
1.  Introduction
On August 22, 2018, the European Space Agency (ESA) successfully launched the Earth Explorer Mission 
Aeolus (Stoffelen et  al.,  2005). The scope of this mission is to measure profiles of one horizontal wind 
component (mainly the west-east direction) in the troposphere and stratosphere (European Space Agen-
cy, 2008; Reitebuch et al., 2020; Stoffelen et al., 2005; Straume et al., 2020) and to improve weather forecasts 
while assimilating the Aeolus wind profile data in near–real time (Horányi et al., 2015a, 2015b; Rennie & 
Isaksen, 2020). On-board of this satellite is the Atmospheric Laser Doppler Instrument (ALADIN), which 
is a high spectral resolution (HSR, Lux et al., 2020; Wandinger, 1998) Doppler lidar (LIght Detection And 
Ranging). ALADIN is the first lidar instrument on a European satellite and the first instrument in space 
that actively can measure profiles of an horizontal wind component (Baars, Herzog, et al., 2020; Martin 
et al., 2021; Reitebuch, 2012; Witschas et al., 2020). It follows the very successful CALIPSO mission (Wink-
er et al., 2009) with its elastic polarization lidar CALIOP on-board, which is delivering aerosol and cloud 
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Plain Language Summary In September 2020, extremely strong wildfires in the western 
USA (i.e., mainly in California) produced large amounts of smoke. These biomass burning aerosol (BBA) 
layers were transported from the US west coast towards central Europe within 3-4 days. This smoke plume 
was observed above Leipzig, Germany, for several days turning the sky milky and receiving high media 
attention - it was the highest perturbation of the troposphere in terms of AOT ever observed over Leipzig. 
The first smoke plume arrived on 11 September 2020, just in time for a regular overpass of the Aeolus 
satellite of the European Space Agency (ESA). Aeolus accommodates the first instrument in space that 
actively measures profiles of a horizontal wind component in the troposphere and lower stratosphere. 
Aeolus has been launched to improve weather forecasts while assimilating the Aeolus wind profile data 
in near–real time. But Aeolus also delivers profiles of aerosol and cloud optical properties as spin-off 
products. We performed a first assessment of the aerosol profiling capabilities of Aeolus while precisely 
analyzing the smoke plume above Leipzig with a ground-based multiwavelength-Raman-polarization 
lidar. But we also show the dramatic impact of fires in the western USA on atmospheric conditions over 
central Europe.
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profiles since 2006 (e.g., Young et al., 2018). While the main focus of the Aeolus mission is to obtain atmos-
pheric horizontal winds, the lidar is also capable to retrieve aerosol and cloud optical properties as spin-off 
products (Ansmann et al., 2007; Flamant et al., 2008) via the HSR lidar (HSRL) technique. This technique 
is a spaceborne novelty. Thus, one of the goals of this Earth Explorer Mission is to prove the concept of this 
new technology in space.

While the exploitation of the aerosol products and algorithm development of Aeolus is still ongoing, we 
want to present a first glimpse on the Aeolus’ capabilities to measure vertical aerosol profiles. For this 
purpose, we investigated dense smoke layers observed near Leipzig, Germany, originating from very strong 
and intense wildfires in the western United States (US) of America. In 2020, wildfires, for example in Cali-
fornia, have been dramatically intensive, also triggering the discussion of an increased risk of wildfires due 
to climate change (Brando et al., 2019; Wehner et al., 2017). The resulting smoke plumes from such fires, 
once lifted to the free troposphere and/or lower stratosphere (UTLS) can travel several thousand kilometers 
and influence the aerosol load even in very remote regions (Baars et al, 2011, 2012; Fromm et al., 2010; 
Kloss et al., 2019). In late summer 2017, an intense event of smoke-plume advection from Canadian wild-
fires was monitored in central Europe (Ansmann et al., 2018; Haarig et al., 2018; Hu et al., 2019; Khaykin 
et al., 2018). At that time, tropospheric smoke plumes were remarkable but stratospheric smoke was even 
more intense, lasting for more than half a year above the tropopause over the European continent (Baars 
et al., 2019). Similar observations were made in the Southern Hemisphere during the recent Australian fires 
(austral summer 2019/2020, Ohneiser et al., 2020; Khaykin et al., 2020).

Here, we present an example of the most recent smoke event originating from fires in south-western North 
America (mainly in California) and observed over Leipzig, Germany in the frame of the German initia-
tive for the Experimental Validation and Assimilation of Aeolus observations (EVAA, e.g., Baars, Geiβ, 
et  al.,  2020; Geiβ et  al.,  2019). The observations were performed on September 11, 2020 at the Leibniz 
Institute of Tropospheric Research (TROPOS) in Leipzig. Our objective is to present a first assessment on 
the Aeolus aerosol observing capabilities and to show the dramatic impact of fires in the western United 
States of America on atmospheric conditions over central Europe—it was the highest perturbation of the 
troposphere in terms of Aerosol Optical Thickness (AOT) ever observed at TROPOS since the start of the 
regular lidar observations in 1997. Aeolus is currently the only spaceborne lidar able to measure inde-
pendently backscatter and extinction of aerosol and clouds and thus deliver the particle-type-depending 
extinction-to-backscatter ratio, called lidar ratio. It therefore provides valuable information on the radiative 
properties of these smoke aerosols. Furthermore, Aeolus is the only satellite in space that measures simulta-
neously aerosol properties together with profiles of the horizontal wind speed. This unique configuration is 
expected to improve the predictions of such extreme events as well as air quality forecasts (European Space 
Agency, 2008; Horányi et al., 2015a; Letertre-Danczak et al., 2020).

2.  Californian Smoke Over Central Europe
Figure 1 shows the atmospheric conditions over Leipzig, Germany on September 11, 2020 as measured with 
the ground-based multiwavelength-Raman-polarization lidar PollyXT (Engelmann et al., 2016) organized 
within the voluntary, scientific network PollyNET (Baars et al., 2016) and part of EARLINET/ACTRIS (Pap-
palardo et al., 2014). The time-height plot of the uncalibrated attenuated backscatter coefficient at 1064 nm 
is presented to indicate the backscatter intensity of atmospheric particles. While blueish colors represent no 
significant particle concentration and thus almost pure molecular scattering, green and reddish colors in-
dicate a moderate to high aerosol load. White colors represent very strong backscattering caused by clouds. 
Besides some low-level clouds and local aerosol below 2.5 km before 05:00 UTC, first aerosol layers, namely 
smoke from Californian fires, arrived at an altitude of about 12 km at 03:00 UTC as seen in Figure 1. The 
arrival at this height range is most probably a result of the higher wind speeds in the jet stream region. Lat-
er through the day, smoke layers were observed throughout the whole troposphere down to about 4.5 km 
altitude and thus well above the local planetary boundary layer (PBL). The total AOT in Leipzig increased 
to values of 0.6 at 380 nm and 0.4 at 532 nm between 14:00 and 17:00 UTC as observed with an AERONET 
sun photometer (Giles et al., 2019) on this day. Smoke layers from this event could be observed at TROPOS 
until 14 September.
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To characterize the atmospheric state over Leipzig on September 11, 2020, we exemplary analyze the air-
masses arriving at noon (12 UTC) at about 8.5 km—the height of the estimated center of the smoke layer 
according to Figure 1. A 10-day FLEXPART (Pisso et al., 2019; Stohl et al., 2002) backward simulation of 
500 air parcels originating at Leipzig between 8.3 and 8.7 km height on September 11, 2020 at 12 UTC was 
performed. Five clusters were generated by grouping the simulated air parcels based on their location at 
three-hourly intervals. The result is shown in Figure 2. Cluster size is indicated by the size of the dots, with 
larger clusters representing more air parcels. Colors are assigned to clusters that are closest to each other 
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Figure 1.  Time-height plot of the uncalibrated attenuated backscatter coefficient at 1064 nm measured at ground in 
Leipzig, Germany, with the multiwavelength-Raman polarization lidar PollyXT. The time of the overpass is indicated as 
red rectangle while the data analysis period of the ground-based lidar data is highlighted in orange. No data is available 
during regular depolarization calibrations (black).

Figure 2.  Airmass origin at Leipzig on September 11, 2020 underlaid with MODIS derived fire radiative power: Clusters of air parcel positions ending at 
Leipzig between 8.3 and 8.7 km height at 12 UTC (see text for further description). Geographic location (top panel) and heights (bottom panel) of the clusters 
(indicated by color) are shown. Dot size denotes the size of each cluster. Dark gray dots denote the mean position of all particles. MODIS derived fire radiative 
power was gridded to 2°. Only fire detections between 31 August and September 7, 2020 are included. A zoomed map of the fire radiative power gridded to 1° in 
the western US is shown at the left.
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at two consecutive times. However, they do not represent a continuous trajectory, as the particles for each 
cluster might have changed.

This backward simulation proves that the airmasses arriving over Leipzig at 8.5 km height at 12:00 UTC 
originated from the west coast of North America, where intense fires were taking place during this time as 
indicated by the very high fire radiative power as shown in Figure 2, left (Giglio, 2016). Fire frequency and 
strength in California increased during the first week of September. Slightly weaker fires were observed in 
Oregon, Washington and Montana. Due to the prevailing winds, the travel time of the smoke from the US 
West Coast to Europe was only 3–4 days. The airmass was transported across the Atlantic Ocean in a long 
filament at approximately 51°N on 1 day only (9 September).

The time-height cross-section of airmass source (Figure 3, Radenz et al., 2021) generalizes the findings from 
the single time and height analysis as shown in Figure 2. Air parcel positions are calculated every 3 h and 
for height intervals of 500 m. At each step, the residence time is summed up for each region, whenever par-
ticles were below the reception height during the backward simulation. The reception height of 5 km was 
set to agree to with typical injection heights caused by wildfires of similar strength (Val Martin et al., 2018) 
and shall not be confused with arrival height of the plume at Leipzig. The grouped residence time profiles 
are then visualized in the time-height-cross-section. According to Figure 3, airmasses originating at the 
west coast of North America were present over Leipzig during the whole day, being especially prominent 
above 4 km after 9 UTC. The results suggest that in this case, smoke injection into the middle troposphere 
was sufficient to be subject to long-range transport. Please note, that the actual injection could also occur at 
lower altitudes, but would still be covered by the 5 km threshold. As shown in Figure 2, the lifting to 8.5 km 
occurred during the transport on the 8 September.

It can therefore be concluded that the strong wildfires in California in 2020 produced large amounts of 
smoke, which were then transported toward Europe.

3.  Aerosol Optical Profiles of Aeolus Compared to Ground-Based Lidar
Aeolus reached central Europe around 16:45 UTC on September 11, 2020, as shown in Figure 4. Here, the 
backscatter coefficient of Aeolus retrieved with the HSRL technique (called Standard Correction Algorithm 
[SCA] product; Flamant et al., 2017; Huber et al., 2016) is visualized with VirES (Santillan et al., 2019) 
for this overpass. Despite the noise in the backscatter product, this intense aerosol plume is clearly visible 
ranging from Leipzig to southern Norway (greenish colors). The very strong backscatter values (bright yel-
low) over central Norway were caused by clouds also indicated by deep blue colors below (no signal due to 
complete attenuation of laser beam in optically thick clouds). Note that Aeolus aerosol profiles are currently 
only available with a horizontal resolution of 87 km and vertical resolution from 500 to 2000 m depending 
on altitude (500–1000 m in the troposphere).
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Figure 3.  Airmass source estimate on the September 11, 2020 for airmasses arriving at Leipzig, Germany. The estimate 
is based on 10-day backward simulations using a reception height of 5 km.
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We used the ground-based Raman lidar observations made 2–3 h later at Leipzig to compare them with the 
Aeolus observations made around 100 km north-west of Leipzig (indicated with “+1” in Figure 4) instead of 
presenting the comparison with the closest overpass. Due to the strong solar background at the time of the 
overpass (around 17:45 local solar time), Raman retrievals (Ansmann et al., 1992) of the ground-based lidar 
delivering the backscatter and extinction coefficient independently were not possible. Backward trajectories 
indicate that airmasses traveled around 3 h from the Aeolus track 100 km north toward Leipzig. For this 
reason, we used the night time observation made between 20:00 and 21:30 UTC for the comparison as vis-
ualized in Figure 1. Considering no significant changes in the aerosol distribution within the smoke plume 
over this short time and thus only advection as result of the mean wind fields, a good collocation criterion is 
found to allow the comparison of the ground-based Raman retrievals with the HSRL retrievals of Aeolus. A 
similar procedure (Papagiannopoulos et al., 2016; Tesche et al., 2013) has also been applied for Calibration/
Validation activities of the spaceborne lidar on-board CALIPSO (Winker et al., 2009).

Figure 5 shows the comparison of the ground-based Raman-polarization lidar PollyXT with the Aeolus 
observation as described. The particle backscatter and extinction coefficient, along with the corresponding 
lidar ratio (extinction-to-backscatter ratio), are shown (Raman methodology for PollyXT and HSR method-
ology for Aeolus). For Aeolus, the HSR product SCA and a HSR product obtained by smoothing two vertical 
bins called “SCA mid bin” are presented. These two products are standard output.

As the Aeolus lidar data are very noisy and the provided uncertainties are currently overestimated, the qual-
ity flags included in the Aeolus aerosol spin-off (L2A) product are not yet mature (Reitebuch et al., 2020). 
For this reason, we applied the following quality control criteria for Aeolus data:

1.  Exclude negative backscatter and extinction coefficient values
2.  Absolute value of the provided extinction error must be less than 100 and 275 Mm−1 for SCA and SCA 

mid bin, respectively

As seen in Figure 5, left, an excellent agreement regarding the backscatter coefficient (at 355 nm) between 
the ground-based lidar (black thick line) and the Aeolus SCA algorithms (red and blue lines) is found for the 
lofted smoke layer between 4 and 12 km. In the PBL, Aeolus obtains higher values than the lidar at Leipzig, 
probably due to the coarse horizontal resolution of Aeolus and the spatio-temporal variations in terms of 
optical particles properties within the PBL (e.g., due to hygroscopic growth). In addition, sporadic contam-
ination of the 87 km aggregated Aeolus observation with small boundary layer clouds cannot be ruled out.
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Figure 4.  Aeolus particle backscatter coefficient profiles at 355 nm as derived with the standard correction algorithm 
(SCA) during the overpass on September 11, 2020 at around 16:45 UTC as visualized with VirES. Colors represent the 
backscatter coefficient value from 1.5 to 20 Mm−1 sr−1 plotted on a logarithmic scale. The location of the ground based 
measurements at Leipzig, Germany, is indicated by the green star. The green vertical line represents the laser beam of 
the ground-based lidar.
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It should be noted that since Aeolus is only able to detect the co-polar backscatter component of the cir-
cularly polarized emitted light (Ansmann et  al.,  2007; Flamant et  al.,  2008), the ground-based PollyXT 
observations at 355 nm (dotted, black line) had to be transformed to an Aeolus-like profile by means of the 
measured particle linear depolarization ratio - for more details see, for example, Baars, Geiβ, et al. (2020). 
Nevertheless, as the smoke particles arriving from the US did almost not depolarize the light during the 
backscattering process (particle linear depolarization ratio at 355 nm below 10% according to PollyXT), al-
most no difference between the total particle backscatter profile and the Aeolus-like (co-polar) backscatter 
profile is evident.

The extinction coefficient profiles of Aeolus are in reasonable agreement with the ground-based ones (Fig-
ure 5, center panel). Due to the utilization of molecular scattering processes for the extinction retrievals, the 
profiles are naturally much noisier compared to the backscatter ones. Nevertheless, both shape and magni-
tude of the extinction profile agree well within the pronounced smoke layer between 4 and 8 km for both 
retrievals. The SCA mid-bin algorithm provides more robust results due to averaging of two neighboring 
height bins and should be prioritized for extinction analyses. Sporadic values for extinction above 8.5 km 
are provided by both algorithms, an effect that is attributed to instrumental noise. Compared to the ground-
based lidar profiles, these values above 8.5 km are unrealistically high. A series of algorithm improvements 
(including quality flags, improved calibration and error estimates etc.) are still under development and are 
foreseen to avoid such artifacts in future. Therefore, the current Aeolus aerosol optical data is still flagged 
as preliminary.

The message for this example case is that Aeolus is able to measure - as a first spaceborne lidar - backscat-
ter and extinction independently in pronounced aerosol layers, and thus is able to directly derive the lidar 
ratio as shown in Figure 5, right. We thus focus in the following on the intensive aerosol properties within 
the main smoke layer below 8 km. Within this pronounced aerosol layer, the agreement between the lidar 
ratio observed by the ground-based lidar (and converted to the co-polar (Aeolus-like) component) and the 
one observed by Aeolus is reasonable (please remind, that current Aeolus uncertainties are overestimated 
and thus unrealistically high). The PollyXT observations yield a lidar ratio of the smoke of about 40–50 sr at 
355 nm, which is in excellent agreement with former observations of long-range transported smoke (Haarig 
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Figure 5.  Comparison of the optical profiles provided by Aeolus (red and blue) and the ground-based EARLINET lidar PollyXT (black lines). The particle 
backscatter coefficient (left), the particle extinction coefficient (center), and the corresponding lidar (extinction-to-backscatter) ratio is shown. The ground-
based backscatter observations (dashed line) are converted to Aeolus-like, that means, co-polar, profiles (solid line) for comparability. The mean coordinates and 
distance of the 87 km long Aeolus observations to the ground-based lidar are given as well.



Geophysical Research Letters

et al., 2018; Ohneiser et al., 2020). Aeolus measured values within the same range, even though some outli-
ers in the smoke region exist (at around 6 km). These outliers are mainly caused by the noisy signals but al-
gorithm development to reduce these effects are ongoing. As for the extinction, the SCA mid bin algorithm 
is to be preferred against the SCA for the lidar ratio analysis.

The missing depolarization component of Aeolus did not restrict the characterization of the dominant 
aerosol types in the lofted smoke layer, since the particles were mainly spherical and thus non-depolar-
izing. However, in cases of a more heterogeneous aerosol field, polarization capabilities would have been 
highly desirable also with respect to a potential aerosol type identification (e.g., polarizing mineral dust 
and volcanic ash) and aerosol/cloud discrimination (Ansmann et al., 2011; Baars et al., 2017; Pappalardo 
et al., 2013). Such capabilities are implemented in the future EarthCARE mission (Wandinger et al., 2016).

From the multiwavelength Raman polarization PollyXT measurements, it is also possible to derive the 
smoke mass concentration as described by Mamouri and Ansmann  (2016) and Ansmann et  al. (2020). 
For this purpose, an extinction-to-volume conversion factor of 0.169 × 10−12 Mm at 532 nm and a particle 
density of 1.3 g cm−3 have been used for the smoke layer. These values, which are required for the con-
version of particle extinction coefficient to mass concentration, correspond to semi-aged smoke according 
to Ansmann et al. (2020). The procedure yields to a maximum smoke mass concentration of 22 μg m−3 
in the smoke layer peak around 5 km (maximum extinction coefficient of 160 and 100 Mm−1 at 355 and 
532 nm, respectively). Integrating the mass concentration over the entire smoke layer leads to a total mass 
of 64,757 μg m−2 that has been observed at Leipzig between 20:00 UTC and 21:30 UTC (corresponding to a 
mean concentration of 8 μg m−3). The AOT of the smoke layer (from 3.8 to 11 km) was 0.45 and 0.29 at 355 
and 532 nm, respectively, and thus about 2/3 of the total AOT, showing the dramatic impact of the Califor-
nian wildfires on the Central European troposphere.

4.  Conclusions
The potential of Aeolus to independently retrieve aerosol backscatter and extinction coefficients was 
demonstrated in this study by means of a comparison to a high-quality ground based lidar. An extreme 
event of smoke advection from the US west coast which was observed over Leipzig, Germany, Central Eu-
rope, served as an example. Besides Aeolus’ observing capabilities, this study demonstrated that strong 
wildfires, such as the ones occurred in western US in 2020, can emit huge smoke amounts, which are com-
parable to volcanic eruptions (Peterson et al., 2018). These extraordinary smoke plumes are able to travel 
relatively fast over large distances between the continents and thus might influence radiation, clouds, and 
weather at even remote places usually not directly affected by wildfires and several thousand kilometers 
away from the source.

The intense smoke plume, which arrived at the measurement location of Leipzig on September 11, 2020, 
caused a perturbation of the troposphere for 4–5 days. A smoke-related AOT of 0.45 at 355 nm was meas-
ured above Leipzig with estimated maximum and mean mass concentrations of the smoke of 22 and 8 μg 
m−3, respectively. Aeolus captured this smoke plume near the ground-based station of Leipzig on the first 
day of the event during its regular overpass. Despite the coarse horizontal (≈ 87 km) and vertical (500–
1000 m) resolution of Aeolus’ aerosol optical profiles, it was shown that the HSRL technique can be success-
fully applied from space. Within the main smoke layer, the Aeolus-derived backscatter, extinction and lidar 
ratio profiles compare well with the high-quality ground based lidar considering the still ongoing algorithm 
improvements and uncertainty estimation refinements.

Measuring the lidar ratio directly from space is a spaceborne novelty and boosts aerosol-cloud interaction 
research into a new era. The results presented here indicate that Aeolus is partly capable of filling the gap 
between the ending CALIPSO and the upcoming EarthCARE mission (Illingworth et al., 2015). However, 
further sensitivity studies on how well Aeolus is able to correctly determine extinction and backscatter coef-
ficients in less pronounced aerosol layers are still ongoing and one main focus of current Cal/Val activities.
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Data Availability Statement
The ground-based Polly lidar data is visualized at polly.tropos.de and will become publicly available via 
the data portal of the European Aerosols, Clouds and Trace gases Research Infrastructure (ACTRIS) when 
its implementation phase is completed. Aeolus aerosol spin-off data used in this publication is not yet 
publicly available, but, after reprocessing in spring 2021, including improved radiometric calibration and 
quality flags, an updated data set will become freely available via ESA services (i.e., https://aeolus-ds.
eo.esa.int/oads/access/ and the online VirES tool at https://aeolus.services/). Nevertheless, to allow the 
FAIR data principles, all data used for this study are available at zenodo.org under https://doi.org/10.5281/
zenodo.1115995.
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