENO 
validation data. While predictions and observations have almost the same 
mean values (−2.31 and −2.3 g C m−2d−1) and rather similar median val-
ues (−1.84 and −1.33 g C m−2d−1), and the regression line a slope close 
to 1 (y = 0.15 + 1.06x; Figure 3a), the standard deviation of predictions 
(2.5 g C m−2d−1) is much lower compared to observations (3.73 g C m−2d−1). 
The interquartile range of predictions is also narrower than of observations 
(−3.96 to −0.27 compared to −4.49 to 0.29 g C m−2d−1; Figure 3b). As for 
predictions, values from about −5 to 1  g  C  m−2d−1 were more frequent, 
and outside of that range less frequent than in observations, resulting in a 
narrower distribution of values (Figure 3c). This results in higher absolute 
errors for high flux magnitudes, especially for positive fluxes (Figure 3d).

3.2.  Upscaling Results

We predicted daily NEE data at 250 m spatial resolution for the Rur catch-
ment from 2010 to 2018. According to the results of the previous section, 
the 48 NEE data set and explanatory variables selected with spatial BFE 
were used for model training. Table 6 shows the upscaled results aggre-
gated by land cover class and season. To put these results into perspective, 

such aggregations over actual measurements within the catchment are also included in Table 6. Pixels clas-
sified as urban or built-up were excluded from the analysis because anthropogenic CO2 emissions were not 
represented in the training data. Results show that vegetated areas of the Rur catchment were on average a 
CO2 sink between 2010 and 2018 with about −0.65 g C m−2d−1. Grasslands and deciduous forests were the 
strongest sink (−0.76 g C m−2d−1 and −0.72 g C m−2d−1, respectively), while croplands captured the least net 
amount of CO2 (−0.56 g C m−2d−1). During winter (December–February) and fall (September-November), 
the Rur catchment was a CO2 source (0.86 g C m−2d−1 and 0.75 g C m−2d−1, respectively), while in spring 
(March–May) it was a strong sink (−2.14 g C m−2d−1), closely followed by summer (June–August; −2.02 g C 
m−2d−1). Figure 4 shows yearly courses of predicted NEE aggregated by land cover for the investigation peri-
od. Additionally, daily NEE raster were aggregated by season and the whole investigation period (Figure 5). 
These results show that all land cover classes were a CO2 source in fall and winter and sink in spring and 
summer, although the CO2 uptake started decreasing in summer already. Croplands were the earliest to 
become a sink in spring and also to turn into a source after day of year 200. This NEE sink capacity decrease 
of croplands from spring to summer is also observable in Figure 5 as croplands prevail in the northern half 
of the catchment. Forests were a stronger source than croplands and grasslands in fall and winter, though 
deciduous forests were also the strongest sink with average NEE below −5 g C m−2d−1 around day of year 
170. However, coniferous forests and especially deciduous forests were a greater sink in summer in actual 
measurements, and no CO2 source in fall. In contrast, grasslands were predicted to be a greater sink in 
summer compared to actual measurements. Differences between land cover classes were in general less 
pronounced in upscaled predictions than in measurements.

4.  Discussion
The results of the study showed that a data-driven upscaling of NEE to the regional scale predicted the aver-
age NEE well though underestimated the variance (Figure 3b). Feature selection and the right quality-quan-
tity balance of NEE data, however, can improve model performance. Similar to our results, high errors for 
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Variable %IncMSE

EVI 13.85

ETpot 12.29

Season 3.49

rH 3.02

LWB 2.70

Tree 2.55

LWU 2.26

LWI 2.24

Tsoil 2.18

NonTree 2.11

Tair 2.06

Soilm 1.74

v 1.11

NonVeget 1.01

u 0.60

Note. %IncMSE describes the percental increase of the mean squared 
error after permutation as implemented in the randomForest package.
Abbreviations: BFE, backward feature elimination; EVI, Enhanced 
Vegetation Index; LWB, Net Longwave Radiation; LWI, Downward 
Longwave Radiation; LWU, Upward Longwave Radiation.

Table 5 
Importance of Each Variable Selected by BFE for the 48 Data set
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NEE upscaling have also been observed in other studies (Jung et al., 2011; Tramontana et al., 2016). Xiao 
et al. (2011) showed that an ecosystem model predicted NEE with an R2 between 0 and 0.66, depending on 
the site. Richardson et al. (2012) demonstrated increasing random errors with flux magnitude for half-hour-
ly CO2 flux measurements. The absolute errors displayed in Figure 3d show a similar pattern, indicating that 
high flux magnitudes may be difficult to predict and validate because actual measurements in those ranges 
are already error-prone.

Meyer et al. (2018) demonstrated that random cross validation lead to an overoptimistic view of the model 
performance compared to spatial cross validation. In our case, RMSE could be improved to 1.85 g C m−2d−1 
and R2 up to 0.82 with a random cross validation, indicating that mere data reproduction is much easier 
than actual spatial prediction. Elevation was named as a typical example of a spatially autocorrelated pre-
dictor by Meyer et al. (2019). Hence, it is reasonable that it was removed by FFS and BFE for spatial cross 
validation, but not for temporal cross validation. Besnard et al. (2019) concluded that integrating memory 
effects of past disturbances in a recurrent neural network outperforms nondynamic statistical models like 
RF. So not including memory effects in our study might limit the prediction capacities.
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Figure 3.  Assessment of prediction quality in comparison to observations from TERENO test data. (a) scatter plot with regression line (blue) and identity line 
(black); (b) boxplots with mean values displayed as crosses; (c) density plot of predicted (blue) and observed (red) NEE values; (d) absolute error by observed 
NEE. The vertical line at zero marks the border between CO2 sinks (left) and CO2 sources (right).
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One intrinsic feature of RF is to not extrapolate beyond the input data due to the prediction being the av-
erage target value of the subgroup within a leaf node. Although we attempted to overcome this limitation 
by including sites from outside the catchment and hence broadening the environmental envelope, outliers 
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Upscaling results

Land cover Winter Spring Summer Fall Year

Coniferous F. 0.92 −1.75 −2.54 0.9 −0.63

Deciduous F. 1.07 −1.99 −2.77 0.85 −0.72

Grassland 0.87 −2.14 −2.35 0.6 −0.76

Cropland 0.67 −2.41 −1.17 0.74 −0.56

Study Area 0.86 −2.14 −2.02 0.75 −0.65

EC tower measurements

Land cover Winter Spring Summer Fall Year

Coniferous F. 0.46 −2.36 −3.5 −1.1 −1.63

Deciduous F.* 1.15 −0.95 −6.11 −0.64 −1.64

Grassland 0.56 −1.71 −0.83 0.55 −0.36

Cropland 0.38 −3.08 −1.79 0.76 −0.93

Note. *Values for the class deciduous forest were calculated from the two FLUXNET stations De-Hai and De-Lnf as no measurements of that class were 
available within the catchment.

Table 6 
NEE in g C m-2d-1 Aggregated by Land Cover and Season of Upscaled Data Over Vegetated Parts of the Rur Catchment (above) and of eddy covariance (EC) 
Measurements Within the Catchment Described in 1 (below)

Figure 4.  Yearly courses of predicted net ecosystem exchange (NEE) aggregated by each land cover class for the period 
2010–2018 (points), and smoothed by a loess function (lines; above). Standard deviation (±) for each of those lines 
separately (gray bands; below).
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with high flux magnitudes were still underpredicted. A portion of the prediction error can also be attributed 
to uncertainties in the raster data sets used for model training and predictions. Some of the most important 
variables such as ETpot, Tair, and rH were also measured in situ at the EC stations SE, RO, WU1, and WU2. 
Averaged over these four stations, Tair from Cosmo-REA6 coincided very well with in situ Tair (R2 = 0.99); 
the same applies to rH (R2 = 0.88), and modeled ETpot (R2 = 0.93). SWI was combined from two different 
sources without data overlap but both sources also agree well with in situ measurements (Heliosat: R2 of 
0.96; MODIS: R2 of 0.92). However, we assume that MODIS-based vegetation indices did not capture small-
scale vegetation structures well and hence contributed to prediction errors. A possibility to improve vegeta-
tion data to inform the RF model would be to use remote sensing data with a higher spatial resolution such 
as Sentinel-2 (Drusch et al., 2012), which was not used here because it did not cover the whole investigation 
period. Another limitation of our study comprises the exclusion of 20.4% of the land area from the analysis 
because anthropogenic fluxes were not measured. This high proportion results from the high population 
density in the northern part of the catchment and the relatively large (13 km2) Inden open pit mine. How-
ever, only small biospheric net fluxes are to be expected from these areas as they are to a large extent non 
vegetated and thus may not contribute much to the overall biospheric fluxes of the catchment.

The results indicate that smaller data sets incorporating only few (<6.25%) or no low-quality intervals in 
the aggregated daily fluxes are more beneficial than larger data sets with more low-quality data. Small data 
sets can increase overfitting of a predictive model; however, the ensemble characteristic of RF of averaging 
multiple trees also counteracts overfitting. Thus, it seems reasonable for RF to select for small data sets with 
higher quality. Although a standardized quality-flag scheme was used on the TERENO-data set, it should 
be noted that quality-flagging is not fully standardized in the flux-community yet. Thus, our thresholds may 
not be transferable to other schemes.

As uncertainty is correlated with flux magnitude, filtering the FLUXNET data by small relative uncertain-
ties has the side-effect to favor large NEE values and discriminate small ones, whereas quality flags are 
not correlated with magnitude. However, the distribution of the TERENO NEE magnitudes shows that, 
naturally, small fluxes occur much more frequent than large fluxes (Figure 3c). Such imbalanced data is 
a problem for RF, which requires about equally sized domains in the training data to not overpredict the 
largest domains (Krawczyk, 2016; Torgo et al., 2013). Therefore, favoring large fluxes in the FLUXNET data 
improves their representation in the training data sets. The test data sets, however, consisting only of qual-
ity-flag filtered data, remained unbiased and are thus regarded suitable for model cross validation. Even so, 
Figure 3c shows that the maximum around NEE = 0 in the training data was still overpredicted and rare 
domains underpredicted, indicating that the training data probably was still not balanced enough.

The performance differences between BFE and FFS can partly be explained by local optima of variable 
subsets, as sequential feature selection algorithms are prone to being trapped in such local optima (Liu & 
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Figure 5.  Predicted net ecosystem exchange (NEE) of the Rur catchment aggregated for the whole investigation 
period 2010–2018 and for each season. Mean values for each map are 0.86 g C m−2d−1 (winter), −2.14 (spring), −2.02 
(summer), 0.75 (fall), and −0.65 (year).
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Motoda, 2008). In these cases, the first local optimum trap for BFE is much closer or even identical to the ab-
solute optimum than the first local optimum trap for FFS. Hence, a BFE is regarded superior in such cases. 
The relatively high variance between RF model runs increased fluctuations and can thus amplify this effect 
by creating artificial local optima, leading to a suboptimal variable selection. Averaging five model runs re-
duced the variance within 100 model runs by about 76%, generally leading to more robust results. However, 
it should be noted that variance between model runs can be lower for other machine learning algorithms 
and that repeating and averaging is computationally expensive and therefore not suitable for large numbers 
of variables to select from. For such cases, a genetic algorithm like GHGA (Jung & Zscheischler, 2013) may 
be more appropriate.

The relatively high elevations of forests and grasslands in the catchment resulted in lower average annu-
al temperatures in years 2010–2018 (coniferous forests: 8.9°C, deciduous forests: 9.6°C, grasslands: 9.5°C) 
compared to croplands (10.8°C), and hence a later start of the growing season might be an explanation for 
croplands being an earlier CO2 sink. Deciduous trees, on the other hand, first need to build-up the canopy 
leaf area to utilize suitable conditions for photosynthesis, though having higher photosynthesis capacities 
when fully leafed. However, differences between land cover types were less pronounced in upscaled results 
than in actual measurements (Table  6). One explanation for this might be mixed pixels in MODIS EVI 
(250 m spatial resolution) containing spectral responses from different land cover types.

The catchment was a slightly stronger CO2 sink in spring than in summer. Lindroth et al. (2008) stated that 
net CO2 uptake in Swedish spruce forests is shifted toward the earlier parts of the growing season because 
respiration was still low while radiation was already high. Managed grasslands on the other hand, usually 
are cut several times during summer. For example, Rollesbroich was cut three times in the growing season 
of 2013 (Borchard et al., 2015) and each defoliation had the potential to turn grassland temporally into a 
CO2 source (Wohlfahrt et al., 2008). Croplands showed the largest decrease of CO2 uptake in late summer. 
Schmidt et al.  (2012) analyzed vegetation parameters of a winter wheat field in the catchment over the 
course of two years. LAI of living/green leaves reached the maximum in early May, plant senescence (LAI 
of brown leaves) already started in late April and reached its peak in July. Although these patterns can dif-
fer for other crops, the results still indicate that specific croplands uptake the most CO2 in spring. The EC 
aggregations in Table 6 further confirm a decrease of CO2 uptake in summer for croplands and grasslands. 
In comparison, the aggregated EVI of the whole Rur catchment started slowly increasing in late February, 
peaked in early June, and declined afterward. Graf et al. (2020) showed that the exceptional drought and 
heat across Central Europe during the 2018 growing season resulted in a reduced net CO2 uptake for many 
drought-affected EC stations, including SE, RO and WU1. The whole catchment was predicted to be a sig-
nificantly weaker CO2 sink in summer 2018 (−0.89 g C m−2d−1) compared to 2010–2017 (−2.16 ± 0.45 g C 
m−2d−1). Whereas in spring 2018 the sink capacity decrease to 2010–2017 was less distinct (−1.92 g C m−2d−1 
in 2018 compared to −2.16 ± 0.51 g C m−2d−1 2010–2017), indicating that the seasonal averages may be in-
fluenced by one exceptional year. In view of these findings, we consider the seasonal variations of upscaled 
NEE as largely plausible.

5.  Conclusion
In this study, we scaled up daily EC NEE data to the regional scale at 250 m spatial resolution with a RF 
model integrating remote sensing and reanalysis data. Furthermore, we evaluated the impact of feature 
selection and NEE data quality-quantity balance on the model performance. We conclude that upscaling 
results can be improved with a BFE to remove unnecessary predictors and by incorporating no or only small 
(<6.25%) amounts of low-quality intervals in the aggregated daily NEE data. Therewith, we provided a da-
ta-driven approach for predicting spatial NEE data sets which can be used for assessing the CO2 uptake of 
heterogeneous local and regional ecosystems or calibrating and validating process-based models. However, 
the spread of NEE observations and differences between land cover types were underestimated.

Vegetated parts of the Rur catchment acted as a CO2 sink between 2010 and 2018 with about −0.65 g C 
m−2d−1. The catchment was predicted to be a slightly stronger sink in spring than in summer probably partly 
due to plant senescence increasing in summer in cropland and grassland ecosystems, while it was a CO2 
source during fall and winter. In future work, a model incorporating emissions from urban and built-up 
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areas should be implemented to produce spatially continuous NEE data sets. Furthermore, remotely sensed 
vegetation products with a higher spatial resolution are likely to improve model accuracy as they would 
allow to distinguish small-scale vegetation structures.

Data Availability Statement
Data used in this study are freely available from the TERENO and TR32 portals, the FLUXNET2015 data-
base, the LP DAAC Catalog (MCD18A1, MOD44B, MCD15A2, MYD13Q1, MOD13Q1), the EUMETSAT 
Navigator, and CGIAR-CSI. Upscaled daily NEE data for the Rur catchment and data from the German 
Weather Service used in this study are stored at https://doi.org/10.5281/zenodo.3776011.
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