
1.  Introduction
General circulation models (GCMs), comprising atmosphere, land, and ocean components, are used to sim-
ulate large-scale climatic processes over various time periods. However, due to their coarse resolution, they 
cannot yield comprehensive simulations of climate at regional and local scales. Downscaling provides a 
great way to address this problem, since it leads to greater spatial resolution than GCMs can provide. It can 
be divided into two distinct groups: statistical and dynamical. Statistical downscaling involves establishing 
and using mathematical relationships between large-scale climate and regional or local climate to trans-
form GCM output or reanalysis data to regional or local scale. Dynamical downscaling involves forcing the 
lateral boundaries of a regional (atmospheric) climate model (RCM) with reanalysis data or GCM output. 
This technique allows for local-scale processes (e.g., glacier mass balance, river/lake basin water levels) to 
be physically modeled from large-scale climate dynamics without circumventing any of the main scales 
(Giorgi, 2019; Giorgi & Bates, 1989).

Downscaling has been extensively used to understand regional and/or local climate. Mölg and Kaser (2011) 
used dynamical downscaling to quantify changes in glacier mass balance to large-scale circulation for the 
Kilimanjaro glaciers. Aalbers et al. (2018) elucidated whether changes in western European mean and daily 
precipitation were the result of internal variability or climate change using regional downscaling of a 16 
member initial-condition RCM-GCM ensemble. The Alamo Lake and Bill Williams River basin (United 
States) were studied using statistical and dynamical downscaling to examine how they would be influenced 
by future climate scenarios (Shamir et al., 2019). Furthermore, downscaling is also used for vulnerability, 
impacts, and adaptation assessments, including studies of vector borne diseases (Rodó et al., 2013), pol-
lution-related mortality (J. Sun et al., 2015), and heat stress (Im et al., 2018). Additional examples and a 
thorough overview of downscaling can be found in Giorgi (2019). It should be noted that significant ad-
vancements in the field of regional climate modeling and downscaling can be attributed to the Coordinated 
Regional climate Downscaling Experiment, which was established by the World Climate Research Pro-
gramme (WCRP) and its Task Force for Regional Climate Downscaling in 2009. It has provided numerous 
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regional downscaling products (e.g., Jacob et al., 2014; Mearns et al., 2012) and assessments of downscaling 
models and techniques (e.g., Akinsanola & Ogunjobi, 2017; Legasa et al., 2020). However, while significant 
work has been undertaken, some uncertainties still require attention, including those associated with the 
selection of GCM(s) used. This has been shown to be an important source of uncertainty in downscal-
ing and climate change impact studies, especially on multidecadal time scales (Giorgi & Francisco, 2000; 
Hawkins & Sutton, 2009; Jobst et al., 2018; Lutz et al., 2016).

This leads to the following important question. How do we select GCMs for downscaling? Studies have been 
undertaken to create a GCM selection criteria. The majority of these have focused on past and/or present 
performance. Pierce et al. (2009) presented a GCM selection technique based on 42 performance metrics, 
including seasonal precipitation, temperature, El Niño-Southern Oscillation (ENSO) and Pacific Decadal 
Oscillation, for a case study of hydrological change in the Western United States. Overland et al. (2011), 
using an Arctic case study, presented a two-tier approach to gauge model performance. First, evaluating the 
large-scale climate physics of the models by examining how well they capture continental-scale processes. 
Second, assessing model performance on a regional scale by analyzing variables of ecological or societal 
relevance. McSweeney et al. (2012) built upon this work by stressing the importance of model evaluation. 
They proposed determining the ability of the model to reproduce the regional climate and then culling the 
remaining models but ensuring that all plausible projections were retained. In 2015, this work was expand-
ed upon by the creation of a selection criteria for multiple regions (McSweeney et al., 2015). The ability of 
the model to simulate the regional climate of the regions of interest was evaluated (e.g., annual temperature 
and precipitation, teleconnections, circulation, storm tracks, and monsoon season) and the least realistic 
models for each region were discarded. Lutz et al. (2016) combined this past performance approach with an 
envelope-based technique to select suitable GCMs and applied this to the river basins of the Indus, Ganges, 
and Brahmaputra. All these studies emphasized the superiority of a multimodel ensemble for diagnostic 
regional climate change studies. These past studies also placed emphasis on the surface variables of temper-
ature and precipitation. Atmospheric state variables (winds, humidity, and temperature) at varying pressure 
levels were not the main focus. These can, nonetheless, provide insight into atmospheric variability and, 
most importantly, are used to force the lateral boundaries of RCMs. Previous research focused mainly on 
capturing synoptic-scale trends and gave little attention to more local ones, which play an important role in 
downscaling. Overall, these different selection techniques highlight the absence of a straightforward, more 
generic one due to the complex nature and wide range of goals in downscaling studies.

To address this issue, we will focus on model selection for a case study of East Africa and the high-ele-
vation climate on Kilimanjaro, Tanzania. This area is of interest as African climate suffers from a lack of 
research attention (Washington et al., 2006) and is highly vulnerable to climate change (Boko et al., 2007; 
Niang et al., 2014). Furthermore, high-altitude regions, like Kilimanjaro, are topographically complex and 
particularly sensitive to climate change (e.g., Ohmura, 2012; Pepin et al., 2015). The Kilimanjaro glaciers 
provide a fitting case study as they allow for the capture of large-scale and local-scale climate change dy-
namics and examination of how these scales are linked by the mesoscale atmospheric circulation over the 
mountain (Mölg & Kaser, 2011; Mölg et al., 2006, 2009, 2012). They have dramatically retreated over the 
twentieth century (N. Cullen et al., 2013) and been extensively studied on a local scale (e.g., N. J. Cullen 
et al., 2007; Mölg & Hardy, 2004; Mölg et al., 2008, 2009) and using regional atmospheric modeling (e.g., 
Collier et al., 2018; Mölg & Kaser, 2011; Mölg et al., 2012). Their large-scale influences have also been stud-
ied (Collier et al., 2018; Endris et al., 2016, 2019; Mölg et al., 2006; Thielke & Mölg, 2019) and multiannual 
automated weather station (AWS) records are available for model evaluation. With both the local, regional, 
and macroscales in the area being evidently affected by climate change, it provides an ideal location for 
downscaling.

In this study, we use past performance model evaluation to determine how well GCMs capture the local and 
regional climate of East Africa and the midtroposphere layers around Kilimanjaro. The goal is to provide a 
useful selection criterion that can be used for downscaling studies and that is, moreover, easily applicable 
to other regions. In Section 2, we describe the study area, the GCM data, and the regional and local data 
used for model evaluation. In Sections 3 and 4, we present the model selection procedure and its results. In 
Sections 5 and 6, we discuss the potential benefits of the model rankings and provide concluding remarks 
and future outlook.
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2.  Study Region and Data
The model selection procedure is illustrated for a case study covering 20°N–30°S by 10°–70°E, comprising 
East Africa, parts of central and southern Africa and the western Indian Ocean (Figure 1a). This large re-
gion covers the typical area that would be considered in regional atmospheric and climate modeling of East 
Africa (Collier et al., 2018; Mölg & Kaser, 2011; Mölg et al., 2012; L. Sun et al., 1999). From hereafter, this will 
be referred to as the African domain. A bimodal rainfall regime characterizes East Africa with the so called 
“short rains” in October–December (OND) and “long rains” in March–May (MAM). This rainfall regime is 
typically associated with the north-south migration of the intertropical convergence zone. Topography and 
the bodies of water in the region influence the spatial distribution of the rainfall, while the temporal varia-
bility is linked to atmosphere-ocean modes, namely ENSO (e.g., Nicholson, 2015; Pohl & Camberlin, 2011) 
and Indian Ocean Dipole (IOD) (e.g., Clark et al., 2003; Nicholson, 2015). Data for this region came from 
the Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) reanalysis data 
set (Gelaro et al., 2017). Monthly means of temperature, specific humidity, and zonal (U) and meridional 
winds (V) from 6-hourly data at 200, 500, and 850 hPa at a resolution of 0.5° latitude × 0.625° longitude for 
January 1980 to December 2012 were utilized. The choice is based on a recent study that found MERRA-2 
to be a suitable data set for representing important climatic features of East Africa (Collier et al., 2018).

Kilimanjaro, Africa's highest mountain, lies at the center of this region (Figure 1). It is a massive strato-
volcano which formed in connection to the East African rift system. It is located on the Kenya-Tanzania 
border (3.076°S, 37.353°E) and is composed of three peaks: Shira (4,005 m above mean sea level [MSL]), 
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Figure 1.  (a) Domain (red box) of model selection case study, where the red hexagon indicates the location of 
Kilimanjaro and (b) the WRF domain centered over Kilimanjaro used for each case presented in the dynamical 
downscaling test (Section 5.3). This domain coincides with that used in Collier et al. (2019). WRF, Weather and 
Research Forecasting.
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Mawenzi (5,140 MSL), and Kibo (5,895 MSL). Modern glaciation is confined to Kibo where a total ice cover 
loss of 85% from 1912 to 2011 occurred (N. Cullen et al., 2013). These glaciers and their dependencies on, 
and signals of, mesoscale atmospheric and large-scale climate dynamics have been extensively studied for 
more than a decade (e.g., Collier et al., 2018; N. J. Cullen et al., 2007; Kaser et al., 2004; Mölg & Hardy, 2004; 
Mölg & Kaser, 2011; Mölg et al., 2008, 2009). Four AWSs have been installed on the peak. AWS 1 (3.067°S, 
37.350°E) is located on the Northern Ice Field at 5,794 MSL and has been operational since March 2000 
(Hardy, 2011). In February 2005, AWS 2 and AWS 3 were installed. AWS 2 (3.060°S, 37.349°E) is near the 
base of a vertical ice cliff face on the Northern Ice Field at 5,763 MSL (Winkler et al., 2010). AWS 3 (3.078°S, 
37.354°E) is located on the upper slopes of Kersten Glacier in the Southern Ice Field at 5,873 MSL and has 
been the subject of significant research (e.g., Collier et al., 2018; Mölg & Kaser, 2011; Mölg et al., 2008, 2009, 
2012). AWS 4 (3.081°S, 37.352°E) was installed in January 2009 on the midslopes of the Kersten Glacier at 
5,603 MSL (Mölg et al., 2020). For this study, only AWS 1 and AWS 3 are suitable, since their records are 
sufficiently long and they are not influenced by a special (ice cliff) microclimate like AWS 2. Consideration 
of AWS 1 and AWS 3 data for the present GCM context is only possible due to their location on the peak of 
an isolated mountain at almost exactly 500 hPa, where local conditions (of daily or longer means) mostly 
reflect the large-scale properties of the tropical midtroposphere (Mölg et al., 2009; Pepin et al., 2010). Re-
cords for AWS 1 and AWS 3 span March 2000 to September 2017 and February 2005 to December 2013, 
respectively. The monthly means of the air temperature, specific humidity, and zonal and meridional wind 
measurements were considered. Details concerning the sensors and data processing can be found in Mölg 
et al. (2008, 2009) and Hardy (2011).

GCMs were accessed from the CMIP5 repository (https://esgf-node.llnl.gov/projects/esgf-llnl/) in Septem-
ber 2018 (Taylor et al., 2012). Each realization was independently analyzed for GCMs with more than one 
initial-condition ensemble member (realization) as they represent a possible outcome with slightly differing 
initial conditions and timing of events. The atmospheric state variables (U, V, specific humidity, and tem-
perature) were the focus of the selection procedure due to their importance for downscaling studies. Models 
were culled depending on availability of the monthly means of these variables at 200, 500, and 850 hPa for 
the historical simulation, a simulation of the recent past (1850–2005) that is consistent with the instrumen-
tal era and includes natural and anthropogenic forcings. This left 50 models and 213 realizations. Moreover, 
since the aim is to provide a selection technique for downscaling, models were culled depending on whether 
they provided the boundary conditions required for dynamical downscaling (6 hourly) for the historical 
simulation and, at least, one representative concentration pathway (RCP). This lead to the elimination of 
24 GCMs and a total of 180 GCM realizations. The remaining 26 GCMs and their total 33 realizations were 
subjected to the model selection procedure and can be found in Table 1.

3.  Model Selection
Building upon the work of McSweeney et al. (2012, 2015) and Overland et al. (2011), a three-tier evaluation 
strategy was applied to the realizations in Table 1: (1) whether the global warming signal was captured, (2) 
how well the tropospheric circulation of the African domain was simulated, and (3) how well the climate 
of the air layers sampled at the summit of Kilimanjaro was modeled. The first tier is a precondition that 
evaluates the robustness of the GCM on the global scale, while the following two tiers analyze its ability to 
reproduce the climate of the region. A schematic of this can be found in Figure 2, which will be explained 
in Sections 3.1–3.3.

3.1.  Global Warming Signal

First, as a precondition to the selection procedure, the robustness of each GCM realization was evaluated by 
examining their ability to reconstruct the global warming signal. If a model cannot capture this global sig-
nal, how can it be considered robust? Studies of global temperature evolution over 1979–2005 using obser-
vational data sets and global reanalysis products have shown a warming trend (Foster & Rahmstorf, 2011; 
Simmons et al., 2017). Using the historical simulation, the ability of realizations to capture this tendency 
was tested by determining their global temperature trend over 1979–2005. If a realization can simulate a 
positive temperature trend over this period, then they are deemed to meet the global warming criteria and 
will continue onto the selection procedure.
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3.2.  African Domain

Past performance of the GCM realizations for the African domain was evaluated seasonally (dry: January–
February [JF] and June–September [JJAS]; wet: MAM and OND) by comparison to MERRA-2 reanalysis 
data for the region. Performance was assessed for the historical simulation over the period of 1980–2012. 
The historical simulation finishes in 2005 and was extended to 2012 using the historicalExt simulation, a 
simulation continuing the historical simulation. If the historicalExt simulation was not available, the his-
torical simulation was extended using RCP 4.5, as it was the sole RCP available for all the GCM realizations 
being subjected to the selection procedure (Table 1). Furthermore, it should be noted that all RCP scenarios 
are almost the same over this period and only begin to diverge at around 2025; therefore, the choice of 
which RCP scenario used to extend the simulations should not influence the results (Maule et al., 2017). 
Evaluation of each of the atmospheric state variables (temperature, specific humidity, and U and V winds) 
was undertaken at 200, 500, and 850 hPa. These variables represent the driving data for dynamical down-
scaling and studying them at 200, 500, and 850 hPa allows for examination of their performance within the 
troposphere. They were regridded using bilinear interpolation to match the resolution of the MERRA-2 
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Model Realization Historical extended to 2012 Resolution Reference

Access 1.0 r1 – 1.25° × 1.875° Bi et al. (2013); Dix et al. (2013)

Access 1.3 r1 – 1.25° × 1.875° Bi et al. (2013); Dix et al. (2013)

BCC-CSM 1.1 r1 X 2.7906° × 2.8125° Wu et al. (2014)

BCC-CSM 1.1m r1 X 2.7906° × 2.8125° Wu et al. (2014)

BNU-ESM r1 – 2.7906° × 2.8125° Ji et al. (2014)

CanESM2 r1 X 2.7906° × 2.8125° Arora et al. (2011); von Salzen 
et al. (2013)

CCSM4 r6 – 0.9424° × 1.25° Gent et al. (2011)

CMCC-CM r1 – 0.7487° × 0.75° Scoccimarro et al. (2011)

CNRM-CM5 r1 X 1.4008° × 1.40625° Voldoire et al. (2013)

CSIRO-Mk3.6.0 r1 – 1.8653° × 1.875° Jeffrey et al. (2013)

FGOALS-g2 r1 – 2.7906° × 2.8125° Li et al. (2013)

GFDL-CM3 r1, r3, r5 – 2° × 2.5° Donner et al. (2011); Griffies et al. (2011)

GFDL-ESM2M r1 – 2.0225° × 2.5° Dunne et al. (2012, 2013)

GFDL-ESM2G r1 – 2.0225° × 2° Dunne et al. (2012, 2013)

GISS-E2-H r6p3 X 2° × 2.5° Schmidt et al. (2014)

GISS-E2-R r6, r6p3 X (only r6p3) 2° × 2.5° Schmidt et al. (2014)

HadGEM2-ES r1, r2 X (only r2)* 1.25° × 1.875° Collins et al. (2011); Martin et al. (2011)

IPSL-CM5A-LR r1, r2, r3, r4 – 1.8947° × 3.75° Dufresne et al. (2013)

IPSL-CM5A-MR r1 – 1.2676° × 2.5° Dufresne et al. (2013)

IPSL-CM5B-LR r1 – 1.8947° × 3.75° Dufresne et al. (2013)

MIROC-ESM r1 – 2.7906° × 2.8125° S. Watanabe et al. (2011)

MIROC-ESM-CHEM r1 X 2.7906° × 2.8125° S. Watanabe et al. (2011)

MIROC4h r1 – 0.5616° × 0.5627° Sakamoto et al. (2012)

MIROC5 r1 X 1.4008° × 1.40625° M. Watanabe et al. (2010)

MRI-CGCM3 r1 X 1.12148° × 1.125° Yukimoto et al. (2012)

NorESM1-M r1 X 1.8947° × 2.5° Bentsen et al. (2013); Iversen et al. (2013)

Note. Resolution represents the horizontal atmospheric grid resolution and is expressed as latitude by longitude. A X stipulates that the historical simulation 
has been extended until 2012, while * indicates that it has been extended to 11/2019.

Table 1 
List of Retained CMIP5 GCMs and Their Respective Realizations, Where, Unless Specified Otherwise, the Realization (r) Has Initialization 1 (i1) and Physics 1 
(p1)



Journal of Geophysical Research: Atmospheres

reanalysis data (0.5° latitude × 0.625° longitude) and time means were taken over each season for each 
year of the 33-year study period. Analysis of past performance focused on the dominant spatial patterns of 
variability for each season. Empirical orthogonal function (EOF) analysis was used to extract these spatial 
patterns, as this approach has been well established (Hannachi et al., 2007; Wilks, 2006). Degenerate EOFs 
were eliminated using North's Rule of Thumb (North et al., 1982) since nonunique spatial patterns cannot 
be compared. The nondegenerate EOFs and their variance fraction explained with its 95% confidence inter-
val of MERRA-2 were calculated and can be found in Table A1. For the 33 retained GCM historical simula-
tions, the EOFs and their variance fraction explained with its 95% confidence interval corresponding to each 
of the MERRA-2 nondegenerate EOFs were calculated. For each variable, EOF 1 of MERRA-2 and its vari-
ance fraction explained, if nondegenerate, was compared with that of the GCM realization and so on, until 
all nondegenerate EOFs of MERRA-2 were analyzed. This strict criterion was undertaken, even though the 
realizations may have inverted the dominant spatial patterns (e.g., the dominant spatial pattern of MER-
RA-2 is represented by that of EOF 2 in the GCM realization), as it reflects a short-coming the realization 
has in reproducing the dominant spatial pattern in the first place. To evaluate how well the realization 
captured the variance fraction explained, the relative error with respect to MERRA-2 was calculated (see 
Section 3.4). Furthermore, the dominant spatial patterns of variability found in the nondegenerate EOFs 
from the MERRA-2 reanalysis data were correlated with the respective EOF patterns for each realization 
using the Pearson correlation. The relative error of these correlations was determined and then combined 
with that from the associated variance fraction explained, giving each equal weighting (50%), providing 
one metric evaluating how well the tropospheric circulation of the African domain was simulated. These 
metrics were combined as we want to determine how well the realization captures the spatial pattern and 
its associated variance fraction explained for the nondegenerate EOF of interest. This means that we do not 
want to rank a realization higher if it attributes the correct variance fraction explained but for an incorrect 
spatial pattern.

3.3.  Kilimanjaro

The 33 GCM historical simulations were also compared with observations from AWS 1 and AWS 3 at the 
summit of Kilimanjaro to determine their ability to reconstruct the large-scale climatic properties of the 
tropical midtroposphere. Evaluation focused on reconstructing the mean state of the climate system at this 
location, since models typically have more problems capturing the mean state than the anomalies thereof 
(Bindoff et al., 2013). With respect to all the model resolutions, AWS 1 and AWS 3 are located in the same 
grid cell at 500 hPa (mean air pressure at AWS 3, e.g., is 502 hPa). Hence, their measurements were each 
averaged together, leading to a monthly observational record spanning March 2000 to September 2017. Us-
ing this as the assessment period, the realizations were extended to September 2017 using the historicalExt 
simulation, when available (Table 1), and RCP 4.5. The atmospheric state variables from the GCM historical 
simulations at 500 hPa for the grid cell at the peak (with regard to the native spatial resolution of the GCM) 
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Figure 2.  Schematic illustrating model selection procedure, where KS test is the Kolmogorov-Smirnov test. Details 
concerning each test can be found in Sections 3.1–3.3.
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were individually evaluated against the observational record for three distinct metrics. First, their ability 
to reproduce the overall mean state of temperature, specific humidity, and U and V winds was tested. The 
mean state of the observational record and realizations were calculated, along with their standard deviation 
with 2σ, for each variable for the entire comparison period. This standard deviation will be referred to as 
the 95% confidence interval. The absolute mean difference of the realizations to observations was utilized 
to analyze how well the mean state was reproduced. Second, the nonparametric Kolmogorov-Smirnov (KS) 
test was then run for each variable and realization to determine whether they came from the same distri-
bution as the observations. Here, realizations are evaluated with respect to their KS statistic (D value) and 
the null hypothesis that the observations and GCM realization are drawn from the same source. Third, the 
mean annual cycle of the observations and realizations was compared by calculating the Pearson correla-
tion and the root mean square error (RMSE). To further quantify and rank how each realization performed 
during these tests, the relative error was calculated.

3.4.  Testing Synopsis

The tests performed for model selection evaluated how well the realizations captured the mean climat-
ic state and simulated the anomalies of the space-time patterns. Apart from meeting the precondition of 
capturing the global warming signal, no one metric was weighted above another as each examines how a 
realization simulates the climate of the African domain and the large-scale climatic properties of the trop-
ical midtroposphere in the region. Furthermore, to maintain the transferability of the procedure, no preset 
thresholds or cutoffs were used. These can be selected by the user since they are dependent on the problem 
being addressed.

The relative error for each metric provided a good tool to evaluate realization performance but is not indic-
ative of performance in absolute terms. It was calculated using the technique outline in Rupp et al. (2013) 
and resulted in a normalized value ranging between 0 and 1, where 0 represents the best fit and 1 the 
worst. For each realization, the root mean square (RMS) of the relative errors from each individual test was 
calculated:


  2

i
i 1

1RMS (modelRE )
n

� (1)

In this equation, modelRE is the relative error of the model for the given metric (value between 0 and 1) 
and n is the number of metrics (73). It should be noted that in our case, RMS and RMSE are equivalent as 
the best case relative error is always 0. This ranking method will highlight which GCM realization performs 
best on average rather than just which GCM has the lowest overall relative error.

4.  Model Selection Results
All realizations were found to capture the global warming signal and were subjected to the model selection 
procedure. This resulted in the realization rankings presented in Table 2 and Figure 3. No GCM realization 
markedly performed best in every test. However, GISS-E2-H r6i1p3 performs the strongest, showing the 
lowest total relative error and RMS. The two realizations of GISS-E2-R (r6i1p1, r6i1p3), which differ in 
ocean model from GISS-E2-H, also rank highly in tenth and twelfth place. In the following subsections, how 
well each realization performed for each variable and metric is examined. Due to a large quantity of data 
material, only main characteristics are highlighted.

4.1.  Temperature

Some distinct tendencies are observed in the model selection results for temperature. GCM realizations 
performed well when examining the variance fraction metric for EOF 1. For all pressure levels and sea-
sons, the vast majority (≥95%) of the variance fraction explained from the realizations are found within 
the confidence interval of the respective MERRA-2 variance fraction. This means that the 95% confidence 
interval of the GCM realization and that of MERRA-2 overlap. This can be observed for JJAS in Figure 4. 
The realizations encountered difficulties with respect to EOF 2–EOF 4 at 200 and 500 hPa as the amount of 
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realizations within the MERRA-2 confidence interval decreased significantly for the variance fraction ex-
plained. With the exception of EOF 2 in JF and OND at 200 hPa, EOF 2 in MAM at 500 hPa, and EOF 4 in JF 
at 500 hPa, only about half of the realizations fall within the confidence interval of the respective MERRA-2 
value. This trend did not hold true at 850 hPa, where the variance fraction explained of the realizations for 
all the nondegenerate EOFs were always in good agreement with MERRA-2 (≥89% of realizations within its 
confidence interval). Different tendencies were observed when the correlation between dominant spatial 
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Model

RMS_Obs RMS_EOF_Temp RMS_EOF_hus RMS_EOF_U RMS_EOF_V RMS_tot

12 32 13 14 2 73

GISS-E2-H r6i1p3 0.47 (20) 0.35 (2) 0.39 (5) 0.43 (12) 0.52 (16) 0.40

NorESM1-M r1i1p1 0.43 (12) 0.37 (5) 0.50 (21) 0.40 (7) 0.54 (20) 0.42

BCC-CSM1-1 r1i1p1 0.40 (7) 0.37 (4) 0.49 (18) 0.47 (16) 0.56 (23) 0.42

CCSM4 r6i1p1 0.44 (15) 0.39 (9) 0.50 (20) 0.42 (10) 0.39 (6) 0.43

IPSL-CM5B-LR r1i1p1 0.45 (16) 0.40 (11) 0.51 (25) 0.42 (8) 0.33 (5) 0.43

MRI-CGCM3 r1i1p1 0.40 (8) 0.34 (1) 0.60 (32) 0.43 (11) 0.69 (28) 0.44

GFDL-CM3 r3i1p1 0.34 (2) 0.51 (23) 0.47 (13) 0.30 (1) 0.48 (10) 0.44

BNU-ESM r1i1p1 0.42 (11) 0.47 (18) 0.49 (17) 0.36 (4) 0.27 (1) 0.44

ACCESS1-0 r1i1p1 0.54 (29) 0.40 (12) 0.46 (12) 0.44 (13) 0.32 (3) 0.44

GISS-E2-R r6i1p1 0.52 (27) 0.36 (3) 0.47 (15) 0.53 (24) 0.50 (15) 0.45

GFDL-ESM2M r1i1p1 0.45 (17) 0.47 (19) 0.45 (11) 0.35 (3) 0.72 (29) 0.45

GISS-E2-R r6i1p3 0.58 (32) 0.40 (10) 0.32 (1) 0.54 (27) 0.61 (24) 0.46

MIROC-ESM-CHEM r1i1p1 0.38 (6) 0.46 (17) 0.35 (3) 0.60 (31) 0.49 (11) 0.46

MIROC5 r1i1p1 0.45 (18) 0.48 (21) 0.40 (6) 0.47 (17) 0.50 (13) 0.46

CMCC-CM r1i1p1 0.51 (26) 0.38 (7) 0.51 (23) 0.50 (20) 0.79 (33) 0.46

CNRM-CM5 r1i1p1 0.53 (28) 0.39 (8) 0.48 (16) 0.60 (32) 0.33 (4) 0.48

HadGEM2-ES r1i1p1 0.46 (19) 0.41 (13) 0.57 (29) 0.56 (29) 0.40 (7) 0.48

CSIRO-Mk3-6-0 r1i1p1 0.48 (22) 0.41 (14) 0.54 (27) 0.54 (26) 0.54 (21) 0.48

GFDL-CM3 r5i1p1 0.41 (10) 0.49 (22) 0.51 (22) 0.48 (18) 0.50 (14) 0.48

FGOALS-g2 r1i1p1 0.55 (30) 0.45 (15) 0.57 (30) 0.42 (9) 0.40 (8) 0.48

MIROC-ESM r1i1p1 0.41 (9) 0.48 (20) 0.38 (4) 0.63 (33) 0.52 (18) 0.49

HadGEM2-ES r2i1p1 0.49 (25) 0.45 (16) 0.55 (28) 0.54 (28) 0.32 (2) 0.49

BCC-CSM1-1-m r1i1p1 0.48 (21) 0.55 (26) 0.44 (9) 0.38 (6) 0.75 (31) 0.50

ACCESS1-3 r1i1p1 0.49 (23) 0.37 (6) 0.66 (33) 0.57 (30) 0.53 (19) 0.50

IPSL-CM5A-LR r3i1p1 0.38 (5) 0.55 (27) 0.41 (7) 0.50 (21) 0.76 (32) 0.50

GFDL-ESM2G r1i1p1 0.56 (31) 0.53 (24) 0.51 (24) 0.34 (2) 0.64 (25) 0.50

CanESM2 r1i1p1 0.59 (33) 0.55 (25) 0.52 (26) 0.37 (5) 0.41 (9) 0.52

GFDL-CM3 r1i1p1 0.38 (4) 0.58 (28) 0.60 (31) 0.45 (14) 0.55 (22) 0.53

IPSL-CM5A-LR r2i1p1 0.44 (14) 0.60 (29) 0.47 (14) 0.47 (15) 0.66 (26) 0.53

IPSL-CM5A-LR r1i1p1 0.33 (1) 0.66 (33) 0.34 (2) 0.51 (22) 0.52 (17) 0.54

IPSL-CM5A-MR r1i1p1 0.43 (13) 0.61 (30) 0.44 (8) 0.49 (19) 0.73 (30) 0.54

MIROC4h r1i1p1 0.49 (24) 0.61 (31) 0.45 (10) 0.52 (23) 0.50 (12) 0.55

IPSL-CM5A-LR r4i1p1 0.35 (3) 0.64 (32) 0.49 (19) 0.53 (25) 0.66 (27) 0.56

Note. RMS_Obs is the RMS for the mean climatic state analysis, RMS_EOF_Temp, RMS_EOF_hus, RMS_EOF_U, and RMS_EOF_V are the RMS for the 
seasonal space-time anomaly tests at 200, 500, and 850 hPa for each respective atmospheric state variable. RMS_tot is the RMS for all tests. The number located 
below each RMS indicates the number of metrics contained within. The number within the parentheses represents the ranking for the metrics being considered.

Table 2 
RMS of the Relative Errors for GCM Realizations Subjected to the Model Selection Procedure, Displayed From Highest Ranked to Lowest Ranked
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patterns of variability found in each realization and the respective nondegenerate EOF from MERRA-2 
reanalysis data was examined, meaning that realizations are able to attribute the correct variance fraction 
explained to an EOF but encounter difficulties reconstructing the spatial pattern. This could point toward 
the spatial patterns being inverted in the realizations (EOF 1 occurs as EOF 2 and vice versa). An example 
of the spatial patterns observed can be found in Figure 5 for EOF 1 in JJAS. The spatial correlation observed 
between the realizations and MERRA-2 is strongest at 200 hPa and decreases toward 850 hPa (Figures 4 and 
5). This could be related to the increasing complexity of the spatial patterns toward higher pressure levels. 
For this metric, no realization clearly performs strongest. When the variance fraction explained and the 
spatial patterns are combined into a single metric, the RMS of the relative errors ranges from 0.34 to 0.66 
(average: 0.47) (Table 2). Here, the lower ranked realizations display greater RMSs than the higher ones, 
with the top 10 realizations having an average RMS of 0.40 and the bottom 10 having an average of 0.57.

Upon examination of the absolute mean difference metric at 500 hPa in the Kilimanjaro grid cell, all re-
alizations perform very well, except FGOALS-g2 r1i1p1, which does not lie within the confidence interval 
of the observational record (see Figure 3: only yellow pixel in the bottom line). For the mean annual cycle, 
the majority of realizations reproduce its shape and magnitude (RMSE ≤ 1K). The KS test concludes that, 
for all the realizations, the null hypothesis that the realization and observations are drawn from the same 
distribution cannot be rejected.

4.2.  Specific Humidity

The tendencies observed for temperature are not as clear in the specific humidity evaluation. With regard 
to the variance fraction explained metric associated with all the EOFs, the majority of realizations are with-
in the confidence interval of the respective MERRA-2 value. EOF 1 at 500 hPa is the exception, where 27 
realizations lie outside the confidence interval. The majority of realizations (≥97%) also have difficulties 
capturing the dominant spatial patterns. They typically explain less than 50% of the variance of MERRA-2. 
When combining these two metrics into one, the RMS of the relative errors ranges from 0.32 to 0.66, for a 
total of 13 tests (Table 2). Unlike temperature, the higher ranked models do not have smaller RMSs than the 
lower ranked ones with results being fairly similar for all realizations.

All the realizations are a good fit with regard to the mean specific humidity metric at 500 hPa over Kili-
manjaro and are all found within the confidence interval of the observational record. For the mean annual 
cycle metric, the majority of realizations capture its shape and magnitude (average Pearson correlation co-
efficient: 0.8, RMSE: 0.73 g/kg). It should be noted that unlike for temperature, FGOALS-g2 r1i1p1 is a very 
good fit for the mean annual cycle (Figure 3). In the KS test, GDFL-CM3 r3i1p1 performs best but, as with 
temperature, the test's null hypothesis cannot be rejected for any realization.

4.3.  Winds

The majority of realizations (≥79%) are able to capture the variance fraction explained for U and V winds. 
The exception lies in EOF 1 at 850 hPa in OND, where only about half of the realizations capture the vari-
ance fraction explained. Similarly to specific humidity, no clear tendencies are observed in the correlation 
of the dominant spatial patterns. The majority of realizations explain less than 50% of the variance of MER-
RA-2 for U and V winds. However, for the U winds of EOF 1 at 850 hPa in JF, 22 realizations have a Pearson 
correlation greater than 0.7, with IPSL-CM5A-MR r1i1p1 explaining ∼74% of the variance of MERRA-2. 
As with specific humidity, the RMSs for U and V winds are fairly similar for all realizations (Table 2 and 
Figure 3).
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Figure 3.  GCM realization ranking presented from best to worst (left to right) as determined by the relative error of the realizations for each metric, where 
darker is a better fit. EOF represents the metric evaluating how well the GCM reconstructed the dominant spatial pattern and its variance fraction explained. 
The number at the end of these labels refers to which nondegenerate EOF is being analyzed and the following letter and number represent the atmospheric 
state variable (hus, specific humidity; T, temperature; U, U winds; and V, V winds), the atmospheric pressure level (200, 500, or 850 hPa), and the season (JF, 
MAM, JJAS, and OND). KS represents the Kolmogorov-Smirnov test, mean represents the mean state test, and MAC the mean annual cycle test with appended 
acronyms representing the atmospheric state variable being evaluated. EOF, empirical orthogonal function; GCM, general circulation model; JF, January–
February; JJAS, June–September; MAM, March–May; OND, October–December.
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The mean winds of the realizations at 500 hPa are all in the confidence interval of the observational record 
from the summit. However, V winds are on average underestimated. Realizations encounter difficulties 
reconstructing the shape of the mean annual cycle for V winds but are able to reproduce its magnitude. 
Only CanESM2, CSIRO-Mk3.6.0, and all IPSL realizations correctly reproduce the shape of the mean an-
nual cycle (Figure 3). Realizations, however, perform better for the mean annual cycle of the U winds. The 
majority of realizations are able to reconstruct its shape, with the exception of IPSL-CM5B-LR r1i1p1 and 
MRI-CGCM3 r1i1p1 (Pearson correlation coefficient ≤ 0.2) and the KS test concludes that the null hypoth-
esis can only be rejected for GFDL-ESM2G r1i1p1. On the other hand, for V winds, the null hypothesis that 
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Figure 4.  Example of variance fraction and EOF spatial correlation analysis for EOF 1 of temperature in JJAS. The variance fraction of the GCM realizations 
is presented with respect to the MERRA-2 (black line with shading, 95% confidence interval) and is ranked from best fit (left) to worst (right). The variance 
fraction of each realization is presented with its 95% confidence interval. The varying colors associated with each realization indicate the Pearson correlation 
coefficient. EOF, empirical orthogonal function; GCM, general circulation model; JJAS, June–September; MERRA-2, Modern-Era Retrospective Analysis for 
Research and Applications version 2.

Figure 5.  Examples of dominant spatial patterns (EOF 1) used for EOF spatial correlation analysis for temperature in JJAS. Figures on the left are the 
dominant spatial patterns of MERRA-2, the middle column are those of the highest ranked model, GISS-E2-H r6i1p3, and those on the right are from the 
lowest ranked model, IPSL-CM5A-LR r4i1p1. Absence of data (white regions) in plots at 850 hPa represents areas where the 850 hPa surface intersects with the 
land surface in the realization or MERRA-2. EOF, empirical orthogonal function; JJAS, June–September; MERRA-2, Modern-Era Retrospective Analysis for 
Research and Applications version 2.
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the observations and the realization come from the same distribution can be rejected for 15 realizations (all 
Access realizations, BNU-ESM r1i1p1, CanESM2 r1i1p1, CCSM4 r6i1p1, CMCC-CM r1i1p1, GFDL-CM3 
r1i1p1, GISS-E2-R r6i1p3, all HadGEM2-ES realizations, IPSL-CM5A-LR r2i1p1, IPSL-CM5B-LR r1i1p1, 
MIROC5 r1i1p1, and NorESM1-M r1i1p1).

5.  Discussion
5.1.  Processes Analysis

The selection procedure cannot explicitly tell if the realizations were able to represent the key processes 
of the region. This means that, solely from the statistics of the selection results, we cannot conclude that 
the highest ranking models were best at capturing the most important processes of East Africa. One of 
the processes playing a major role in the region's climate is the IOD, interannually due to its influence on 
rainfall (Black, 2005; Clark et al., 2003) and on greater temporal time scales by affecting climate change in 
the region (Marchant et al., 2007). Other processes influence East African climate but, for brevity purposes, 
we focused on the how well the realizations represent the IOD using the method outlined in Thielke and 
Mölg (2019). A brief description can be found in Appendix B. The results of the associated three tests can be 
found in Figure 6, where it can be observed that a larger percent of higher ranked models are able to capture 
the IOD than lower ranked ones. There were 10 failed tests in the upper third of the models, with CCSM4 
r6i1p1 representing three of these. In the middle third, there were 13 failed tests and 18 failed tests for the 
bottom third. This agrees with Thielke and Mölg (2019), who found 12 realizations of the GISS-E2-H to pass 
all tests. This points to the ability of the selection procedure to rank models that can capture one of the key 
processes in East Africa higher than those that cannot. However, these tests and others characterizing the 
additional processes in the region are not incorporated into the model selection procedure in order to main-
tain its generic application potential. They should, thus, be used along with the model selection procedure 
as an independent evaluation to stress the importance that GCM realizations capture the key processes of 
the region of interest.

5.2.  Model Selection Sensitivity Evaluation

5.2.1.  Reanalysis-Based Climate of the African Domain

The majority of the tests comprised in the model selection procedure are related to how well the GCM reali-
zations simulate the climate of the African domain. These involve evaluating the space-time climate anom-
alies with respect to MERRA-2, chosen as it was found to be a suitable data set for representing important 
climatic features of the African domain and East Africa (Collier et al., 2018). As the top ranked GCM reali-
zation, GISS-E2-H r6i1p3, and its high ranking counterparts, GISS-E2-R r6i1p1 and r6i1p3, were produced 
at the same institution as MERRA-2, questions arise concerning sensitivity to the reanalysis product used 
for the selection procedure. To evaluate this, ERA5 (Hersbach et al., 2020), produced by the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF), was used in place of MERRA-2 in the model selection 
procedure. First, the nondegenerate EOFs of ERA5 for each season and atmospheric state variable at 200, 
500, and 850 hPa were calculated for 1980–2012 in the African domain (Table C1). Using the nondegener-
ate EOFs of ERA5 and following the procedure outlined in Section 3.2, the metrics for how well the GCM 
realizations simulate the climate of the African domain were calculated. These were combined with those 
from the 12 tests addressing how well the climate of the air layers sampled at the summit of Kilimanjaro 
was reconstructed. The procedure from Section 3.4 was then used to provide the model ranking found in 
Figure 7. It should be noted that the 12 tests evaluating the climate of the air layers sampled at the summit 
of Kilimanjaro have not been affected by the switch from MERRA-2 to ERA5 as they involve comparison 
with AWS data.

The ranking obtained using MERRA-2 (Figure 3) and that using ERA5 (Figure 7) are rather similar. The 
majority of the top 10 and bottom 10 ranked GCM realizations coincide between the two rankings. The 
similarities between ranking of the GISS realizations indicate that the choice of reanalysis product does 
not infer some genealogical bias. This point is further illustrated upon closer examination of the rankings 
associated with ERA5, which do not favor European models using parts of the ECMWF IFS, coming from 
the same institution as ERA5.
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5.2.2.  Number of Metrics

To scrutinize the rather large the number of metrics (73), testing was undertaken to vary the number as-
sociated with the space-time climatic anomaly in the African domain. These metrics were chosen as they 
represent the vast majority of the metrics utilized. Two different approaches were employed: (1) eliminating 
metrics associated with an EOF with a variance fraction below a certain threshold and (2) considering only 
certain EOFs. Each of these are made up of a number of scenarios (Table 3). It should be noted that the 
scenario using a variance fraction threshold of 20% and that where only EOF 1 is considered are equivalent.

Using the technique elaborated in Section 3.4, the results obtained from each of the scenarios were used 
to produce a respective model ranking. To evaluate whether these rankings were better at capturing key 
processes of the region, the results of the IOD analysis (Section 5.1) were ordered with respect to them. This 
showed that as the number of metrics decreased, so did the ability of the higher ranked models to better 
simulate the IOD than lower ranked ones. This is clear when examining the number of failed IOD tests as-
sociated with the upper third, middle third, and bottom third of models for each scenario (Figure 8). These 
results highlight the importance of the lesser dominant EOFs (EOF 2–EOF 4), which explain a smaller 
fraction of the variance, and the value of the metrics included within the selection procedure.

5.2.3.  Ranking Method

As elaborated in Section 3.4, the GCM realizations were ranked by calculating the RMS of their relative 
errors. This resulted in the ranking found in Figure 3. Utilizing this technique means that the model that 
performs best on average ranks highest. This model might perform poorly in a test, such as the top ranked 
GISS-E2-H r6i1p3 in the KS test for temperature (large D value) and mean annual cycle test for V winds, but 
still ranks high as it performs best on average, that is has the lowest RMS. To evaluate the robustness of this 
ranking method, the GCM realizations were also ranked according to another method, lowest cumulative 
relative error (Equation 2):


 

n

i
i 1

Sum modelRE� (2)

where Sum represents the cumulative relative error for a GCM realization, n is the number of metrics (73), 
and modelRE is the relative error of the GCM realization for the respective metric. The difference between 
the two techniques is minimal as the rankings have remained fairly similar (Table D1), confirming the  

PICKLER AND MÖLG

10.1029/2020JD033033

14 of 28

Figure 6.  Heatmap of the results of processes analysis for the GCM realizations. The realizations are presented from highest ranked (left) to lowest. A green 
square indicates a model passed the processes analysis test, while blue indicates it failed the criteria outlined in Appendix B and Thielke and Mölg (2019). 
The number in front of each test name refers to the ability to capture IOD teleconnections (1), IOD magnitude (2), and East African precipitation (3). For tests 
starting with 1, the name indicates the evaluation of the linear correlation between the two indices, where precip refers to OND precipitation. For tests from 2, 
PDF is the probability density function and east and west indicate the eastern and western poles of the Indian Ocean sea surface temperature anomalies. For 3, 
MAC represents the mean annual cycle of the East African precipitation test, evaluating its shape and magnitude. GCM, general circulation model; IOD, Indian 
Ocean Dipole; OND, October–December.
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findings of Rupp et al. (2013). This illustrates that, in most cases, the model with the lowest relative error is 
also the model with the lowest RMS.

5.3.  Dynamical Downscaling

Furthermore, our concept and motivation imply that higher ranked realizations should result in a better 
downscaling product. To get a sense for this hypothesis, we undertook three dynamical downscaling sim-
ulations for East Africa, one with MERRA-2, one with a “good,” and one with a “bad” boundary condition, 
which come from the highest, GISS-E2-H r6i1p3, and lowest ranked, IPSL-CM5A-LR r4i1p1, GCM realiza-
tions, respectively. The three resultant downscaled climates can then be evaluated by comparing them to the 
observational data set CRU TS 4.04 (Harris et al., 2020). We specified a 10-year period and a 50-km target 
resolution centered over East Africa and Kilimanjaro to keep the computational expense for the discussion 
within limits.

In this regard, output from each GCM realization and MERRA-2 were used to drive the lateral boundaries of 
the Weather and Research Forecasting (WRF) model, version 4.1.2, over a domain typically used for region-
al atmospheric and climatic modeling of East Africa (33°N–37°S, 1°–75°E) from January 1996 to December 
2005 (Figure 1b). Note that the WRF domain is slightly larger than that used for the model selection proce-
dure as we are strictly following the setup of the most recent WRF study of Collier et al. (2019). More details 
and an overview of the configuration, which was taken from published WRF studies on East Africa (Collier 
et al., 2018, 2019), can be found in Appendix E. Over equatorial East Africa (5°N–5°S, 30°–40°E), monthly 
downscaled precipitation and surface air temperature from the WRF simulations using MERRA-2 and the 
“good” and “bad” GCM realizations as boundary conditions were evaluated spatially and temporally with 
respect to the monthly precipitation and surface air temperature from the observational data set CRU TS 
4.04. The downscaled climates were evaluated twofold: (1) ability to simulate the mean annual cycle and 
(2) ability to capture the seasonal spatial patterns. For the mean annual cycle analysis, the spatial average 
for surface air temperature and precipitation were taken, individually, for the simulations driven by the two 
GCM realizations and MERRA-2. The mean annual cycle was then calculated and compared in terms of its 
magnitude, shape, and bias with that obtained from CRU TS 4.04. The magnitude analysis involved taking 
the RMSE, while the shape comparison employed the Pearson correlation. For the seasonal spatial pattern 
evaluation, the study period was split up seasonally (JF, MAM, JJAS, and OND) and the seasonal average 
was taken temporally for over the entire period. The seasonal spatial patterns from the simulations driven 
by the realizations and MERRA-2 were correlated to those from CRU TS 4.04 using the Pearson correlation. 
The results of these analyses can be found in Figure 9.
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Figure 7.  GCM realization ranking using ERA5, presented from best to worst (left to right) as determined by the relative error of the realizations for each 
metric, where darker is a better fit. EOF represents the metric evaluating how well the GCM reconstructed the dominant spatial pattern and its variance fraction 
explained. The number at the end of these labels refers to which nondegenerate EOF is being analyzed and the following letter and number represent the 
atmospheric state variable (hus, specific humidity; T, temperature; U, U winds; and V, V winds), the atmospheric pressure level (200, 500, or 850 hPa), and the 
season (JF, MAM, JJAS, OND). KS represents the Kolmogorov-Smirnov test, mean represents the mean state test, and MAC the mean annual cycle test with 
appended acronyms representing the atmospheric state variable being evaluated. EOF, empirical orthogonal function; GCM, general circulation model; JF, 
January–February; JJAS, June–September; MAM, March–May; OND, October–December.

Approach Scenario Number of eliminated metrics
Total number of 

metrics remaining

(1) Variance fraction threshold 10% threshold 9 64

15% threshold 17 56

20% threshold 25 48

(2) Only certain EOFs considered EOF 1 25 48

EOF 1 and EOF 2 9 64

Table 3 
Approaches to Test the Number of Metrics and Their Respective Scenarios
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For temperature, using the top ranked GCM, GISS-E2-H r6i1p3, and/or MERRA-2 leads to a better down-
scaling result than IPSL-CM5A-LR r4i1p1. This is apparent when examining the mean annual cycle, where 
the simulations driven by GISS-E2-H r6i1p3 and MERRA-2 are better able to capture its magnitude and 
shape and for almost all 12  months have a lower bias with respect to the downscaled surface tempera-
ture from CRU TS 4.04. The exception lies in May, where IPSL-CM5A-LR r4i1p1 has a slightly lower bias 
than MERRA-2. For the seasonal spatial patterns of temperature, GISS-E2-H r6i1p3 and MERRA-2 perform 
clearly better than IPSL-CM5A-LR r4i1p1 over all four seasons (Figure 9).

This also holds true for the seasonal patterns of precipitation. However, for JJAS, the three perform simi-
larly with IPSL-CM5A-LR r4i1p1 doing better than MERRA-2 but worse than GISS-E2-H r6i1p3. For the 
mean annual cycle, MERRA-2 is best at reproducing the shape, while it encounters difficulty with the mag-
nitude. GISS-E2-H r6i1p3 is better able to capture the magnitude than IPSL-CM5A-LR r4i1p1 and MER-
RA-2. Examination of its mean annual cycle bias shows that GISS-E2-H r6i1p3 has a lower bias over 7 of 
the 12 months. It should also be noted that IPSL-CM5A-LR r4i1p1 is better able to capture the magnitude 
of the mean annual cycle than MERRA-2. All three WRF simulations encounter difficulties reconstructing 
the OND wet season, where they significantly overestimate precipitation. This could be associated with 
the physical cumulus parametrization (Kain-Fritsch) used in the WRF simulations (Otieno et al., 2020). 
It could also be related to a known issue that CMIP5 GCMs have in reconstructing the mean annual cycle 
for precipitation in East Africa, with underestimating the long rains and overestimating the short ones. A 
too weak Atlantic meridional overturning circulation in the GCMs leading to a sea surface temperature 
(SST) bias over the Indian Ocean is postulated to result in the difficulties capturing the rainy seasons (Yang 
et al., 2015).

Overall, the dynamical downscaling results show that using a top ranked GCM for the boundary condi-
tions leads to a better dynamical downscaling result over equatorial East Africa than a low-ranked GCM, 
a result that is most obvious for surface air temperature, where a clear distinction between the top ranked 
realizations and the lower ones exists in the GCM selection results (Table 2). However, the benefit of GCM 
boundary selection is also evident for precipitation.
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Figure 8.  Number of failed tests during the IOD processes analysis for the original ranking and that of each scenario. 
Results are presented for the upper third of the models, middle third, and bottom third based on the associated ranking. 
IOD, Indian Ocean Dipole.
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6.  Conclusions
We presented a model selection procedure to determine the suitability of GCM realizations for downscaling 
studies. Our results indicated that no one realization performed markedly best in all the tests but it was able 
to rank higher models that captured a key process in the region and produced a better downscaling product, 
which is a promising prospect.

In evaluation or selection of CMIP5 models, only one realization per model is typically analyzed (e.g., 
McSweeney et al., 2012; Ongoma et al., 2019). However, studies of climate extremes indicate the importance 
of including all realizations due internal climate variability amplifying or obscuring extreme events (Fischer 
et al., 2014; Perkins & Fischer, 2013). In Figure 3, it can be observed that most realizations from the same 
GCM perform similarly in the model selection procedure, as expected since the key difference between re-
alizations is internal climate variability. Upon first glance, this does not appear to hold true for GFDL-CM3 
realizations which rank 28th (r1i1p1), 7th (r3i1p1) and 19th (r5i1p1). However, upon closer examination of 
their RMSs (Table 2), it can be seen that they are rather similar with the main difference being GFDL-CM3 
r3i1p1 is better able to capture (smaller RMS) the dominant spatial patterns and their variance fraction ex-
plained for U winds over the African domain.

The selection procedure focused on analysis of the atmospheric state variables at varying atmospheric pres-
sure levels. These variables are not usually the focus of model selection procedures but are important as 
they are used to drive the lateral boundaries of RCMs in dynamical downscaling studies and their evalu-
ation, on at least one atmospheric pressure level, is required to adequately select a GCM for this purpose 
(Jury et al., 2015). They also tend to provide more reliable seasonal forecasts than SSTs and teleconnections 
(Nicholson, 2017). In particular, the ability to reproduce the mean climatic state is also analyzed with re-
spect to observations at a fixed atmospheric pressure level. This step is important and usually overlooked 
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Figure 9.  Comparison of surface air temperature and precipitation (different rows) from three 10-year WRF simulations to CRU TS 4.04 for the period of 
1996–2005 for equatorial East Africa. GISS-E2-H r6i1p3 is the top ranked realization (green) and IPSL-CM5A-LR r4i1p1 is the lowest ranked one (red). The 
first two columns represent the mean annual cycle analysis and the third focuses on reconstructing seasonal spatial patterns. The numbers on the plots of the 
second column represent the RMSE and Pearson correlation coefficient (r) evaluating the mean annual cycle. RMSE, root mean square error; WRF, Weather 
and Research Forecasting.
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as models have a harder time capturing the mean climatic state than the space-time anomalies (Bindoff 
et al., 2013). By including it, it provides a thorough examination of the ability of the realization to reproduce 
the climate of a specific region of interest. All these analyzes are not computationally expensive but result in 
a comprehensive overview of the climate for the region of interest at different atmospheric pressure levels, 
time scales, and for various aspects of the climatic state.

The model selection procedure shed light on some of the strengths and weaknesses of the GCM realiza-
tions. In all metrics, the realizations performed strongest for temperature. This has also been observed in 
studies of the surface temperature of the region (Aloysius et al., 2016; Ongoma et al., 2018). For specific 
humidity, they were able to capture the mean climatic state but encountered difficulties reconstructing the 
dominant spatial patterns of variability. This could be related to the issues CMIP5 GCMs have in simulating 
precipitation over the region (Aloysius et al., 2016; Yang et al., 2015). For these two variables, the realiza-
tions encountered less difficulties simulating the variance fraction explained of each nondegenerate EOF 
than reconstructing their spatial patterns. This points to the possibility that the spatial patterns are inverted 
in the realizations. Realizations had the most issues when attempting to reconstruct the tendencies asso-
ciated with winds, particularly V winds. Furthermore, the GCM realizations were able to better reproduce 
the variance fraction explained and spatial patterns for EOF 1 than for EOF 2–EOF 4. This indicates that 
the realizations display a greater skill in reconstructing the dominant spatial pattern (EOF 1, explaining 
the largest variance fraction). It also points to the importance of evaluating the lesser dominant spatial 
patterns (EOF 2–EOF 4, explaining a smaller variance fraction) as they distinguish which realizations are 
able to better simulate the climate of the region of interest. This is further highlighted when examining the 
number of EOF metrics utilized. All these findings highlight areas of interest and possible improvement in 
climate models. Overall, the results clearly indicate that realizations perform better for some metrics but it is 
important not to weigh these tests more favorably as all atmospheric state variables and climate tendencies 
are important to the climate of the region.

The rankings produced by the model selection procedure do not explicitly tell whether a realization was 
able to reconstruct the key processes of the region of interest. To evaluate this for the case study of East 
Africa, their ability to reconstruct the IOD was analyzed and it was found that a larger percentage of higher 
ranked models were better able to capture the IOD than lower ranked ones. This illustrates the ability of the 
selection procedure to rank realizations that can capture a key process of the region of interest higher than 
those that cannot. However, to maintain the generic potential of the selection procedure, this process anal-
ysis step was not incorporated within the testing scheme. It should, nevertheless, be used in conjunction as 
an independent indicator of model skill.

Furthermore, the assumption and motivation behind the selection procedure was that higher ranked re-
alizations would produce a better downscaling product than lower ranked ones. This was confirmed by 
running three WRF simulations forced respectively by MERRA-2, the top ranking realization (GISS-E2-H 
r6i1p3), and the lowest ranked one (IPSL-CM5A-LR r4i1p1) over East Africa for the period of 1996–2005 
and comparing the simulated monthly surface temperature and precipitation over equatorial East Africa to 
CRU TS 4.04. From the examination of the mean annual cycle and seasonal spatial patterns, one can see 
that the top ranked realization led to a better downscaling product than the lower ranked one, a result more 
evident for temperature than precipitation.

The selection procedure is, however, unfortunately biased toward the group of the space-time anomaly 
tests. This is due to the number of nondegenerate EOFs from the seasonal analysis at 200, 500, and 850 hPa. 
The analyses of their dominant spatial patterns of variability and their importance resulted in 61 tests. This 
is a significantly higher amount of tests than the 12 for the mean climatic state. This could possibly be com-
pensated for by weighting but that adds a further degree of subjectivity to the selection procedure.

The 12 mean climatic state tests were undertaken with respect to an observational data set that spans March 
2000 to September 2017, leading to a small overlap with the historical simulations. This data set was utilized 
as decadal AWS records at high altitude are scarce and its unique location, on the summit of Kilimanjaro, al-
lowed for the capture of the large-scale climatic properties of the tropical midtroposphere, and comparison 
to CMIP5 output. For analysis, the historical simulations had to be extended using RCP 4.5 and/or the his-
toricalExt simulation to allow for analysis. However, the small overlap period means that from 2006 onward 
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these tests are evaluating how well RCP 4.5 and/or historicalExt did in simulating the mean climatic state 
rather than how well the historical simulation did. While similar results are expected if the historical simu-
lation were present for this period, this should be noted. Due to the bias toward the space-time anomaly test, 
the relatively shorter overlap period should not significantly impact the model selection results.

While this methodology was presented for the case study of East Africa, it is comprehensive and easily ap-
plicable. Nevertheless, its skill has only been evaluated over East Africa and should be thoroughly examined 
for other regions. The evaluation of the space-time anomaly only requires selection of a suitable reanalysis 
product for the study area. The mean climatic state analysis presented was based on observations of the 
tropical midtroposphere from the summit of Kilimanjaro. This is rather case study specific but can be easily 
adjusted depending on the problem being addressed by using observational data, radiosondes, or satellite 
data for the target region and considering the scale they represent. Moreover, we focused the discussion on a 
regional atmospheric modeling experiment to demonstrate the added value of the methodology for dynam-
ical downscaling. However, it should also be explored in statistical downscaling which is known to benefit 
from physically sound data inputs (e.g., Hewitson & Crane, 2006), as captured by the four state variables 
temperature, humidity, and winds.

Appendix A:  Nondegenerate EOFs for MERRA-2
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Variable Season Pressure level (hPa) Number of nondegenerate EOFs Variance explained (%)

Temperature JF 200 2 79.1, 9.7

500 4 50.0, 17.4, 10.2, 6.2

850 3 43.9, 17.9, 10.3

MAM 200 2 78.6, 13.2

500 2 64.0, 10.7

850 2 41.3, 16.5

JJAS 200 4 69.0, 14.1, 6.2, 3.0

500 3 54.9, 18.2, 8.2

850 2 39.5, 16.7

OND 200 4 77.9, 9.0, 4.0, 2.4

500 2 56.3, 14.4

850 2 37.9, 19.3

Specific humidity JF 200 1 50.7

500 1 29.4

850 0 –

MAM 200 2 52.1, 14.6

500 1 33.7

850 0 –

JJAS 200 3 59.5, 12.7, 7.5

500 1 41.3

850 1 22.9

OND 200 1 57.0

500 1 51.2

850 1 28.2

Table A1 
Nondegenerate EOFs and Their Percent Variance Explained for MERRA-2 Reanalysis Data for the African Domain
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Appendix B:  Brief Outline of IOD Processes Analysis
The method outlined in Thielke and Mölg (2019) was utilized to analyze how well the GCM realizations 
captured the IOD for 1948–2005, a time period chosen due the availability of the NCEP/NCAR reanalysis 
data set and overlap with the CMIP5 historical simulation. First, the ability to capture the relevant IOD 
teleconnections was determined by examining the linear correlations between the September–October–No-
vember (SON) Dipole Mode Index (DMI), the SON Zonal Wind Index (ZWI), and the OND precipitation. 
The DMI referred to the area-averaged difference in SST anomalies for the western (50°–70°E, 10°N–10°S) 
and eastern (90°–110°E, 0°–10°S) poles of the Indian Ocean. The ZWI was the area-averaged (60°–90°E, 
5°N–5°S) zonal wind component at 850 hPa. The OND precipitation was evaluated for the East African 
region (25°–40°E, 10°N–15°S). Realizations with a p-value greater than 0.05 did not meet this criterion. 
Second, the ability to reconstruct the IOD magnitude was examined using the probability density functions 
for the western and eastern poles of the Indian Ocean SST anomalies. Realizations not within one standard 
deviation of the mean of three observational SST data sets (version 3b and 4 of the Extended Reconstructed 
SST [ERSST] data set [Huang et al., 2015a, 2015b; Liu et al., 2015; Smith et al., 2008; Xue et al., 2003] and 
COBE-SST2 [Hirahara et al., 2019]) are deemed to fail at reconstructing the magnitude of the IOD. Finally, 
evaluation of the representation of East African precipitation by examining, with respect to the monthly 
land surface precipitation from the CRU TS 4.03 (Harris et al., 2020), how the realization captures the mag-
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Table A1 
Continued

Variable Season Pressure level (hPa) Number of nondegenerate EOFs Variance explained (%)

U winds JF 200 2 55.8, 14.2

500 1 38.2

850 2 30.3, 18.3

MAM 200 1 49.1

500 2 28.3, 16.1

850 1 29.0

JJAS 200 2 59.7, 13.4

500 1 27.5

850 0 –

OND 200 0 –

500 1 33.1

850 1 42.2

V winds JF 200 1 35.3

500 0 –

850 0 –

MAM 200 0 –

500 0 –

850 0 –

JJAS 200 0 –

500 0 –

850 0 –

OND 200 0 –

500 1 24.2

850 0 –

Note. If multiple nondegenerate EOFs are present, first value in the variance explained will correspond to the first 
nondegenerate EOF, the second will correspond to the second EOF, and so on.
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nitude and shape of the mean annual cycle. Realizations with a RMSE above the standard deviation of the 
observational data set and a Pearson correlation with a p-value greater than 0.05 failed this test.

Appendix C:  Nondegenerate EOFs for ERA5
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Variable Season Pressure level (hPa) Number of nondegenerate EOFs Variance explained (%)

Temperature JF 200 2 76.6, 9.7

500 3 48.4, 19.0, 10.3

850 1 46.7

MAM 200 2 76.2, 14.2

500 1 65.1

850 3 35.3, 19.1, 11.0

JJAS 200 4 64.3, 16.1, 7.1, 3.7

500 1 61.3

850 0 –

OND 200 2 70.8, 13.2

500 1 55.8

850 1 34.0

Specific humidity JF 200 2 37.5, 15.7

500 2 29.2, 14.6

850 0 –

MAM 200 1 50.4

500 1 27.3

850 1 26.9

JJAS 200 1 62.4

500 2 36.5, 19.3

850 0 –

OND 200 1 54.8

500 1 51.0

850 1 32.7

U winds JF 200 2 58.1, 14.7

500 1 43.6

850 2 31.8, 16.8

MAM 200 1 44.8

500 1 28.3, 30.4

850 0 –

JJAS 200 2 63.8, 12.5

500 0 –

850 0 –

OND 200 0 –

500 0 –

850 1 39.9

Table C1 
Nondegenerate EOFs and Their Percent Variance Explained for ERA5 Reanalysis Data for the African Domain



Journal of Geophysical Research: Atmospheres

Appendix D:  GCM Ranking Sensitivity Testing
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Table C1 
Continued

Variable Season Pressure level (hPa) Number of nondegenerate EOFs Variance explained (%)

V winds JF 200 1 37.4

500 1 30.4

850 0 –

MAM 200 0 –

500 1 25.3

850 0 –

JJAS 200 0 –

500 0 –

850 0 –

OND 200 0 –

500 1 24.1

850 0 –

Note. If multiple nondegenerate EOFs are present, first value in the variance explained will correspond to the first 
nondegenerate EOF, the second will correspond to the second EOF, and so on.

Model Ranking RMS Ranking sum RE_tot

ACCESS1-0 r1i1p1 9 9 29.058

ACCESS1-3 r1i1p1 24 22 32.037

BCC-CSM1-1 r1i1p1 3 5 27.887

BCC-CSM1-1-m r1i1p1 23 23 32.635

BNU-ESM r1i1p1 8 11 29.434

CCSM4 r6i1p1 4 4 27.725

CMCC-CM r1i1p1 15 14 30.269

CNRM-CM5 r1i1p1 16 15 30.164

CSIRO-Mk3-6-0 r1i1p1 18 17 31.023

CanESM2 r1i1p1 27 27 34.547

FGOALS-g2 r1i1p1 20 18 31.587

GFDL-CM3 r1i1p1 28 30 35.245

GFDL-CM3 r3i1p1 7 7 28.350

GFDL-CM3 r5i1p1 19 19 31.859

GFDL-ESM2G r1i1p1 26 26 33.557

GFDL-ESM2M r1i1p1 11 12 29.531

GISS-E2-H r6i1p3 1 1 26.197

GISS-E2-R r6i1p1 10 8 28.852

GISS-E2-R r6i1p3 12 10 29.348

HadGEM2-ES r1i1p1 17 21 31.943

HadGEM2-ES r2i1p1 22 24 32.686

IPSL-CM5A-LR r1i1p1 30 28 34.696

Table D1 
GCM Realizations Rankings Produced Using the RMS of the Relative Errors and the Sum of the Relative Error, RE_tot



Journal of Geophysical Research: Atmospheres

Appendix E:  Dynamical Downscaling Test
Two GCM realizations (GISS-E2-H r6i1p3 and IPSL-CM5A-LR r4i1p1) and MERRA-2 were, respectively, 
used to force the lateral boundaries of WRF over a domain spanning 33°N–37°S by 1°–75°E for 1996–2005. 
This single-domain consists of 50  km grid spacing centered over Kilimanjaro (Figure  1b). The choice of 
configuration, including physics and parametrization schemes, followed the detailed WRF studies of Collier 
et al. (2018, 2019). To prevent model drift, grid analysis nudging was utilized and applied over the domain 
(Figure  1b) to the horizontal winds, potential temperature, and humidity above the planetary boundary 
layer. Apart from humidity, the default nudging coefficients were used (Mölg & Kaser, 2011). As per Otte 
et al. (2012), the humidity nudging coefficient was decreased by a factor of 10. The simulations were run over 
2 years with 8 days of spin-up and then combined to provide results for the entire 1996–2005 period, utilizing 
over 50,400 core hours. While 8 days is sufficient for atmospheric variables to reach equilibrium, it is not 
sufficient for the soil subsystem. This can require over 1 year. However, Jerez et al. (2020) have shown that 
this can be ignored unless a study where the deep soil-atmosphere feedback is critical is being undertaken.

Data Availability Statement
These data were accessed from the ESGF repository at https://esgf-node.llnl.gov/search/cmip5/. The MER-
RA-2 data used in this publication were provided by the Global Modeling and Assimilation Office (GMAO) 
at the NASA Goddard Space Flight Center. They are available at MDISC (https://disc.gsfc.nasa.gov/datasets/
M2I6NPANA_5.12.4/summary).
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