
1.  Introduction
In streams and rivers, ecosystem metabolism (primary production and respiration) that is carried out by 
multitrophic microbial communities residing mainly in the streambed is shaped by the master variable 
flow (Battin et al., 2009, 2016; Risse-Buhl et al., 2020). Flow determines both nutrient supply and the sedi-
ment transport regime (Hart & Finelly, 1999; Poff et al., 1997). In general terms, sediment transport influ-
ences ecosystem metabolism by means of streambed hydromorphology and sediment stability (Atkinson 
et al., 2008; Uehlinger et al., 2002). The latter one results from the interplay of sediment and flow char-
acteristics (Bridge, 2003). For example, floods are intensive and episodic events that mobilize and scour 
the entire streambed deeply altering the streambed metabolism and microbial community structure (e.g., 
O’Connor et al., 2012; Uehlinger, 2000). In contrast, sediment transport at low flow (i.e., flow of water in 
a stream during prolonged dry weather conditions [Smakhtin, 2001]) is of much less intensity, affecting 
mainly the finer sediment grain sizes over longer periods (more than half of the year) (Biggs et al., 2005; 
Bridge, 2003; Singh et al., 2019). Thus, while the former one is a strong shaping force acting episodically on 
a large temporal scale (once per year [Biggs et al., 2005]), the latter one could potentially shape ecosystem 
metabolism continuously during much longer periods. However, the implications for ecosystem metabo-
lism of low flow sediment transport are poorly understood.

At low flow, fine to medium sand (grain size ∼0.1–0.7 mm) is mobilized and transported as bedload, more 
specifically as migrating ripples at depth averaged flow velocities of <0.2–0.6 m s–1 (Baas, 1999, 2003; Ue-
hlinger et al., 2002; Verdonschot, 2001). Ripple migration is characterized by an erosion-resting cycle (see 
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Figure 1a): shear stress erodes sand grains (and other organic particles) at the stoss side and transports them 
toward the crest, from where they avalanche toward the trough and deposit. There, grains and particles are 
buried by subsequent grains and remain at rest until the eroding upstream face of the ripple approaches 
the grain’s position, whereupon the erosion-resting cycle starts again. The erosion scales in the range of 
seconds, whereas the resting phase ranges from several minutes to a few hours according to ripple size and 
flow velocity (Baas, 1999; Bridge, 2003; Harvey et al., 2012). The time that it takes to transport the entire 
sediment volume of a ripple is named sediment turnover and is comparable to pore water exchange (Elliot 
& Brooks, 1997; Savant et al., 1987). Migrating ripples are a common hydromorphological element cov-
ering between 20% and 50% of the streambed of a reach (Marcarelli et al., 2015; Mutz et al., 2001; Rabení 
et al., 2005; Wallbrink, 2004).

Migrating ripples create a unique, complex, and dynamic habitat for multitrophic microbial communities, 
including heterotrophic bacteria and phototrophs (cyanobacteria and algae). We propose that the unique-
ness and complexity of this habitat relay on the combination of promoting and hampering factors. On 
the one hand, ripples increase mixing of surface and interstitial water (Kaufman et  al.,  2017; Mendoza 
Lera & Mutz, 2013; Wolke et al., 2020), supplying the microbial community with oxygen, carbon, and nu-
trients (Fischer et al., 2005; Zheng et al., 2019). Additionally, migrating ripples play an important role in 
entrapping and releasing particulate organic matter (Harvey et al., 2012). On the other hand, the migration 
of sand grains might result in (1) resting times too short to allow the microbial community to grow and 
differentiate into complex biofilm architectures (Scheidweiler et al., 2019; Sinsabaugh et al., 2015; Zlatano-
vić et al., 2017), (2) burial and thus light limitation for the phototrophs (Pilditch & Miller, 2006), and (3) 
mechanical stress by grain collision causing cell disruption and biofilm abrasion (Delgado et al., 1991; D. 
C. Miller, 1989; Probandt et al., 2018). The implications of these factors for ecosystem metabolism have 
been recently studied for community respiration yet neglecting the phototrophic compartment (Wilczek 
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Figure 1.  Sediment transport in migrating ripples, patchy streambed with contrasting sediment transport regime and experimental setup. (a) Schematic 
representation of bedform characteristics and sediment transport in migrating ripples; (b) patchy streambed with migrating ripples and stationary sediment in 
the River Spree near Cottbus; (c) schematic representation of microcosms that mimicked migrating ripple (MIG) and stationary (STAT) treatments illustrating 
sediment (brown) and control (gray) microcosms; (d) experimental setup displaying the acclimation phase, the sediment transport regime: migrating ripple 
(dashed line) and stationary (solid line), and their transition resulting in two experimental phases (phase 1, P1 and phase 2, P2). Arrows indicate the duration of 
phases and destructive sampling of microcosms (days 0, 6, and 13).
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et al., 2004; Zlatanović et al., 2017). No direct evidence exists for the effect of ripple migration on phototro-
phic communities and primary production. Previous research suggests that activity and abundance of pho-
totrophs in sand is lower compared to that in gravel and cobbles (Atkinson et al., 2008; Hoellein et al., 2009; 
Marcarelli et al., 2015) and in sandy sediment, metabolism is dominated by heterotrophic processes (Mar-
carelli et al., 2015; Uehlinger et al., 2002). Community respiration is hampered by migrating sand regardless 
of the organic matter entrapped in the sediment (Zlatanović et al., 2017).

Flow velocity in a given reach is temporally dynamic and spatially heterogeneous even at low flow as a result 
of channel morphology, changes in discharge and sediment inputs (Baas, 1999; Paola & Seal, 1995). In an 
ideal stream reach, with well-mixed flow and a single acceleration due to gravity, the boundary shear stress 
for sand transport are water depth and slope (Bridge, 2003; Leeder, 1982; Leopold et al., 1964). In a lowland 
reach with a stream gradient of 0.03% (Hünken & Mutz, 2007), small changes in water depth (∼4 cm) can 
result in the transition of sediment transport conditions within hours. While in some areas of the streambed 
sand is transported as ripples, in other areas sand does not experience movement (i.e., stationary sediment; 
Figure 1b). Sandy streambeds are thus a mosaic of migrating ripple and stationary habitats experiencing 
frequent transitions. Therefore, microbial communities inhabiting sand beds experience a transition from 
sediment migration to stationary and vice versa at a larger temporal scale than the eroding-resting cycle of 
sand grains in a migrating ripple. To which extent the microbial communities adapt to the new conditions 
is still unknown, yet research suggests that communities from migrating ripples can adjust to stationary 
conditions within a few days (Atkinson et al., 2008; D. C. Miller, 1989; Zlatanović et al., 2017).

Our study aimed at determining the effect of (i) sediment transport as occurring in migrating ripples (i.e., 
mechanical stress and light limitation) and (ii) the transition between ripple migration and stationary con-
ditions on the phototrophic (primary production) and heterotrophic (respiration) activity of a sediment 
microbial community. We performed a microcosm experiment mimicking ripple migration and stationary 
sediment, and their transition. First, we hypothesize that under migrating conditions, mechanical stress 
and light limitation reduces phototrophic and heterotrophic microbial activity, as net community produc-
tion, community respiration, and bacterial production, by reducing phototrophic biomass and bacterial 
abundance. Second, we hypothesize that phototrophs are likely more affected than bacteria by migrating 
ripples due to their larger cell size and dependency on light and thus net community production and pho-
totrophic biomass will be more affected than community respiration and bacterial abundance. Third, we 
hypothesize that the transition from migrating to stationary and vice versa results in changes of community 
activity, phototrophic biomass, and bacterial abundance reflecting the antecedent scenarios, for example, 
activity and biomass/abundance will increase when sediments stop migrating and will decrease when they 
resume transport as ripples.

2.  Materials and Methods
We performed a microcosm experiment under controlled temperature and light conditions in the labo-
ratory. Following a factorial design, we tested the effect of sediment transport and transition of sediment 
transport regime on the activity of the phototrophic and heterotrophic microbial community of sandy sedi-
ments. Our experimental setup follows that of previous studies from Risse-Buhl et al. (2014) and Zlatanović 
et al. (2017). We mixed the microbial community of migrating ripple and stationary sediments to get an 
inoculum for the experiment containing phototrophs and heterotrophs. In a first phase, we mimicked sedi-
ment transport in the form of migrating ripples and no sediment transport in the form of stationary condi-
tions. In a second phase, microcosms of one treatment were exposed to the opposite treatment conditions to 
observe the effect of transport regime transition.

2.1.  Sediment Sampling and Inoculation

We sampled sandy sediments (D50 = 328 µm, D10 = 165 µm, and D90 = 475 µm, grain sized distribution shown 
in Figure S1) from a patch of migrating ripples in a second-order lowland stream (Seebach, 52°13′08.5″N, 
14°02′27.8″E, Brandenburg, Germany) in November 2014. The stream runs through deciduous forest that is 
mainly composed of Beech (Fagus sylvatica L.), Alder (Alnus glutinosa L.), and agricultural landscape before 
it drains into Lake Scharmützelsee. Approximately 200 mL of sediments were collected from the uppermost 
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0.5 cm of ripple crest and wet sieved (1 mm–63 µm) to exclude debris, silt, meiofauna and macrofauna. The 
sediment was placed in 5 L of well aerated and recirculating stream water (sterile filtered through 0.22 µm) 
that was amended with nutrients to reach mesotrophic conditions (PO4-P 13  µg  L–1; NOx-N 506  µg  L–1; 
NH4-N 116 µg L–1; SiO2-Si 10 g L–1; dissolved organic carbon [DOC] 5 mg C L–1; and dissolved inorganic 
nitrogen [DIN=NOx-N+NH4-N]:soluble reactive phosphorous [SRP] 23).

To obtain a mixed, homogeneous community, we added a microbial community from a stationary sediment 
to the migrating ripple sediment community. We gently brushed the biofilm from 20 cobbles of the same 
stream and filtered the suspension through a sieve of 63 µm to remove meiofauna and macrofauna. This 
community was added to the sampled migrating ripple sediments, which were placed in a climate chamber 
(Binder, KBW 400, Germany) for acclimation at 12 h light:12 h dark cycle for 7 days. During the light period, 
sediments received a photosynthetic active radiation of 60 ± 15 µmol m–2 s–1 (Osram, Lumilux, 18W/865XT 
400–700 nm, Germany). The light regime ranges within the saturation irradiance of benthic phototrophic 
communities (Roberts et al., 2004, and citations therein). The temperature was stepwise increased from 
10°C (stream water in situ temperature) to 15°C (experimental temperature) at 1°C for 5 days (see Zlatano-
vić et al., 2017) and stayed at 15°C for the remaining 2 days of the acclimation phase. The overlying water 
was recirculated with a peristaltic pump (1 L h–1; 520-SN, WatsonMarlow, Cheltenham, UK) to guarantee 
continuous mixing and oxygen saturation. After the 7 days of acclimation, the sediment was gently mixed 
before transferring it to the microcosms.

2.2.  Experimental Setup

The experimental setup follows a factorial design and mimicked two treatments: migrating ripple and sta-
tionary sediments (Figure 1c). The eight microcosms mimicking migrating ripples (MIG) consisted of glass 
tubes (48 mL, 2.5 cm in diameter, 6.5 cm in length) that were filled with sediment (5.5 mL, corresponding to 
3.7 g dry mass, DM) and amended stream water (42.5 mL). The microcosms were closed without headspace 
and placed horizontally. Sediment depth in migrating ripple microcosms was 0.8 cm at the deepest point. 
The bottom of the microcosms was shaded using black tape in order to obtain a comparable area of sediment 
exposed to light in both treatments (18 cm2). The sediment transport typically observed in migrating rip-
ples was mimicked by horizontally rotating the microcosms around their longitudinal axes (see Figure 1c; 
Risse-Buhl et al., 2014; Zlatanović et al., 2017). During the rotation, the topmost sand grains avalanched 
from the brink point to the tube bottom along the sediment heap due to gravity force. Simultaneously, the 
pore water was exchanged and mixed with the overlying water. One rotation lasted 30 s and sediment turn-
over was 1 h−1. The experimental frequency of the erosion-resting cycle, sediment turnover, resting time, 
and exposure to light are all comparable to that of migrating stream ripples (Sukhodolov et al., 2006). As 
control for microbial activity of the water, one additional microcosm was filled with amended stream water 
and sterile glass spheres, to match the water volume.

The microcosms mimicking stationary conditions (STAT) consisted of glass syringes (48 mL, 2 cm in diam-
eter, 10.3 cm in length; Optima FORTUNA, Germany), where the 1.7-cm deep sediments (5.5 mL, corre-
sponding to 3.7 g DM) were perfused with amended stream water (Figure 1c). A peristaltic pump ensured a 
flow against gravity from bottom to top (1.37 mL h–1; Ismatec, Glattbrugg, Switzerland) resulting in a pore 
water residence time of 53 min, which matched the sediment turnover and hence the pore water residence 
time of migrating ripple sediments. Thus, our experimental design maintained same pore water exchange 
and same amount of incorporated organic matter between treatments. As control for microbial activity in 
the water, an additional microcosm was filled with amended stream water and sterile glass beads (10 mm in 
diameter) to generate a similar residence time as in the microcosms containing sediments.

All microcosms were kept in a temperature controlled climate chamber at 15°C (Binder, KBW 400, Germa-
ny) under a light:dark cycle of 12 h:12 h. Temperature was monitored in additional water-filled microcosms 
throughout the experiment (HOBO, Onset, Bourne, MA, USA). At day 4 of the experiment, the dissolved 
oxygen of migrating ripple treatment reached 4 mg L–1. In order to avoid hypoxia and ensure aerobic metab-
olism, the overlying water was aerated through a sterile metal needle equipped with cellulose acetate filters 
(0.2 µm pore size) until oxygen saturation avoiding any disturbance of the sediment.
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The experiment consisted of two phases simulating the dynamics of the streambed in terms of sediment 
transport (Figure 1d):

1.	 �In phase 1 (P1), we studied the effect of migrating ripples on the phototrophic and heterotrophic mi-
crobial activity (n = 8). The microcosms run for 6 days as MIG-P1 and STAT-P1 treatments. At day 6, 
four random replicates of each treatment were retrieved, opened, and destructively sampled for further 
analyses.

2.	 �In phase 2 (P2), we observed the effect of transport regime transition. We transferred the remaining 
microcosms to the opposite treatment, that is, MIG-P1 sediments were placed in syringes for stationary 
conditions (STAT-P2), and in turn STAT-P1 sediments were placed in glass tubes under migrating ripple 
conditions (MIG-P2). The transition of sediments to the opposite microcosms was done within 4 h. New 
amended stream water was added to each microcosms. Microcosms (n = 4) were incubated for another 
7 days and the remaining four replicates of each treatment were opened and destructively sampled at 
day 13.

Response variables for microbial activity were net community production (NCP), community respiration 
(CR), bacterial production (BP), and dissolved inorganic nutrients and dissolved organic carbon retention 
and release. Phototrophic biomass (Chlorophyll a [Chl a] and additional photosynthetic pigments) and 
bacterial abundance were determined as descriptors for the microbial community in sandy sediments. Net 
community production and community respiration were measured as changes in oxygen concentration 
during light and dark periods every day. All other parameters were analyzed after opening and destructively 
sampling the microcosms at days 0, 6, and 13.

2.3.  Sediment Community Activity

All microcosms were equipped with one optode spot (PreSens GmbH, Regensburg, Germany) to monitor 
oxygen concentrations every 15 min (Oxy10, PreSens GmbH). Oxygen concentration varied between 4.7 
and 14.4 mg L–1 in migrating ripple microcosms and between 7.0 and 13.9 mg L–1 in stationary microcosms. 
The decrease of oxygen concentration averaged 0.9 mg L–1 over all replicates, treatments, and phases during 
the dark period. During the light period, the increase of oxygen concentration averaged 1.4 mg L–1, except 
in MIG-P1 where oxygen concentration decreased by 0.3 mg L–1. Microbial communities adjusted to the 
microcosm conditions for 20 h. Data of the first 2 h after changing the light regime were excluded (Macedo 
et al., 1998).

For the migrating ripple treatment, net community production (NCP; Equation 1) and community respira-
tion (CR; Equation 2) of the sediment were calculated as

      
                  

light control,light
MIG

dC dC VNCP
dt dt DM

� (1)

                   

control, darkdark
MIG

dCdC VCR
dt dt DM

� (2)

where dC/dt is the change of oxygen concentration in time (mg O2 L–1 h–1), the subscripts light and dark cor-
respond to the light period and control to the control microcosms, V is the volume of water in microcosms 
(L), and DM is the sediment dry mass (g, see details below).

In the stationary treatment, oxygen concentration did not reach a steady plateau during the light or dark 
period due to the low flow rate and related water mixing in the microcosm. Thus, measured oxygen concen-
trations were fitted to an exponential decay model (see supporting information Text S2 and Figure S2) and 
the steady state concentrations Clight and Cdark were then used to estimate net community production (NCP; 
Equation 3) and community respiration (CR; Equation 4) as

   
    

 
STAT light control

QNCP C C
DM

� (3)
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   
    

 
STAT control dark

QCR C C
DM

� (4)

where Ccontrol is the mean oxygen concentration in the control microcosms over 4 h after the seventh hour 
of a light period, Q is the flow rate (L h–1).

Bacterial production (BP) was estimated from sediment subsamples (0.5 mL) as the incorporation of radi-
olabeled [14C]leucine (50 µM final concentration; MP Biomedicals, Santa Ana, CA) into proteins following 
Buesing and Gessner (2006) and Attermeyer et al. (2013). The samples were incubated for 60 min at 15°C 
and reactions were stopped by adding trichloroacetic acid (TCA, 5% final concentration). Controls consisted 
of parallel samples inactivated with TCA before [14C]leucine was added. The activity of the extracted protein 
was determined by a scintillation counter (Packard Tri-Carb 1600CA) and converted into moles of leucine 
incorporated per hour per gram DM. The rate of carbon produced was estimated following Buesing and 
Gessner (2006).

2.4.  Sediment Community Descriptors

To determine phototrophic biomass via photosynthetic pigments (Chlorophyll a and b, fucoxanthin, and 
pheophytin a and b), sediment subsamples (3 mL) from each microcosm were stored at −20°C before ex-
traction with ethanol (99%) and several freeze–thaw cycles. Analysis were then performed by high-perfor-
mance liquid chromatography using a reversed-phase column (YMC C30, particle size 3 µm, 250 × 2 mm, 
Sepserv, Berlin) equipped with an ASI-100 auto sampler, a P680 pump, and a diode array detector PDA100, 
connected to the Chromeleon software (DIONEX, 2005). Twenty microliters of extract was injected in the 
column, in which the gradient elution (eluent A: 450 mL methanol, 200 mL acetonitrile, 300 mL HPLC-wa-
ter and 50 mL ion-pair reagent; eluent B: 300 mL methanol, 500 mL acetonitrile and 200 mL ethylacetate) 
was maintained at 35°C with a flow of 0.3 mL min−1. Pigments were calibrated using standards from the 
DHI Water and Environment Institute (Hørsholm, Denmark).

Bacterial abundance was estimated from sediment subsamples (1 mL) that were fixed with formaldehyde 
(final concentration 2%). Cells were extracted from the sediment by sonication (2 times á 2 min at 60% pow-
er; Transonic Digital Type T790/H; Elma, Singen, Germany), concentrated on 0.2 µm black polycarbonate 
membranes (Nuclepore; Whatman, Germany) and stained using 4′,6-di-amidino-2-phenylindole following 
the protocol of Nixdorf and Jander (2003). At least 400 bacterial cells were scanned by epifluorescence mi-
croscopy (Axioskop Zeiss 1000X; Zeiss, Jena, Germany) in randomly selected squares (n > 30). Production 
rates of photosynthetic pigments and growth rates of bacteria were calculated respectively as increase in 
biomass or abundance from day 0 to day 6 for phase 1 and from day 6 to day 13 for phase 2.

A sediment subsample (1 mL) from each microcosm was dried till constant mass at 60°C for DM determi-
nation and then combusted to obtain ash-free dry mass (AFDM; 4 h, 500°C). All community descriptors are 
represented per g DM of sediment.

2.5.  Dissolved Organic Carbon and Inorganic Nutrient Concentrations

The water from migrating microcosms was collected at day 6 and day 13 representative for phases 1 and 2, 
respectively. The outflowing water from the stationary microcosms was collected daily between days 1–6 
and days 7–13 to obtain a composite sample over each phase. Background concentrations were determined 
from control microcosms. Water samples were filtered (prewashed 0.45 μm cellulose acetate filters; Sarto-
rius, Göttingen, Germany) and stored at −20°C for later analysis. DOC was measured with a total organic 
carbon analyzer (Shimadzu, Tokyo, Japan). SRP, NOx-N, NH4-N, and SiO2-Si were determined spectrophoto-
metrically by a segmented flow injection analyzer (PERSTORP Analytical, Rodgau, Germany) and UV/VIS 
spectrometer (Perkin Elmer, Rodgau, Germany), respectively, according to standard methods (DEV, 1976–
2009). Concentration data were used to calculate the percental difference between control and treatment 
and the molar ratio of dissolved inorganic nitrogen (DIN = NOx-N + NH4-N) to SRP. DOC and dissolved 
nutrients were corrected for control concentrations and expressed as daily loads taking into consideration 
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the total volume of water that was in the microcosms for each phase (MIG 40 mL, STAT-P1: 198 mL, and 
STAT-P2: 231 mL). Negative values indicate retention and positive values indicate release.

2.6.  Statistics

All statistical tests and graphics were performed in R (version 3.6.2; R Core Team, 2018). For graphical pres-
entation, we used the package “ggplot2” (Wickham, 2009). Daily data of metabolism of each experimental 
phase were used to calculate the intercepts at days 6 and 13 (NCP and CR) and their slopes during each 
phase (NCP dynamics and CR dynamics). Outliers defined as data points outside the 2 times inter quartile 
range were excluded from graphical presentation and statistical tests of the metabolism data set. Between 1 
and 2 values per parameter were excluded and number of replicates per treatment and phase was 3–8. Line-
ar mixed effects models were used for assessing the effect of sediment transport (ST), transport regime tran-
sition (TR), and their interaction (ST × TR; fixed effects) on intercepts and slopes of NCP and CR (response 
variables), with replicate as random factor using the lmer function (package “lme4” [Bates et al., 2015]; full 
model: response variable ∼ ST × TR + [1|replicate]). p-Values were obtained by likelihood ratio tests of the 
full model with the effect in question against the model without the effect in question (reduced model to test 
for sediment transport effect: response variable ∼ TR + [1|replicate]; to test for transport regime transition 
effect: response variable ∼ ST + [1|replicate]; to test for interaction: response variable ∼ ST + TR + [1|rep-
licate]). Linear models were performed to assess effects of sediment transport, transport regime transition, 
and their interaction on bacterial production and microbial community descriptors using the lm function 
(response variable ∼ ST × TR). For all models, pairwise comparisons were performed using emmeans func-
tion (package “emmeans,” Lenth, 2020). Differences were considered significant at p < 0.05. Visual inspec-
tion of residual plots did not reveal any obvious deviations from homoscedasticity or normality.

3.  Results
3.1.  Metabolism

Average net community production and community respiration as well as their dynamics were significantly 
affected by both sediment transport and transport regime transition (Figure 2). Their significant interaction 
indicated that microbial communities responded differently to sediment transport depending on the ex-
perimental phase. Before the transition (phase 1), net community production and community respiration 
were respectively 77.0% and 39.7% lower in migrating sediments compared to stationary sediments (Figures 
2a and 2c). Both net community production and community respiration were highly variable between the 
replicates of the stationary treatment STAT-P1 (coefficient of variation: 0.70 and 0.34, respectively) in com-
parison to the migrating treatment MIG-P1 (0.29 and 0.13, respectively). The dynamics of net community 
production (Figures 2b and S3) showed a general increase over time during phase 1, which was more pro-
nounced for stationary sediments (3.1 times higher than migrating treatment). On the contrary, community 
respiration dynamics decreased over time for both treatments at comparable rates.

After the transition (phase 2), metabolism showed the opposite response to sediment transport than in 
phase 1. Net community production and community respiration were respectively 31.4 times and 2.5 times 
higher in migrating than in stationary sediments of phase 2 (Figures 2a and 2c). The dynamics of net com-
munity production showed a general increase for both treatments, which was higher for the migrating than 
for the stationary sediments (Figures 2b and S3). Community respiration dynamics showed an increase over 
time for migrating and a decrease for stationary sediments (Figure 2d).

The transport regime transition (i.e., MIG-P1 to STAT-P2 and STAT-P1 to MIG-P2) did not affect net com-
munity production, community respiration, or net community production dynamics (Figures 2a–2c) but 
significantly affected community respiration dynamics (Figure 2d). Despite significantly different commu-
nity respiration dynamics, community respiration was comparable between MIG-P1 and STAT-P2 as well 
as between STAT-P1 and MIG-P2. Comparing the treatments over both phases, net community produc-
tion and community respiration in MIG-P2 were respectively 10.5 times and 2.7 times higher compared to 
MIG-P1. STAT-P2 had 10.4 times lower net community production compared to STAT-P1, whereas commu-
nity respiration was comparable between the two phases of this treatment.
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3.2.  Microbial Community Descriptors and Bacterial Production

At the beginning of phase 1, Chl a content was 0.38 ± 0.06 µg g–1 DM (Table 1). Fucoxanthin was the dom-
inant pigment and estimated 48.4% of Chl a. Chl b content was low and represented less than 5% of Chl a 
(Table 1). Pheophytin a and b were detected at low concentrations of <0.03–0.09 µg g–1 DM or below the 
detection limit throughout the experiment.

Chl a ranged between 0.41 and 1.03 µg g–1 DM throughout the experiment. Fucoxanthin was the domi-
nant pigment and made up between 39.6% and 53.8%, whereas Chl b ranged between 3.3% and 14.4% over 
both phases. Chl b was affected neither by sediment transport nor by transport regime transition. Sediment 
transport significantly affected Chl a (t-value = 5.06, p < 0.001) and fucoxanthin (t-value = 6.92, p < 0.001). 
The significant interaction indicated that sediment transport effects on Chl a (t-value = −4.47, p < 0.001) 
and fucoxanthin (t-value =  −6.28, p  <  0.001) differed depending on the experimental phase. For phase 
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Figure 2.  Boxplots displaying the effect of sediment transport and transport regime transition on the activity of 
the sediment community. (a and b) Net community production (NCP) and (c and d) community respiration (CR) 
of migrating ripple (MIG) and stationary (STAT) sediments of phase 1 (P1) and phase 2 (P2) after transport regime 
transition. Daily data of NCP and CR of each phase are shown in Figure S3. Vertical dashed line separates experimental 
phases. Description of boxes: top and bottom edge represent 75th and 25th percentile, respectively, solid line bisecting 
the boxes represents the median, the diamond represents the mean, and ends of whiskers represent the 90th and 10th 
percentile and black dots represent data points outside the 90th and 10th percentile (n = 3–8). Chi revealed form 
likelihood ratio tests for effects of sediment transport (ST, df = 2), transport regime transition (TR, df = 2), and their 
interaction (ST × TR, df = 1) are displayed in each plot. Different lower-case letters (a, b, c, ab) above boxes indicate 
significant differences between treatments and phases (p < 0.05); similar letters indicate no significant difference 
(p > 0.05).
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1, no differences were observed among sediments for the two pigments 
(Figures 3a–3c). However, during phase 2, both Chl a and fucoxanthin 
increased in migrating sediments (MIG-P2) resulting in 1.8 times higher 
concentrations compared to stationary sediments. The transition from 
migrating to stationary did not affect Chl a or fucoxanthin, while the 
transition from stationary to migrating resulted in 1.3 times and 1.4 times 
higher Chl a and fucoxanthin. Chl a and fucoxanthin in stationary sedi-
ments were comparable between phases.

Bacterial abundance ranged between 3.98 × 107 and 1.04 × 108 cells g–1 
DM and was significant negatively affected by sediment transport (t-val-
ue = −3.99, p = 0.002, Figure 3d). Sediment transport effects were sim-
ilar between phases as confirmed by the missing significant interaction 
(t-value = −1.55, p = 0.15). In both phases, bacteria were less abundant 
in migrating than in stationary sediments. Additionally, the transition 
from stationary to migrating resulted in 47.3% lower bacterial abundance, 
while no changes occurred in the transition from migrating to stationary.

AFDM increased throughout the experiment from initially 1.98 ± 0.13 to 2.49 ± 0.17 mg AFDM g–1 DM at 
day 13. However, sediment transport did not significantly affect AFDM (t-value = 1.09, p = 0.30).
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Descriptor Unit Mean ± SD (n = 4)

Chl a µg g–1 DM 0.38 ± 0.06

Chl b µg g–1 DM 0.05 ± 0.01

Fucoxanthin µg g–1 DM 0.18 ± 0.05

Bacteria cells g DM–1 8.3 × 107 ± 0.9 × 107

BP µg C g–1 DM h–1 22.98 ± 2.73

Specific BP pg C cell–1 0.32 ± 0.03

Note. BP, bacterial production; SD, standard deviation.

Table 1 
Initial Microbial Community Composition in Sediments at the Beginning 
of Phase 1

Figure 3.  Effects of sediment transport and transport regime transition on microbial community descriptors and 
bacterial production. (a) Chl a, (b) Chl b, (c) fucoxanthin, (d) bacterial abundance, (e) bacterial production (BP), and 
(f) specific bacterial production displaying the production per bacterial cell (mean ± SD, n = 3–4) in migrating ripple 
(MIG) and stationary (STAT) sediments of phase 1 (P1) and phase 2 (P2) after transport regime transition. Vertical 
dotted line separates experimental phases. Different lower-case letters (a, b, c, ab) above boxes indicate significant 
differences between treatments and phases (p < 0.05); similar letters indicate no significant difference (p > 0.05).
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3.3.  Biomass Production and Nutrient Dynamics

Chl a increased in both migrating and stationary sediments during phase 1 (Table 2). During phase 2, Chl 
a further increased in migrating sediments, while it decreased in stationary sediments. Production of fu-
coxanthin mirrored patterns of Chl a. Bacterial growth rates in migrating sediments of both phases were 
negative, whereas in STAT-P1 sediments bacterial growth rates were positive (Table 2). In STAT-P2, growth 
rates of bacteria were less negative than in migrating sediments.

Sediment transport affected bacterial production (t-value = −4.73, p < 0.001); however, this difference aris-
es from differences observed in phase 2 but not in phase 1 (Figure 3e). Specific bacterial production was 
not affected by sediment transport (t-value = −1.12, p = 0.29), but by transport regime transition (t-val-
ue = −5.25, p < 0.001) and was higher in phase 2 compared to phase 1 (Figures 3e and 3f). For phase 1, the 
differences in bacterial abundance and production between migrating and stationary sediments resulted in 
comparable specific bacterial production (Figure 3e).

Considering solute dynamics, we are aware that changes in loads were driven by both, biological and phys-
ical processes. Using the same sediment volume in all microcosms allowed comparing sediment transport 
conditions and their transition. Daily DOC loads responded differently to sediment transport with respect 
to transport regime transition (treatment: t-value = −3.50, p = 0.003) (Table 3). DOC was released from 
STAT-P1 and retained in STAT-P2 sediments. SRP was released from both migrating sediments at higher 
rates compared to both stationary sediments (treatment: t-value = −6.05, p < 0.001). Overall, NH4-N was 
retained except for STAT-P2 where it was released. More NH4-N was retained in MIG-P1 than in STAT-P1 
(treatment: t-value = 3.21, p = 0.005) at a comparable rate between phases. Except for MIG-P1, NOx-N was 
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Phase 1 (0–6 days) Phase 2 (7–13 days)

LM resultsMIG-P1 STAT-P1 MIG-P2 STAT-P2

Chl a 1.17 × 10–3 ± 0.57 × 10–3 1.82 × 10–3 ± 0.45 × 10–3 1.25 × 10–3 ± 0.82 × 10–3 −3.87 × 10–4 ± 6.24 × 10–4 ST, ST × TR

Chl b −2.92 × 10–5 ± 4.01 × 10–5 −8.06 × 10–5 ± 8.29 × 10–5 −2.56 × 10–5 ± 1.78 × 10–5 −4.37 × 10–5 ± 4.22 × 10–5 nsa

Fucoxanthin 4.28 × 10–4 ± 2.54 × 10–4 8.06 × 10–4 ± 1.35 × 10–4 7.46 × 10–4 ± 3.25 × 10–4 −0.79 × 10–4 ± 2.32 × 10–4 ST, ST × TR

Bacteria −9.96 × 10–4 ± 2.01 × 10–4 8.44 × 10–4 ± 6.27 × 10–4 −0.27 × 10–4 ± 4.33 × 10–4 −8.89 × 10–3 ± 0.11 × 10–3 ST, TR

Note. Significant results (p < 0.05) of the linear model (LM) are represented by upper case letters for sediment transport (ST), transport regime transition (TR), 
and their interaction (ST×TR).
ans, no significant effects.

Table 2 
Phototrophic Biomass Production (µg g–1DM h–1) and Bacterial Growth Rates (Cells g–1DM h–1) in Migrating Ripple (MIG) and Stationary (STAT) Sediments of 
Phase 1 (P1) and Phase 2 (P2) After Transport Regime Transition (Mean ± SD, n = 4)

Phase 1 (days 0–6) Phase 2 (days 7–13)

LM resultsMIG-P1 STAT-P1 MIG-P2 STAT-P2

DOC (µg day–1) 1.61 ± 7.33 (5%) 28.42 ± 35.18 (20%) 5.03 ± 2.49 (22%) −49.09 ± 17.72 (−20%) ST × TR

SRP (µg day–1) 0.351 ± 0.133 (1,012%) −0.002 ± 0.045 (−1%) 0.222 ± 0.161 (292%) 0.021 ± 0.018 (19%) ST

N-NH4 (µg day–1) −0.36 ± 0.06 (−65%) −0.22 ± 0.09 (−37%) −0.35 ± 0.04 (−55%) 0.75 ± 0.02 (227%) ST, ST × TR

N-NOx (µg day–1) 0.82 ± 0.60 (27%) −5.19 ± 0.85 (−34%) −2.08 ± 0.37 (−64%) −6.06 ± 2.58 (−60%) ST, TR

Si-SiO2 (µg day–1) −19.00 ± 3.90 (−27%) −41.52 ± 5.77 (−12%) −23.33 ± 3.75 (−35%) −28.00 ± 8.16 (−9%) ST, ST × TR

DIN:SRP 5.5 ± 2.3 40.1 ± 14.8 3.9 ± 4.4 18.9 ± 10.3 ST

Note. Values in parentheses indicate the change in concentration with respect to the control. Significant effects (p  <  0.05) of the linear model (LM) are 
represented by upper case letters for sediment transport (ST), transition (TR), and their interaction (ST × TR).
Abbreviation: DIN, dissolved inorganic nitrogen.

Table 3 
Daily Rates of Retention and Release of Dissolved Organic Carbon (DOC) and Dissolved Inorganic Nutrient Loads and Molar Ratio DIN:SRP of Migrating Ripple 
(MIG) and Stationary (STAT) Sediments of Phase 1 (P1) and Phase 2 (P2) After Transport Regime Transition (Mean ± SD, n = 4–8)
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overall retained what resulted in differences between phases and overall the release or retention was lower 
in migrating sediments compared to stationary sediments. Sediment transport significantly affected SiO2-
Si (treatment: t-value = −6.45, p < 0.001), where less SiO2-Si was retained in migrating than in stationary 
sediments for both phases.

4.  Discussion
Our study reveals that even at low flow, sediment transport and its dynamics (i.e., transport regime transi-
tion) modulates streambed metabolism by not only affecting the activity of the heterotrophic community, 
but also that of the phototrophic community. This is, to the best of our knowledge, the first study to address 
this overlooked aspect in streams and rivers. Given the large temporal extent (>50%) of low stream flow 
periods during the year (Baas, 2003; Singh et al., 2019), our findings contribute to better understand the 
temporal variability of metabolism and nutrient cycling between and within reaches during low flow peri-
ods at a velocity range of <0.2–0.6 m s–1. Such low flow periods were observed to dominate the annual flow 
at the majority of the 3,600 gauging stations covering streams and rivers in England and Wales (Booker & 
Dunbar, 2008) and at 12 of 22 gauging stations at larger rivers in the United States (Verzano et al., 2012). 
Based on the worldwide heavy catchment erosion and increased sand inputs, migrating ripples may become 
even more common (Sutherland et al., 2010; Wood & Armitage, 1997). Furthermore, our results highlight 
that the response of the sediment microbial community to sediment migration is conditioned by the ante-
cedent conditions the microbial community experienced. At the reach scale, ecosystem function of sand bed 
streams is thus a product of the community responses to current sediment transport and the legacy of the 
transitions between migration and stationary.

4.1.  Phototrophic and Heterotrophic Microbial Activity Modulated by Migrating Ripples  
(Phase 1)

In accordance with our first hypothesis, mechanical stress and light attenuation induced by ripple migra-
tion reduced overall metabolism. This expands previous findings limited to heterotrophic communities 
(e.g., Wolke et al.,  2020; Zlatanović et al.,  2017). In similar microcosms to ours, Zlatanović et al.  (2017) 
reported an overall 38.0%–65.7% lower respiration in migrating ripples (turnover 2 h–1) compared to station-
ary sediments. Despite a longer resting time in migrating ripple sediments of our experimental approach 
(turnover 1 h–1), community respiration was 39.7% lower compared to stationary sediments. Similar results 
have been revealed from modeling as well as from flume experiments simulating stream bedforms and con-
tinental shelf bedforms (Ahmerkamp et al., 2015, 2017; Wolke et al., 2020; Zheng et al., 2019). For example, 
respiration in German Bight sediments is 55.6%–78.9% lower at stations with migrating bedforms than at 
stations with stationary bedforms (Ahmerkamp et al., 2017). In flumes simulating stream bedforms, oxygen 
uptake was 50.4%–70.7% lower at the highest bedform migration velocity of 0.19 mm s–1 (equivalent to a 
turnover of 4.8 h–1) than in stationary ripples (Wolke et al., 2020). In contrast to these studies, we included 
the phototrophs in our observation showing that also net community production is hampered by ripple 
migration (77.0%). Phototrophs added more complexity allowing a community with different trophic levels, 
still the effects of sediment transport are maintained.

In streams and rivers, time for one full sediment turnover of a migrating ripple depends on bedform migra-
tion velocity and ripple length. Bedform migration velocity scales with bed shear stress (0.014–0.7 m h–1) 
(Lichtman et al., 2018); ripple length scales with grain size (0.03–0.65 m) (Charru et al., 2013) and is fur-
ther variable among ripple planforms (three-dimensional linguoid, two-dimensional straight-crested, and 
sinuous-crest) (Baas,  1993). Hence, sediment turnover of migrating ripples in streams and rivers varies 
from once per several minutes to once per few hours. The sediment turnover of 1 h–1 in our microcosm 
experiment corresponds to a ripple length of 16 cm (fully developed migrating ripple at the corresponding 
grain size) (Baas, 1993) and to a bedform migration velocity of 0.44 mm s–1 (average bedform migration ve-
locity observed for biologically colonized sandy sediments) (Lichtman et al., 2018). This beform migration 
velocity is in the lower range of that reported for pure and biologically colonized sand observed in hydraulic 
flumes (Baas, 1993; Elliot & Brooks, 1997; Wolke et al., 2020; Zheng et al., 2019). Though further research 
is needed, we expect that at continuous ripple migration and/or at faster sediment turnover than in our 
microcosm experiment (1 h–1) and in the experiment of Zlatanović et al. (2017) (2 h–1) will have similar or 
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even more pronounced negative effects on both net community production and community respiration. For 
instance, with increasing sediment turnover, Wolke et al. (2020) reported decreasing oxygen uptake rates, 
and D. C. Miller (1989) reported decreasing bacteria and diatom abundance. Whereas at slower sediment 
turnover, that allows growth of heterotrophs and phototrophs, other response patterns can be expected. 
Dunes for instance, either stationary or migrating, have been shown to have high oxygen uptake rates, 
bacterial production, and abundance (Rutherford et al., 1991, 1993; Wilczek et al., 2004). This trend toward 
increased respiration with decreasing sediment turnover suggests that the influence of sediment migration 
is linked to mechanical stress.

Although resuspension and downstream transport of microbial cells as a result of sediment transport 
(Risse-Buhl et al., 2014; Shimeta et al., 2002) can reduce the metabolism in migrating ripples, this effect has 
been excluded in our setup. Further, our experimental approach maintained the same pore water exchange 
and same content of organic matter between treatments. Thus, we propose that the observed reduced met-
abolic activity in migrating ripple compared to stationary sediments resulted mainly from three factors 
associated with mechanical stress: physical abrasion, habitable area, and/or light limitation.

Rolling and/or sliding sediment grains colliding with microbial cells can cause both cell damage and bio-
film abrasion, as observed by raster electron microscopy on diatom shells (Delgado et al., 1991; D. C. Mill-
er, 1989). These authors discussed that diatoms may have specific physiological adaptations to withstand 
cell breakage as potential survival strategy, for example, heavier frustules or production of extra mucus. 
Moreover, small diatom taxa (<50 µm) can remain in sediment depressions where they are protected from 
the physical abrasion (Jewson et al., 2006; Krejci & Lowe, 1986; A. R. Miller et al., 1987). Similarly, the small 
cell size of bacteria (1 µm) allows them to develop in sheltered areas at sand grains such as depressions, 
fissures, and crevices where they are less exposed to physical abrasion (Ahmerkamp et al., 2020; Probandt 
et  al.,  2018; Weise & Rheinheimer,  1978). Thus, mechanical stress could have acted as a selective force 
limiting the community to the “habitable” area of sand grains. In stationary sediment, the “habitable” area 
extends to almost the entire surface area of sand grains (except for the contact area among grains), allowing 
a more abundant microbial community. This difference was likely enhanced by the flow-through setup 
that ensured supply of solutes to the entire surface area. For example, Mendoza-Lera et al. (2017) showed 
that higher advective supply of nutrients enhances the area colonizable by the microbial community. The 
absence of sediment transport and presence of advective supply of nutrients, carbon, and oxygen likely 
allowed phototrophs and bacteria to arrange themselves into complex architectures through the sediment 
pores (Risse-Buhl et al., 2017, 2020; Scheidweiler et al., 2019). This arrangement is known to promote emer-
gent properties, which are not observable for instance in free-living bacterial cells including more efficient 
use of resources (Flemming et al., 2016). In line with this, the retention of nitrate and the high DIN:SRP ra-
tio indicated efficient resource utilization in stationary sediments compared to migrating ones. In fact, sta-
tionary ripples are more efficient in removing nitrate than migrating ones (Zheng et al., 2019), pointing out 
to the key effect of mechanical stress. Moreover, rates of DOC release indicate an active phototrophic com-
munity producing exudates which further promote heterotrophic activity (e.g., Espeland & Wetzel, 2001; 
Romaní & Sabater,  2000; Sobczak,  1996). Sediment stability likely facilitated hot spots of heterotrophic 
activity in their proximity utilizing labile DOC, all resulting in high metabolic rates.

The microcosms were arranged in order to ensure the same light availability over both sediment transport 
conditions. In stationary sediment, the phototrophic community likely established in the photic sediment 
layer, which was approximately 2 mm deep (own measurements, data not published). In contrast, the ripple 
sediment periodically migrated (1 h–1) burying phototrophs within the sand heap, which were likely light 
limited. Diatoms were the most abundant phototrophs as revealed by the high abundance of fucoxanthin 
and by the high retention of soluble silicate, which is one of the necessary resources for producing the di-
atom frustule (see Kohl & Nicklisch, 1988). Motility of diatoms is advantageous to overcome burying and 
light limitation (Dickman et al., 2005; Izagirre et al., 2009). Diatoms are described to move at velocities of 
0.6–36 mm h–1 (Cohn & Weitzell, 1996; Consalvey et al., 2004; Hay et al., 1993). Given this velocity range, 
diatoms would need between 2 min and 13 h to reach the photic sediment surface considering a sediment 
depth of a few grains (edges of the sand heap) to a maximum of 0.8 cm (center of sand heap). As micro-
cosms were resting for 1 h, it is reasonable to assume that a fraction of diatoms remained buried and needed 
to cope with the limiting light conditions. Along this line, diatoms typically dominated dark grown biofilms 
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(Izagirre et al., 2009; Sekar et al., 2002). Certain species of diatoms can switch their metabolism from pho-
toautotrophy toward heterotrophy respiring exogenous sugars or nitrate (Kamp et al., 2011; Lewin & Lew-
in, 1960; Villanova et al., 2017; Vincent & Goldman, 1980). In this way, they can guarantee the maintenance 
of their energy requirements for cellular processes, growth, and motility when experiencing light limitation 
during burying within migrating ripples.

4.2.  Contrasting Migrating Ripple Effects on Phototrophs and Heterotrophs

The effect of ripple migration differed between phototrophs and heterotrophs. Regarding our second hy-
pothesis, we expected phototrophs to be more affected by mechanical stress of migrating ripples than bacte-
ria due to their larger cell size and dependency on light availability. In sandy reaches with sediment trans-
port, metabolism is dominated by heterotrophic processes (Marcarelli et al., 2015; Uehlinger et al., 2002). 
While our results underline the negative effect of ripple migration, that is, mechanical stress, on bacterial 
abundance (phases 1 and 2) and bacterial production (phase 2), the phototrophic descriptors Chl a and 
fucoxanthin were not affected by sediment transport in phase 1, and peaked when stationary sediments 
became migrating (phase 2). This increase in pigments under migration in phase 2 cooccurred with in-
creased net community production. We attribute this result to two factors. First, in our microcosms, drift 
was excluded. If the resistant diatoms were detached from sand grains and not broken, they still remain in 
the system contributing to metabolism. Second, pigment production per individual cell is increased under 
light limitation (Bogorad,  1962). In this way, the cell will guarantee sufficient light for maintaining the 
energy demand of cellular processes. Hence, changes in the pigment concentration in our sediments may 
not mirror changes in phototroph abundance or activity but may be rather an indicator of light conditions.

4.3.  Microbial Response Modulated by Transition of Sediment Transport Regime (Phase 1 vs. 2)

Our third hypothesis stated that microbial metabolism would decrease when sediment transport is resumed 
and would increase when migration stopped. Although our data show that sediment transport regime tran-
sition influenced the microbial communities, the response is not the one that we predicted and more com-
plex patterns emerged. Fast recovery of microbial communities was expected in response to the absence of 
mechanical stress and increase in “habitable” area (see above). Surprisingly, we observed that overall the 
differences from phase 1 were maintained in phase 2 regardless of the change in mechanical stress and as-
sociated stressors (light, “habitable” area); in other words, migrating sediments during phase 2 had compa-
rable metabolism to stationary ones during phase 1 and vice versa. We suggest that this unexpected response 
results from a combination of the sediment transport history and the developmental stage of the microbial 
community. On the one hand, the microbial community after the transition had already experienced a 
history of certain sediment transport conditions. The initial sediment transport conditions (i.e., migrating 
ripple and stationary) in phase 1 determined the response of the microbial community in phase 2. This 
implies that the antecedent sediment transport conditions that a community experienced (phase 1) could 
have played a role in shaping the community response after transport transition (phase 2). On the other 
hand, the response of the microbial community to mechanical stress and light limitation depends on their 
development stage, as known from streambed scouring (Peterson et al., 1990; Sousa, 1980). The conditions 
under which the community developed determined the metabolism and was maintained in the following 
phase. Therefore, the effect of sediment transport is key to communities in an early developmental stage 
but seems to be overridden as the community becomes more mature. Further research could include more 
transitions and different sediment turnover rates. The response of microbial communities may depend on 
how fast and for how long the ripples migrate. As an example, faster sediment turnover (>1 h–1) and associ-
ated shorter resting times might affect communities that develop at stationary conditions more intensively 
and hampering metabolism as does ripple migration in early developmental stage. During an 8-h-period of 
ripple migration, bacterial and algal abundances were not reduced (D. C. Miller, 1989), while after 72 h of 
ripple migration metabolism was reduced by about 50% (Zlatanović et al., 2017). Therefore, understanding 
and upscaling the role of sediment transport at low flow on metabolism requires knowing not only the 
mechanisms acting over the biogeochemical processes but also the spatiotemporal dynamics of microbial 
communities and sediment transport.
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5.  Conclusions
Our results illustrate the importance of sediment transport at low flow for streambed metabolism. The ham-
pering of the phototrophic (77%) and heterotrophic (40%) microbial activity, as consequence of sediment 
transport as migrating ripples, resulted from mechanical forces, light limitation, and reduced “habitable” 
area. Our results expand previous research to phototrophic communities, their activity is susceptible to 
sediment migration while their biomass remained unaffected. Further, the influence of sediment transport 
regime is conditioned by the antecedent sediment transport conditions as well as the developmental stage of 
the sediment community prior to the initiation/end of sediment transport. Both the effect of migration and 
transport timing may be considered when studying metabolism from sandy stream and river reaches. How-
ever, more research is needed to properly assess and incorporate the effect of sediment transport dynamics 
and its spatiotemporal variability to reach-scale patterns of metabolism.

Data Availability Statement
Following the FAIR data guidelines, all data presented will be available via the data repository www.pan-
gaea.de (Scheidweiler, 2020) (doi.org/10.1594/PANGAEA.921544).
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K. Lerche for technical support and M. 
Knie, A. Dolman, and S. Zlatanović for 
fruitful discussions.

http://www.pangaea.de/
http://www.pangaea.de/
https://doi.org/10.1038/s41598-020-60557-7
https://doi.org/10.1002/2015JG003106
https://doi.org/10.1002/lno.10544
https://doi.org/10.1899/07-143.1
https://doi.org/10.1899/07-143.1
https://doi.org/10.1890/13-0420.1
https://doi.org/10.1046/j.1365-3091.1999.00206.x
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1038/nrmicro.2016.15
https://doi.org/10.1038/ngeo618
https://doi.org/10.1002/rra.847
https://doi.org/10.1002/hyp.7007
https://doi.org/10.1128/AEM.72.1.596%13605.2006
https://doi.org/10.1146/annurev-fluid-011212-140806
https://doi.org/10.1146/annurev-fluid-011212-140806
https://doi.org/10.1111/j.0022-3646.1996.00928.x
https://doi.org/10.1080/0269249X.2004.9705870
https://doi.org/10.1016/0022-0981(91)90177-X
https://doi.org/10.1002/iroh.200410806
https://doi.org/10.1029/96WR02784
https://doi.org/10.1007/s002480000117


Water Resources Research

Fischer, H., Kloep, F., Wilzcek, S., & Pusch, M. T. (2005). A river’s liver—Microbial processes within the hyporheic zone of a large lowland 
river. Biogeochemistry, 76(2), 349–371. https://doi.org/10.1007/s10533-005-6896-y

Flemming, H. C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S. A., & Kjelleberg, S. (2016). Biofilms: An emergent form of bacterial life. 
Nature Reviews Microbiology, 14(9), 563–575. https://doi.org/10.1038/nrmicro.2016.94

Hart, D. D., & Finelly, C. M. (1999). Physical–biological coupling in streams: The pervasive effects of flow on benthic organisms. Annual 
Review of Ecology and Systematics, 30, 363–395. https://doi.org/10.1146/annurev.ecolsys.30.1.363

Harvey, J. W., Drummond, J. D., Martin, R. L., McPhillips, L. E., Packman, A. I., Jerolmack, D. J., et al. (2012). Hydrogeomorphology of the 
hyporheic zone: Stream solute and fine particle interactions with a dynamic streambed. Journal of Geophysical Research, 117, G00N11. 
https://doi.org/10.1029/2012JG002043

Hay, S. I., Maitland, T. C., & Paterson, D. M. (1993). The speed of diatom migration through natural and artificial substrata. Diatom Re-
search, 8(2), 371–384. https://doi.org/10.1080/0269249X.1993.9705268

Hoellein, T. J., Tank, J. L., Rosi-Marshall, E. J., & Entrekin, S. A. (2009). Temporal variation in substratum-specific rates of N uptake 
and metabolism and their contribution at the stream-reach scale. Journal of the North American Benthological Society, 28(2), 305–318. 
https://doi.org/10.1899/08-073.1

Hünken, A., & Mutz, M. (2007). Field studies on factors affecting very fine and ultra fine particulate organic matter deposition in low-gra-
dient sand-bed streams. Hydrological Processes, 21(4), 525–533. https://doi.org/10.1002/hyp.6263

Izagirre, O., Serra, A., Guasch, H., & Elosegi, A. (2009). Effects of sediment deposition on periphytic biomass, photosynthetic activity and 
algal community structure. The Science of the Total Environment, 407(21), 5694–5700. https://doi.org/10.1016/j.scitotenv.2009.06.049

Jewson, D. H., Lowry, S. F., & Bowen, R. (2006). Co-existence and survival of diatoms on sand grains. European Journal of Phycology, 41(2), 
131–146. https://doi.org/10.1080/09670260600652903

Kamp, A., de Beer, D., Nitsch, J. L., Lavik, G., & Stief, P. (2011). Diatoms respire nitrate to survive dark and anoxic conditions. Proceedings 
of the National Academy of Sciences of the United States of America, 108(14), 5649–5654. https://doi.org/10.1073/pnas.1015744108

Kaufman, M. H., Cardenas, M. B., Buttles, J., Kessler, A. J., & Cook, P. L. M. (2017). Hyporheic hot moments: Dissolved oxygen dy-
namics in the hyporheic zone in response to surface flow perturbations. Water Resources Research, 53, 6642–6662. https://doi.
org/10.1002/2016WR020296

Kohl, J.-G., & Nicklisch, A. (1988). Ökophysiologie der Algen. Wachstum und Ressourcennutzung (253 pp.). Berlin, Germany: Akademie-Ver-
lag Berlin.

Krejci, M. E., & Lowe, R. L. (1986). Importance of sand grain mineralogy and topography in determining micro-spatial distribution of 
epipsammic diatoms. Journal of the North American Benthological Society, 5(3), 211–220. https://doi.org/10.2307/1467708

Leeder, M. R. (1982). Sedimentology: Process and product. The Netherlands: Springer.
Lenth, R. V. (2020). emmeans: Estimated marginal means, aka least-squares means, R package version 1.4.4. https://CRAN.R-project.org/

package=emmeans
Leopold, L. B., Wolman, M. G., & Miller, J. P. (1964). Fluvial processes in geomorphology (535 pp.). Mineola, NY: Dover Publications.
Lewin, J. C., & Lewin, R. A. (1960). Autotrophy and heterotrophy in marine littoral diatoms. Canadian Journal of Microbiology, 6(2), 

127–134. https://doi.org/10.1139/m60-015
Lichtman, I. D., Baas, J. H., Amoudry, L. O., Thorne, P. D., Malarkey, J., Hope, J. A., et al. (2018). Bedform migration in a mixed sand and 

cohesive clay intertidal environment and implications for bed material transport predictions. Geomorphology, 315, 17–32. https://doi.
org/10.1016/j.geomorph.2018.04.016

Macedo, M. F., Ferreira, J. G., & Duarte, P. (1998). Dynamic behavior of photosynthesis–irradiance curves determined from oxygen produc-
tion during variable incubation periods. Marine Ecology Progress Series, 165, 31–43. https://doi.org/10.3354/meps165031

Marcarelli, A. M., Huckins, C. J., & Eggert, S. L. (2015). Sand aggradation alters biofilm standing crop and metabolism in a low-gradient 
Lake Superior tributary. Journal of Great Lakes Research, 41(4), 1052–1059. https://doi.org/10.1016/j.jglr.2015.09.004

Mendoza-Lera, C., Frossard, A., Knie, M., Federlein, L. L., Gessner, M. O., & Mutz, M. (2017). Importance of advective mass transfer and 
sediment surface area for streambed microbial communities. Freshwater Biology, 62(1), 133–145. https://doi.org/10.1111/fwb.12856

Mendoza Lera, C., & Mutz, M. (2013). Microbial activity and sediment disturbance modulate the vertical water flux in sandy sediments. 
Freshwater Science, 32(1), 26–38. https://doi.org/10.1899/11-165.1

Miller, A. R., Lowe, R. L., & Rotenberry, J. T. (1987). Succession of diatom communities on sand grains. Journal of Ecology, 75(3), 693–709. 
https://doi.org/10.2307/2260200

Miller, D. C. (1989). Abrasion effects on microbes in sandy sediments. Marine Ecology Progress Series, 55(1), 73–82. https://doi.org/10.3354/
meps055073

Mutz, M., Schlief, J., & Orendt, C. (2001). Morphologische Referenzzustände für Bäche im Land Brandenburg (pp. 80). Potsdam, Germany: 
Landesumweltamt Brandenburg.

Nixdorf, B., & Jander, J. (2003). Bacterial activities in shallow lakes—A comparison between extremely acidic and alkaline eutrophic hard 
water lakes. Hydrobiologia, 506–509, 697–705. https://doi.org/10.1023/B:HYDR.0000008623.73250.c8

O’Connor, B. L., Harvey, J. W., & McPhillips, L. E. (2012). Thresholds of flow-induced bed disturbances and their effects on stream metab-
olism in an agricultural river. Water Resources Research, 48, W08504. https://doi.org/10.1029/2011WR011488

Paola, C., & Seal, R. (1995). Grain-size patchiness as a cause of selective deposition and downstream fining. Water Resources Research, 
31(5), 1395–1407. https://doi.org/10.1029/94WR02975

Peterson, C. G., Hoagland, K. D., & Stevenson, R. J. (1990). Timing of wave disturbance and the resistance and recovery of a fresh-water 
epilithic microalgal community. Journal of the North American Benthological Society, 9(1), 54–67. https://doi.org/10.2307/1467934

Pilditch, C. A., & Miller, D. C. (2006). Phytoplankton deposition to permeable sediments under oscillatory flow: Effects of ripple geometry 
and resuspension. Continental Shelf Research, 26(15), 1806–1825. https://doi.org/10.1016/j.csr.2006.06.002

Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., et al. (1997). The natural flow regime. BioScience, 47, 
769–784.

Probandt, D., Eickhorst, T., Ellrott, A., Amann, R., & Knittel, K. (2018). Microbial life on a sand grain: From bulk sediment to single grains. 
The ISME Journal, 12(2), 623–633. https://doi.org/10.1038/ismej.2017.197

Rabení, C. F., Doisy, K. E., & Zweig, L. D. (2005). Stream invertebrate community functional responses to deposited sediment. Aquatic 
Sciences, 67(4), 395–402. https://doi.org/10.1007/s00027-005-0793-2

R Core Team. (2018). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. 
https://www.R-project.org/

Risse-Buhl, U., Anlanger, C., Chatzinotas, A., Noss, C., Lorke, A., & Weitere, M. (2020). Near streambed flow shapes microbial guilds 
within and across trophic levels in fluvial biofilms. Limnology & Oceanography, 65(10), 2261–2277. https://doi.org/10.1002/lno.11451

SCHEIDWEILER ET AL.

10.1029/2020WR027988

15 of 16

https://doi.org/10.1007/s10533-005-6896-y
https://doi.org/10.1038/nrmicro.2016.94
https://doi.org/10.1146/annurev.ecolsys.30.1.363
https://doi.org/10.1029/2012JG002043
https://doi.org/10.1080/0269249X.1993.9705268
https://doi.org/10.1899/08-073.1
https://doi.org/10.1002/hyp.6263
https://doi.org/10.1016/j.scitotenv.2009.06.049
https://doi.org/10.1080/09670260600652903
https://doi.org/10.1073/pnas.1015744108
https://doi.org/10.1002/2016WR020296
https://doi.org/10.1002/2016WR020296
https://doi.org/10.2307/1467708
https://CRAN.R-project.org/package=emmeans
https://CRAN.R-project.org/package=emmeans
https://doi.org/10.1139/m60-015
https://doi.org/10.1016/j.geomorph.2018.04.016
https://doi.org/10.1016/j.geomorph.2018.04.016
https://doi.org/10.3354/meps165031
https://doi.org/10.1016/j.jglr.2015.09.004
https://doi.org/10.1111/fwb.12856
https://doi.org/10.1899/11-165.1
https://doi.org/10.2307/2260200
https://doi.org/10.3354/meps055073
https://doi.org/10.3354/meps055073
https://doi.org/10.1023/B:HYDR.0000008623.73250.c8
https://doi.org/10.1029/2011WR011488
https://doi.org/10.1029/94WR02975
https://doi.org/10.2307/1467934
https://doi.org/10.1016/j.csr.2006.06.002
https://doi.org/10.1038/ismej.2017.197
https://doi.org/10.1007/s00027-005-0793-2
https://www.r-project.org/
https://doi.org/10.1002/lno.11451


Water Resources Research

Risse-Buhl, U., Anlanger, C., Kalla, K., Neu, T. R., Noss, C., Lorke, A., & Weitere, M. (2017). The role of hydrodynamics in shaping the 
composition and architecture of epilithic biofilms in fluvial ecosystems. Water Research, 127, 211–222. https://doi.org/10.1016/j.
watres.2017.09.054

Risse-Buhl, U., Felsmann, K., & Mutz, M. (2014). Colonization dynamics of ciliate morphotypes modified by shifting sandy sediments. 
European Journal of Protistology, 50, 345–355. https://doi.org/10.1016/j.ejop.2014.03.006

Roberts, S., Sabater, S., & Beardall, J. (2004). Benthic microalgal colonization in streams of differing riparian cover and light availability. 
Journal of Phycology, 40(6), 1004–1012. https://doi.org/10.1111/j.1529-8817.2004.03-333.x

Romaní, A. M., & Sabater, F. (2000). Influence of algal biomass on extracellular enzyme activity in river biofilms. Microbial Ecology, 41, 
16–24. https://doi.org/10.1007/s002480000041

Rutherford, J. C., Latimer, G. J., & Smith, R. K. (1993). Bedform mobility and benthic oxygen uptake. Water Research, 27(10), 1545–1558. 
https://doi.org/10.1016/0043-1354(93)90099-4

Rutherford, J. C., Wilcock, R. J., & Hicker, C. W. (1991). Deoxygenation in a mobile-bed river—I. Field studies. Water Research, 25(12), 
1487–1497. https://doi.org/10.1016/0043-1354(91)90179-T

Savant, A. S., Reible, D. O., & Thibodeaux, L. J. (1987). Convective transport within stable river sediments. Water Resources Research, 23(9), 
1763–1768. https://doi.org/10.1029/WR023i009p01763

Scheidweiler, D., Mendoza-Lera, C.,  Mutz, M., & Risse-Buhl, U. (2020). Metabolism, nutrient dynamics and community composition in 
sandy sediments - A microcosms experiment. PANGAEA, https://doi.org/10.1594/PANGAEA.921544

Scheidweiler, D., Peter, H., Pramateftaki, P., de Anna, P., & Battin, T. J. (2019). Unraveling the biophysical underpinnings to the success of 
multispecies biofilms in porous environments. The ISME Journal, 13(7), 1700–1710. https://doi.org/10.1038/s41396-019-0381-4

Sekar, R., Nair, K. V. K., Rao, V. N. R., & Venugopalan, V. P. (2002). Nutrient dynamics and successional changes in a lentic freshwater 
biofilm. Freshwater Biology, 47(10), 1893–1907. https://doi.org/10.1046/j.1365-2427.2002.00936.x

Shimeta, J., Amos, C. L., Beaulieu, S. E., & Ashiru, O. M. (2002). Sequential resuspension of protists by accelerating tidal flow: Implica-
tions for community structure in the benthic boundary layer. Limnology & Oceanography, 47(4), 1152–1164. https://doi.org/10.4319/
lo.2002.47.4.1152

Singh, S. K., Pahlow, M., Booker, D. J., Shankar, U., & Chamorro, A. (2019). Towards baseflow index characterization at national scale in 
New Zealand. Journal of Hydrology, 568, 646–657. https://doi.org/10.1016/j.jhydrol.2018.11.025

Sinsabaugh, R. L., Shah, J. J. F., Findlay, S. G., Kuehn, K. A., & Moorhead, D. L. (2015). Scaling microbial biomass, metabolism and resource 
supply. Biogeochemistry, 122(2–3), 175–190. https://doi.org/10.1007/s10533-014-0058-z

Smakhtin, V. U. (2001). Low flow hydrology: A review. Journal of Hydrology, 240(3–4), 147–186. https://doi.org/10.1016/
S0022-1694(00)00340-1

Sobczak, W. V. (1996). Epilithic bacterial responses to variations in algal biomass and labile dissolved organic carbon in water. Journal of 
the North American Benthological Society, 15(2), 143–154. https://doi.org/10.2307/1467944

Sousa, W. P. (1980). The responses of a community to disturbance—The importance of successional age and species life histories. Oecolo-
gia, 45(1), 72–81. https://doi.org/10.1007/BF00346709

Sukhodolov, A. N., Fedele, J. J., & Rhoads, B. L. (2006). Structure of flow over alluvial bedforms: An experiment on linking field and labo-
ratory methods. Earth Surface Processes and Landforms, 31(10), 1292–1310. https://doi.org/10.1002/esp.1330

Sutherland, A. B., Culp, J. M., & Benoy, G. A. (2010). Characterizing deposited sediment for stream habitat assessment. Limnology and 
Oceanography: Methods, 8, 30–44. https://doi.org/10.4319/lom.2010.8.30

Uehlinger, U. (2000). Resistance and resilience of ecosystem metabolism in a flood-prone river system. Freshwater Biology, 45, 319–332. 
https://doi.org/10.1111/j.1365-2427.2000.00620.x

Uehlinger, U., Naegeli, M., & Fisher, S. G. (2002). A heterotrophic desert stream? The role of sediment stability. Western North American 
Naturalist, 62(4), 466–473.

Verdonschot, P. F. M. (2001). Soft-bottomed lowland streams: A dynamic desert. Proceedings of the International Association of Theoretical 
and Applied Limnology, 27, 2577–2581.

Verzano, K., Bärlund, I., Flörke, M., Lehner, B., Kynast, E., Voß, F., & Alcamo, J. (2012). Modeling variable river flow velocity on conti-
nental scale: Current situation and climate change impacts in Europe. Journal of Hydrology, 424, 238–251. https://doi.org/10.1016/j.
jhydrol.2012.01.005

Villanova, V., Fortunato, A. E., Singh, D., Dal Bo, D., Conte, M., Obata, T., et  al. (2017). Investigating mixotrophic metabolism in the 
model diatom Phaeodactylum tricornutum.Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1728). https://doi.
org/10.1098/rstb.2016.0404

Vincent, W. F., & Goldman, C. R. (1980). Evidence for algal heterotrophy in Lake-Tahoe, California–Nevada. Limnology and Oceanography, 
25(1), 89–99. https://doi.org/10.4319/lo.1980.25.1.0089

Wallbrink, P. J. (2004). Quantifying the erosion processes and land-uses which dominate fine sediment supply to Moreton Bay, Southeast 
Queensland, Australia. Journal of Environmental Radioactivity, 76(1–2), 67–80. https://doi.org/10.1016/j.jenvrad.2004.03.019

Weise, W., & Rheinheimer, G. (1978). Scanning electron microscopy and epifluorescence investigation of bacterial colonization of marine 
sand sediments. Microbial Ecology, 4(3), 175–188. https://doi.org/10.1007/BF02015075

Wickham, H. (2009). ggplot2: Elegant graphics for data analysis. New York: Springer.
Wilczek, S., Fischer, H., Brunke, M., & Pusch, M. T. (2004). Microbial activity within a subaqueous dune in a large lowland river (River 

Elbe, Germany). Aquatic Microbial Ecology, 36(1), 83–97. https://doi.org/10.3354/ame036083
Wolke, P., Teitelbaum, Y., Deng, C., Lewandowski, J., & Arnon, S. (2020). Impact of bed form celerity on oxygen dynamics in the hyporheic 

zone. Water, 12(1), 62. https://doi.org/10.3390/w12010062
Wood, P. J., & Armitage, P. D. (1997). Biological effects of fine sediment in the lotic environment. Environmental Management, 21(2), 

203–217. https://doi.org/10.1007/s002679900019
Zheng, L. Z., Cardenas, M. B., Wang, L. C., & Mohrig, D. (2019). Ripple effects: Bed form morphodynamics cascading into hyporheic zone 

biogeochemistry. Water Resources Research, 55, 7320–7342. https://doi.org/10.1029/2018WR023517
Zlatanović, S., Fabian, J., Mendoza-Lera, C., Woodward, K. B., Premke, K., & Mutz, M. (2017). Periodic sediment shift in migrating ripples 

influences benthic microbial activity. Water Resources Research, 53, 4741–4755. https://doi.org/10.1002/2017WR020656

SCHEIDWEILER ET AL.

10.1029/2020WR027988

16 of 16

https://doi.org/10.1016/j.watres.2017.09.054
https://doi.org/10.1016/j.watres.2017.09.054
https://doi.org/10.1016/j.ejop.2014.03.006
https://doi.org/10.1111/j.1529-8817.2004.03-333.x
https://doi.org/10.1007/s002480000041
https://doi.org/10.1016/0043-1354(93)90099-4
https://doi.org/10.1016/0043-1354(91)90179-T
https://doi.org/10.1029/WR023i009p01763
https://doi.org/10.1594/PANGAEA.921544
https://doi.org/10.1038/s41396-019-0381-4
https://doi.org/10.1046/j.1365-2427.2002.00936.x
https://doi.org/10.4319/lo.2002.47.4.1152
https://doi.org/10.4319/lo.2002.47.4.1152
https://doi.org/10.1016/j.jhydrol.2018.11.025
https://doi.org/10.1007/s10533-014-0058-z
https://doi.org/10.1016/S0022-1694(00)00340-1
https://doi.org/10.1016/S0022-1694(00)00340-1
https://doi.org/10.2307/1467944
https://doi.org/10.1007/BF00346709
https://doi.org/10.1002/esp.1330
https://doi.org/10.4319/lom.2010.8.30
https://doi.org/10.1111/j.1365-2427.2000.00620.x
https://doi.org/10.1016/j.jhydrol.2012.01.005
https://doi.org/10.1016/j.jhydrol.2012.01.005
https://doi.org/10.1098/rstb.2016.0404
https://doi.org/10.1098/rstb.2016.0404
https://doi.org/10.4319/lo.1980.25.1.0089
https://doi.org/10.1016/j.jenvrad.2004.03.019
https://doi.org/10.1007/BF02015075
https://doi.org/10.3354/ame036083
https://doi.org/10.3390/w12010062
https://doi.org/10.1007/s002679900019
https://doi.org/10.1029/2018WR023517
https://doi.org/10.1002/2017WR020656

	Overlooked Implication of Sediment Transport at Low Flow: Migrating Ripples Modulate Streambed Phototrophic and Heterotrophic Microbial Activity
	Abstract
	1. Introduction
	2. Materials and Methods
	2.1. Sediment Sampling and Inoculation
	2.2. Experimental Setup
	2.3. Sediment Community Activity
	2.4. Sediment Community Descriptors
	2.5. Dissolved Organic Carbon and Inorganic Nutrient Concentrations
	2.6. Statistics

	3. Results
	3.1. Metabolism
	3.2. Microbial Community Descriptors and Bacterial Production
	3.3. Biomass Production and Nutrient Dynamics

	4. Discussion
	4.1. Phototrophic and Heterotrophic Microbial Activity Modulated by Migrating Ripples (Phase 1)
	4.2. Contrasting Migrating Ripple Effects on Phototrophs and Heterotrophs
	4.3. Microbial Response Modulated by Transition of Sediment Transport Regime (Phase 1 vs. 2)

	5. Conclusions
	Data Availability Statement
	References


