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Abstract

Due to complicated backgrounds and unclear target orientation, automated object

detection is difficult in the field of archaeology. Most of the current convolutional

neural network (CNN) object-oriented detection techniques are based on a faster

region-based CNN (R-CNN) and other one-stage detectors that often lack adequate

processing speeds and detection accuracies. Recently, the two-stage detector Mask

R-CNN technique achieved impressive results in object detection and instance

segmentation problems and was successfully applied in the analysis of archaeological

airborne laser scanning (ALS) data. In this study, we outline a modified Mask R-CNN

technique that reliably and efficiently detects relict charcoal hearth (RCH) sites on

light detection and ranging (LiDAR) data-based digital elevation models (DEMs).

Using image augmentation and image preprocessing steps combined with the deep

learning-based adaptive gradient method with a dynamic bound on the learning rate

(AdaBound) optimization technique, we could improve the model's accuracy and

significantly reduce its training time. We use DEMs based on high-resolution LiDAR

data and the visualization for archaeological topography (VAT) technique that give

images with a very strong contrast of the terrain and the outline of the sites of

interest in the North German Lowland. Therefore, the model can identify RCH sites

with an average recall of 83% and an average precision of 87%. Techniques such as

the modified Mask R-CNN method outlined here will help to greatly improve our

knowledge about archaeological site densities in the realm of historical charcoal

production and past human-landscape interactions. This method provides an

accurate, time-efficient and bias-free large-scale site mapping option not only for the

North German Lowland but potentially for other landscapes as well.
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1 | INTRODUCTION

The increasing availability of airborne high-resolution light detection

and ranging (LiDAR) data has led to an ever-growing interest in

applying remote sensing to the archaeological domain, in which the

use of machine learning techniques is now also increasing

(e.g., Cowley et al., 2020; Davis, 2018; Opitz & Herrmann, 2018).

Considering the trends in the developments of neural networks in

recent years, deep learning techniques have initiated a significant

change in the field of computer vision. Catalyzed by the use of

convolutional neural networks (CNNs), strong advances in many

classic visual inspection tasks have been made recently, for example,

in object detection, object localization, semantic segmentation and

object instance segmentation tasks (He et al., 2016; Krizhevsky

et al., 2012; Simonyan & Zisserman, 2014; Zagoruyko et al., 2016).

Focussing on neural networks for object detection, progress made

in recent years is almost completely linked to the basic CNN-based

model and its extensions, namely, the region-based CNN (R-CNN),

the fully convoluted network, the Fast R-CNN and the more

efficient variant Faster R-CNN (Girshick, 2015; Girshick et al., 2014;

Long et al., 2015; Ren et al., 2015). Mask R-CNN expands the

Faster R-CNN architecture by adding an algorithmic branch for

predicting an object segmentation mask parallel with the existing

region proposal stage (He et al., 2017). A detailed description of the

Mask R-CNN technique is given elsewhere (e.g., see, Kazimi

et al., 2019). Because of its relatively easy trainability and efficiency,

Mask R-CNN has seen a surge in popularity for use in object

detection (Ahmed et al., 2020; Johnson, 2018; Sorokin, 2018; Yu

et al., 2019) and in the analysis of archaeological airborne laser

scanning (ALS) data (Gong & Zhang, 2020; Pham & Lefèvre, 2018;

Verschoof-van der Vaart & Lambers, 2019).

In recent years, small anthropogenic landforms, that is, so-called

relict charcoal hearths (RCHs, sometimes also called charcoal-

burning platforms or kilns), which are mainly found in forests and

result from historical charcoal production, have attracted the

attention of archaeologists and soil scientists in the North German

Lowland (Raab et al., 2015). RCHs are part of landscapes, the

so-called sociocultural fingerprint (Tarolli et al., 2019), and an

important source of anthracological information (Gocel-Chaltè

et al., 2020; Smidt et al., 2017), providing insight into historical land

use practices (e.g., Tolksdorf et al., 2020; Deforce et al., 2020).

Recent studies in soil science focus on RCH site-specific changes of

soil chemical properties, such as increases in soil organic matter

contents and element stocks (e.g., Donovan et al., 2021), changes in

soil physical properties (e.g., Schneider, Hirsch, et al., 2020) and

effects on vegetational and faunal growth (e.g., Buras et al., 2020;

Gießelmann et al., 2019).

In flat terrain, RCHs are generally circular in shape, with a wide

range of diameters (up to 30 m and averaging 12 m), are elevated

several decimetres above the earth's surface and are often

surrounded by a shallow circular ditch or multiple small pits (Hirsch

et al., 2020). These morphological properties are favourable for

detecting RCHs on LiDAR-based digital elevation model (DEM)

visualizations because the circular elevation (positive feature) and

the ditch (negative feature) form a strong visual contrast. Various

studies manually mapped and digitized RCH sites, mostly by means

of shaded relief visualizations (e.g., Carter, 2019; Deforce

et al., 2013; Raab et al., 2019; Risbøl et al., 2013; Schmidt

et al., 2016) or other visualization techniques (Hesse, 2010). Since

high-resolution LiDAR data have become readily available for an

increasing number of countries and RCH sites are found in

increasing larger forested areas, fully or semiautomated methods are

required to decrease the workload of such labour-intensive manual

mappings. Some previous (semi)automated mapping approaches for

RCHs and other archaeological objects involve template matching

(Schneider et al., 2014), geographic object-based image analysis

(GEOBIA) (Witharana et al., 2018) and, more recently, deep learning

techniques (e.g., Kazimi et al., 2020; Lambers et al., 2019; Trier

et al., 2018; Trier et al., 2021; Verschoof-van der Vaart et al., 2020).

Mapping RCH sites shares similarities with mapping burial mounds,

which are some of the most frequently studied archaeological sites

globally (Davis, 2020). However, mounds may vary in their shape

more so than RCHs, having rectangular, triangular and trapezoidal

elevation profiles (Davis et al., 2019), while RCH sites are predomi-

nantly circular elevations. Nonetheless, impressive mound mapping

results using machine learning techniques have been achieved

(e.g., Guyot et al., 2018; Caspari & Crespo, 2019).

Recently, Mask R-CNN has been used by Kazimi et al. (2019)

for the DEM-based identification of archaeological objects such as

bomb craters, charcoal hearths, and barrows, constituting a

multiobject detection approach. Our study uses a modified Mask

R-CNN approach, which we developed independently from the

aforementioned study. We propose several modifications and

extensions to the standard Mask R-CNN technique to (1) make it

adapt easier to new data and reduce overfitting, (2) minimize the

training time of the model and (3) improve the model's accuracy

by adding image preprocessing and augmentation steps. Therefore,

we outline an improved method to detect charcoal hearths that

can be easily applied to other objects in LiDAR DEMs.

2 | STUDY AREA

The study area is located in Lower Lusatia in the North German

Lowland (Figure 1). It is covered by forests consisting mainly of pine

and oak. The southwestern part of the area has been previously

mapped based on LiDAR data, which revealed a relatively high

density of RCHs of up to 440 RCH sites per square kilometre, but

there are also areas featuring much lower densities (Raab

et al., 2019). The relief throughout the area is disturbed by former

military activities (trenches, bunkers, etc.). RCH sites in the area

have been previously mapped and described based on older DEMs

with comparably lower quality (1- and 2-m grid sizes) and ground

surveys by Bonhage et al. (2020), Schneider, Bonhage, et al. (2020)

and Raab et al. (2019). In this study, we mapped RCHs in

20 subareas of 0.17 km2 each, totalling 3.4 km2. Ten training and
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10 validation areas were selected to include a variety of RCH site

densities and anthropogenic relief disturbances. The sites in the

north are, on average, larger, have a lower spatial density and yield

less anthropogenic disturbance on the adjacent relief than the sites

to the south. The charcoal produced in the area provided resources

for the nearby ironwork in Peitz, which operated from the mid-16th

to the mid-19th century. Consequently, site dating using dendro-

chronology revealed that the RCH ages were between 1654 and

1852 (Raab et al., 2015; Raab et al., 2019).

3 | METHODS

3.1 | LiDAR data DEM visualization and mapping

DEM visualizations were created based on a LiDAR data-derived

0.5-m grid using the Relief Visualization Toolbox, version 2.2.1

(Kokalj & Somrak, 2019). We applied a modified version of the

visualization for archaeological topography (VAT) method. It creates a

blended image of three DEM visualizations: (1) the sky-view factor,

which is a method of diffuse illumination that uses a sky-view factor

corresponding to a portion of the visible sky that is limited by the

relief (Zakšek et al., 2011); (2) the positive openness, which is a

method that highlights the highest and lowest points of features

(Doneus, 2013); and (3) regular analytical hillshading. The first two

methods highlight features independently from their aspect or the

illumination angle of the light source and therefore greatly enhance

the visibility of all the relief features (Figure 2). We omitted the slope

gradient layer since it did not enhance the visibility of the RCH

features and added considerable noise to the images. The images

were created and blended according to the default settings of the

toolbox and stored as.jpg files (1200 × 600). The RCH sites in all the

areas were digitally mapped by an experienced human operator prior

to Mask R-CNN analysis. The sites were digitized by drawing a circle

around the edge of the RCH platform (positive relief feature), which

was saved in a shapefile. We excluded the ditch (negative relief

feature), since its outer edge DEM signature is sometimes disturbed

and/or barely visible. Bounding boxes for training the model were

created with the Python-based LabelImg (Tzuatlin, 2015) application.

The bounding boxes were drawn to include the platforms and the

ditch DEM signature.

3.2 | Image preprocessing and augmentation

We applied several image preprocessing steps to increase the success

of object detection. First, we vectorized the maps and bounding boxes

since the input data and targets must be tensors of floating point

precision values. Then, we normalized the tonal range of the maps by

converting the pixels from integer grayscale values ranging from 0 to

255 to floating point values and dividing by 255, resulting in final

floating point values ranging from 0 to 1. Without the normalization

step, the model can trigger large gradient updates that can prevent

the network from converging (Sola & Sevilla, 1997). Furthermore, we

applied nonlinear diffusion filtering (Perona & Malik, 1990) on the

images to further enhance the RCH features. For this step, we set

the processing time to 10 s with a lambda value of 0.5. To increase

the number of sites and decrease model overfitting, we first

augmented the 10 training area maps by using image transformations.

The maps were duplicated randomly and modified by image rotation,

translation and horizontal and vertical flipping. Therefore, the number

of training maps was increased to 200.

F IGURE 1 Study area overview with the training and validation areas. Light detection and ranging (LiDAR) data courtesy of LEAG.
DEM = digital elevation model [Colour figure can be viewed at wileyonlinelibrary.com]
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3.3 | Mask R-CNN model setup

Mask R-CNN relies on region proposal networks (RPNs) for identify-

ing objects and is therefore a two-stage detector system. The three

main steps (Figure 3) of the model are as follows: An RPN is used to

decide where to search to reduce the computational requirements of

the overall inference process; the region proposals are transformed by

means of classification and creating of bounding boxes; and finally,

the creation of segmentation masks, in which the algorithm takes

positive regions of interest (ROIs) as input and creates 28 × 28 pixel

floating-point value masks, which are then scaled up. For the

inference process, the algorithm uses a multitask loss function:

L = Lcls + Lbbox + Lmask (He et al., 2017). The developed model is

based on a present implementation by Matterport, Inc. and released

under an MIT licence, which is itself constructed based on the open-

source libraries Keras and TensorFlow. In our study, we started by

using weights obtained from the Microsoft Common Objects in

COntext (MS COCO) dataset (Lin et al., 2014). However, a preliminary

test showed unsatisfactory results caused by the specific domain-

related problem of our dataset, that is, the occurrence of small

objects. To counter this issue, we modified the anchor scale to values

of 8, 16, 32, 64 and 128. We also modified the training anchors per

image to values of 64 and 128, allowing for a large number of

detected objects. We trained the model for 15 epochs using the

stochastic gradient descent (SGD) method with a momentum of 0.9

and starting with a scheduled learning rate to speed up the training

process. Furthermore, we compared the training results and training

time for the adaptive gradient method with the dynamic bounds of

the learning rate (AdaBound) (Luo et al., 2019) and the SGD optimiza-

tion method. To reduce overfitting, we applied a weight decay since

this parameter adds an L2 penalty to the cost, which can effectively

lead to smaller model weights. The model runs under the deep learn-

ing development framework of TensorFlow and Keras, with an Nvidia

1080 GPU, an Intel® Core™ i7-8700k CPU and 16 GB memory. For

model validation purposes, we divided the 200 training maps into a

training subset (80% of the images) and a validation subset (20% of

the images).

4 | RESULTS

4.1 | Model validation

The CNN model's efficiency for an object recognition task is given as

the mean average precision (mAP). The precision is the ratio of the

number of true positives to the total number of positive detections,

while the recall gives the ratio of the number of true positives to the

total number of ground-truth objects (Henderson & Ferrari, 2016).

For the training dataset, the model detects 5019 true positive sites

and 447 false positive sites, with a calculated mAP of approximately

81% (Figure 4). For the test dataset, it detects 1239 true positives and

121 false positives, with a mAP of approximately 79%. Using the

AdaBound optimization method results in better model efficiency;

that is, the model's runtime can be substantially reduced, as seen by

the position of the lowest validation loss in Figure 5. For AdaBound,

F IGURE 2 Example of modified VAT
visualization (blend of sky-view factor, positive
openness and hillshade visualizations) for
Validation Area 3, showing circular RCH sites of
various sizes, disturbances and visibilities. The
smaller black dots are from pits resulting from
historical military activity, and the larger black
dots show pits that are most likely associated
with hearth operation. RCH = relict charcoal

hearth, VAT = visualization for archaeological
topography

F IGURE 3 Overview of the image processing steps in the Mask
region-based convolutional neural network (R-CNN) algorithm.
ROI = region of interest
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28 epochs are required, while for SGD, 36 epochs are required. We

propose to stop early after 15 epochs, which constitutes a runtime

reduction of approximately 50%. This is not only to reduce the

processing time that would otherwise not improve the model loss and

accuracy but also to avoid model overfitting. To assess the effect of

the image preprocessing steps on the model's performance, we

analyzed the training and validation subsets again but without

applying any preprocessing steps. The model's mAPs for the training

and validation datasets are subsequently reduced to 79% and 74%,

respectively. Therefore, the preprocessing steps increased the mAPs

of the model by approximately 4% on average.

4.2 | Model application

We applied the trained Mask R-CNN model to 10 application areas

(Figure 6) containing 305 manually mapped RCH sites in total. This

model detects RCH sites with an average recall of 83% and an average

precision of 87% (Table 1); that is, on average, 17% of manually

mapped sites are not detected, while 13% of all the detected sites are

false positives. Furthermore, the model detects four new sites that

were overlooked in manual mapping, raising the total number of

known sites in the area by 1.3%. The bounding box output potentially

allows the determination of site diameters or RCH areas. However,

the extent of the bounding boxes is often larger than the true area of

the site, making the determination of areas prone to error, especially

for smaller sites. The sites not detected by the model have a smaller

average diameter (9.1 m ± 2.8 m) than the detected sites

(11.9 m ± 3.4 m). False positive detections are often caused by (partly)

circular signatures originating from paths on the forest floor, for

example, at intersections of dirt tracks, by slightly puckered terrain

and, in one case, by an oval former gun emplacement (Area 4).

Furthermore, circular or near-circular artefacts, presumably

originating from poor LiDAR data point densities, yielded false

positives in 14 cases (Areas 6, 9, and 10). Most of the sites omitted by

the algorithm have poor resolution in the DEM. However, for some

F IGURE 4 Model validation results
for the training and validation subsets
showing the precision/recall curves and
total numbers of true positive and false
positive predictions [Colour figure can be
viewed at wileyonlinelibrary.com]

F IGURE 5 Model and validation losses for
the model optimization methods: adaptive
gradient method with a dynamic bound on the
learning rate (AdaBound) and stochastic gradient
descent (SGD) [Colour figure can be viewed at
wileyonlinelibrary.com]
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F IGURE 6 Mask region-based
convolutional neural network
(R-CNN) bounding box output and
manually mapped relict charcoal
hearth (RCH) sites in the validation
areas [Colour figure can be viewed at
wileyonlinelibrary.com]

TABLE 1 Mask R-CNN mapping results for 10 application areas

Subsection
Sites mapped
manually (m)

Sites mapped by the
Mask-R-CNN (M)

True
positives (TP)

False
positives (FP)

New
sites

Recall
(TP/m) (%)

Precision
(TP/M) (%)

1 32 28 24 4 75 86

2 18 17 14 3 78 82

3 41 39 34 5 83 87

4 40 32 30 2 75 94

5 59 49 48 0 1 81 98

6 16 22 16 4 2 100 73

7 7 7 6 1 86 86

8 25 25 24 1 96 96

9 37 34 31 3 84 91

10 30 26 21 4 1 70 81

Average 83 87

Abbreviation: R-CNNN = , region-based convolutional neural network.
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sites, it is unclear why they were omitted by the algorithm, as their

resolution seems to be on par with similar sites in the vicinity (e.g., in

Area 9).

The Mask R-CNN method excels even in complex reliefs; for

example, it reliably detects sites in Area 6 that feature an abundance

of anthropogenic relief disturbances such as bomb craters and former

gun emplacements (Figure 6). Furthermore, it detects sites in close

spatial proximity (within �25 m of each other) or overlapping sites, as

seen in Area 5. These spatial microclusters of sites are typical in the

larger vicinity of the study area (Raab et al., 2019). Even sites that

have been disturbed by forest management activities, sites with

imperfect circular ditches and only partially visible sites on the map

edges are detected by the algorithm.

5 | DISCUSSION

We have shown that the Mask R-CNN technique can be specifically

tailored for the detection of charcoal hearths and that the model's

runtime can be reduced by approximately 50% without a loss in accu-

racy during training. Technical restrictions can arise when dealing with

smaller targets, which is a known problem in automated image detec-

tion (e.g., Ju et al., 2019). Smaller RCH sites in the area tend to give

poorer signatures on DEM maps caused by shallower ditch or eleva-

tion profiles. Although we can observe a trend towards smaller sites

being omitted by the algorithm, the main risk factor for poor detection

seems to be LiDAR data quality and not the size of the sites. A LiDAR

point density with lower resolution can be caused by changes in the

canopy growth density or the amount of deadwood and undergrowth

on the forest floor.

Opitz and Herrmann (2018) discuss a distrust in automated fea-

ture extraction systems in archaeology based on technological and

social factors, which can result from reported accuracy rates of auto-

mated systems below approximately 75%, the novelty of the utilized

techniques and, presumably, their opaqueness for a nonexpert in the

science of deep learning. They raise the important question as to what

level of accuracy would be required from automated systems to be

acceptable for a specific purpose. For reasons of heritage protection

and decision making as well as archaeological and paleoenvironmental

research, the detection of as many objects as possible is preferred.

This stipulation is important for not only current but also future

studies. In particular, because of increasing land consumption and the

possible effects of climate change, the irretrievable loss of many

archaeological objects is threatened. In the realm of RCH

geoarchaeological research, most studies with a focus on site mapping

include rather small areas of usually well under 50 km2, and only three

studies have incorporated mappings on a larger scale so far (see tab.

2 in Rutkiewicz et al., 2019). The efficiency of automated mapping

approaches seems scale dependent. The vast majority of recent stud-

ies focus on soil science and anthracological-related objectives on the

pedon scale and usually analyze a few sites (e.g., see introduction of

Buras et al., 2020, for an overview). Schneider, Bonhage, et al. (2020),

Rutkiewicz et al. (2019), Johnson, Ouimet, and Raslan (2015) and Raab

et al. (2019) increased the scale of research with objectives regarding

the assessment of RCH site distributions on the landscape scale. Dis-

regarding the amount of time necessary for creating DEM visualiza-

tions, which is the same for both methods, automated mapping

approaches, such as the modified Mask R-CNN approach, seem

mostly viable for image processing on the scale conducted by these

studies, that is, thousands of square kilometres or more. For smaller

areas, the compromise between mapping accuracy and runtime seems

unreasonable; for example, it took an experienced person only

approximately 30 min to map all the sites in the 20 subareas of this

study. Regarding the mapping accuracy, automated mapping systems

applied in archaeology generally fall behind manual mapping results

(see tab. 1 in Trier et al., 2018) with oftentimes very high rates of false

positives; although comparisons to RCH studies are difficult to evalu-

ate, LiDAR data quality and the amount and types of archaeological

objects vary considerably between these studies. However, as Opitz &

Herrmann (2018) discuss, it must be considered that the DEM-based

mapping of RCHs and other archaeological objects is inherently

incomplete, as recent studies have shown. Comparisons between

manual digital RCH mappings and ground surveys show detection

rates of 40–60% for study areas in Germany (Schneider, Bonhage,

et al., 2020); that is, even in the best-case scenario of humans

mapping sites digitally, technical limitations, such as the LiDAR ground

point density, vegetational cover disturbances of the relief and

biological limitations of the human operator, prevent the identification

of the true number of sites in the real world. Schneider, Bonhage,

et al. (2020) mapped RCH sites in the entire German Federal State of

Brandenburg, of which our study area is also part. Under the

assumption of homogeneous LiDAR data quality throughout the fed-

eral state and taking into account the average recall and precision

values, the trained Mask R-CNN model would have been very

efficient in mapping sites, saving working hours and money (not

considering the time needed to develop the model). Presumably, their

study would have reached the same conclusion of finding a close

spatial relationship between RCHs and historical charcoal-consuming

industries in homogenous landscape settings. Verschoof-van der Vaart

et al. (2020) discuss the feasibility of automated systems and conclude

that they should not replace the manual mapping of archaeological

sites. Rather, they can help assess site densities over large areas and

in complex terrain. Davis (2020) argues that automated mapping

techniques in archaeology will help to improve the reproducibility of

site mappings by providing a semantically consistent metalanguage, a

factor that is oftentimes lacking during manual mappings by

different researchers. Although we have no experience transferring

our modelling approach to other areas as of yet, we see great

potential in achieving consistent and bias-free mapping results for

large areas.

Recent studies took the first step to transfer site specific observa-

tions of RCH research to a larger scale by determining the increase in

the landscape soil carbon stock caused by historical charcoal produc-

tion as well as by creating a model that allows for the calculation of

the RCH volume based on its shape and topographical position

(Bonhage et al., 2020; Bonhage, Hirsch, Schneider, et al., 2020).
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Completely assessing the effect of the historical charcoal production

legacy on current soil landscapes, however, requires knowledge of the

large-scale spatial site density and distribution. For this, automated

mapping approaches, such as the presented Mask R-CNN technique,

are needed to drastically reduce workload and mitigate the effects of

human mapping error.

6 | CONCLUSION

The Mask R-CNN technique coupled with contrast-rich LiDAR data-

based DEM visualizations gives very promising mapping recall and

precision values for flat terrain areas in the North German Lowland.

Changing the model's optimization method drastically reduces the

model's training time by approximately 50%, allowing the potentially

fast inclusion of new site classes. Using image optimization and aug-

mentation techniques in preprocessing further enhances the model's

precision. Validations in other regions with known occurrences of

RCHs in flat terrain are needed to assess interregional applicability,

especially under conditions of regionally dependent changes in the

LiDAR data quality. Furthermore, future studies must assess the appli-

cability of the technique when other RCH types are included, such as

the commonly described RCH platforms on slopes in the middle

mountain ranges of Central Europe and the northern United States.
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