
1.  Introduction
In the western tropical Atlantic, upper ocean temperature tends to be homogeneous from the surface down 
to the so-called “isothermal layer depth” (ILD) and salinity is responsible for density stratification. Fresh-
water discharge from the world's largest river, the Amazon (with an averaged annual discharge of about 
0.2  Sv), precipitation under the Intertropical Convergence Zone (ITCZ) and several oceanographic pro-
cesses induce a strong halocline (and therefore pycnocline) in the top few meters, leading to a “mixed 
layer depth” (MLD) that is shallower than the ILD (Balaguru, Chang, Saravanan, & Jang, 2012; Breugem 
et al., 2008; Masson & Delecluse, 2001; Mignot et al., 2007, 2012; Pailler et al., 1999; Sato et al., 2006; Silva 
et al., 2005; Sprintall & Tomczak, 1992). The thickness of the resulting “barrier layer” (BLT) is the difference 
between the ILD and the MLD.

Abstract  The growth and decay mechanisms of barrier layers in the northwestern tropical Atlantic 
are studied by investigating small-scale processes embedded in the regional circulation of the tropical 
Atlantic using output from an eddy-resolving numerical simulation at 4 km resolution forced by an 
atmospheric reanalysis. The simulation reproduces well the temporal and spatial patterns of barrier 
layer thickness (BLT) estimated with Argo and CTD in situ profiles. As seen from an analysis of the 
salinity and temperature vertical gradient balances, localized large barrier layers form inside North Brazil 
Current rings during late-June to July because of a thickening of the isothermal layer in the rings due to 
horizontal temperature advection, stretching of isotherms and tilting of temperature fronts. These barrier 
layers decay when the isothermal layer reduces again due to the above mechanisms. Further to the north, 
along the North Equatorial Current, the seasonal variability of BLT is highly pronounced. Thick winter 
(January to early March) barrier layers locally grow as the base of the mixed layer shoals mainly due to 
a tilting of the salinity fronts and partly due to stretching of the isohalines, horizontal salt advection and 
vertical turbulent mixing. The short-term barrier layers in this case decay due to a deepening of the mixed 
layer, whereas they get completely eroded in spring by a shoaling of the isothermal layer due to surface 
temperature stratification. This work highlights that barrier layers are localized phenomena at times 
growing solely due to ocean dynamics, without a surface freshwater influx.

Plain Language Summary  Oceanic barrier layers exist in regions where salinity is more 
dominant than temperature in determining upper ocean density. Those layers lie between the bases of 
a constant-density layer and a constant-temperature layer. Barrier layers prevent vertical exchange of 
energy and mass between the near-surface and the deep ocean, thus influencing air-sea interaction. In the 
western tropical Atlantic, a warmer sea surface due to the presence of barrier layers can fuel hurricanes. 
Freshwater from the Amazon River and rainfall facilitate the growth of barrier layers, but the dynamics 
of their evolution are unclear. In this work, we identify/quantify the growth and decay mechanisms of 
barrier layers using a 4 km resolution simulation. Barrier layers grow/decay inside North Brazil Current 
eddies in summer because of deepening/shoaling of the constant-temperature layer inside the eddies due 
to horizontal heat transport. Further north, barrier layers grow in winter as the constant-density layer 
shoals mainly due to northwestward surface freshwater flow and equatorward subsurface salty water 
flow. Those barrier layers decay when the constant-density layer deepens, whereas are destroyed when 
the constant-temperature layer shoals in spring due to surface heating. These novel results improve the 
knowledge on barrier layers and help representing them in climate models.
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Barrier layers are important as they prevent mixing between the thermocline and the mixed layer, thus di-
minishing the forcing of the thermocline by surface freshwater, heat and momentum fluxes, and enhancing 
their impacts on surface temperature and salinity. Furthermore, they also limit large effects of turbulent 
processes at the mixed layer base and prevent entrainment of cold water from the thermocline into the 
mixed layer (Drushka et al., 2014; Sprintall & Tomczak, 1992). As a consequence, the barrier layers can trap 
heat inside and above them, featuring a temperature inversion (Balaguru, Chang, Saravanan, & Jang, 2012; 
Mignot et al., 2012), thus increasing the sea surface temperature (SST) and causing potential intensification 
of tropical cyclones passing over the thick barrier layers (de Boyer Montégut et al., 2007; Balaguru, Chang, 
Saravanan, Leung, et al., 2012). Barrier layers therefore play a significant role in the upper ocean heat and 
salt budgets as well as in air-sea interaction (Vialard & Delecluse, 1998). They also affect currents by trap-
ping momentum input from the wind in the shallow mixed layer, thereby producing strong surface flows 
(Drushka et al., 2014).

Located in the northwestern tropical Atlantic, the quasi-permanent barrier layers present throughout the 
year (Mignot et al., 2012) are likely more prominent and important than other barrier layers of the World 
Ocean (Foltz et al., 2004; Mignot et al., 2007, 2012). The thick barrier layers occurring within the Atlantic 
Warm Pool (AWP) in the northwestern tropical Atlantic are believed to originate primarily from advection 
of fresh Amazon and Orinoco river water and ITCZ precipitation, in combination with surface cooling 
during boreal fall and winter (Breugem et al., 2008; Mignot et al., 2012). The advection is maintained by the 
northwestward moving North Brazil Current (NBC) and associated rings (Ferry & Reverdin, 2004; Fratanto-
ni & Glickson, 2002). Poleward transport of those fresh equatorial waters by the northward surface Ekman 
currents and equatorward sub-surface transport of Salinity Maximum Waters (SMW) may also contribute to 
the formation of barrier layers in this region (Balaguru, Chang, Saravanan, & Jang, 2012; Foltz et al., 2004; 
Mignot et al., 2007; Sato et al., 2006; Sprintall & Tomczak, 1992). Our study clarifies the relevance of all 
those mechanisms for the local barrier layer growth and decay. Henceforth, we address those barrier lay-
ers in the equatorial flank of the subtropical gyre as the barrier layers along the North Equatorial Current 
(NEC), as this is the dominant oceanic current there.

The seasonal cycle of BLT north of the Amazon mouth close to the equator is different from the seasonal 
cycle of BLT along the NEC in the northwestern tropical Atlantic. Masson and Delecluse (2001) studied the 
formation of barrier layers in the western tropical Atlantic (from 10°S to 10°N) by performing sensitivity 
experiments with an Ocean General Circulation Model. They explained that the temporal evolution of the 
sea surface salinity (SSS) is controlled by the dynamics: in summer the NBC and North Equatorial Counter-
current (NECC) systems advect the fresh water north- and northeastward and create large Amazon plumes 
three months after the Amazon flood in May-June. This creates thick barrier layers at the Amazon mouth 
from March to June (Silva et al., 2005) and in the north and east of the Amazon mouth from June to October 
(Masson & Delecluse, 2001; Pailler et al., 1999). Our study corroborates this finding and shows specifically 
that the NBC rings carry the conditions for barrier layer growth.

It is widely accepted that precipitation and river discharge are the main causes for the existence of barrier 
layers. However, ocean dynamics play a significant role in their formation, evolution and decay (Agarwal 
et al., 2012). Coles et al. (2013) using a 1°/6° HYCOM model and data from three research cruises (in May-
June 2010, September-October 2011, and July 2012), identified four Amazon plume pathways of freshwa-
ter transport and found that the role of currents and advection is more important than river discharge in 
maintaining plume properties. In an analysis of Argo observations from January 2000 to June 2005, Sato 
et  al.  (2006) noticed patchy and thick barrier layer structures, which were explained by large-scale and 
small-scale (100 km) subduction processes in the subtropical gyres of the World Ocean. As those synoptic 
thick barrier layers appear in areas where the quasi-permanent climatological barrier layer is also thick, the 
climatological barrier layer is claimed to be a spatially and temporally smoothed picture of the synoptic bar-
rier layers (de Boyer Montégut et al., 2007; Katsura & Sprintall, 2020; Mignot et al., 2007; Sato et al., 2006). 
According to the authors, since the Argo floats sample mesoscale features but do not resolve them, the role 
of mesoscale eddies to describe the barrier layer formation process needs to be assessed. In a study using 
the most recent Argo data on the formation mechanisms of barrier layers in the Southern Ocean, Pan 
et al. (2018) noted that, due to the lack of high resolution data, effects of mesoscale eddies and filaments, 
and the entrainment into barrier layers remain to be studied. This is a research gap that exists for most of 
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the barrier layers in the World Ocean, and is addressed in the present work for the above described north-
western tropical Atlantic barrier layers.

In some earlier modeling studies (Camara et al., 2015; Da-Allada et al., 2013; Ferry & Reverdin, 2004; Mignot 
et al., 2012; Sommer et al., 2015) and in a reanalysis and observational study (Foltz & McPhaden, 2008), the 
contribution of several processes to the salinity balance, which are responsible for the SSS changes in the 
tropical Atlantic, have been identified. But the processes that are responsible for the formation, evolution 
and decay of the barrier layers in this region have not been identified or defined before. Using the vertical 
derivative of salinity and temperature balance equations, Cronin and McPhaden (2002) provided the qual-
itative description of the relevant mechanisms by which barrier layers can form, grow and dissipate in the 
tropical Pacific under the influence of westerly wind bursts. A quantitative analysis was not possible in 
their case due to inadequate observational data. A qualitative or quantitative analysis of these mechanisms 
governing the evolution of barrier layers in the tropical Atlantic has not been performed yet, which leaves 
a large gap in the understanding of the growth and decay of these barrier layers. The present work aims at 
closing that gap.

The above findings motivate our study by highlighting the need for a better understanding and clarity of the 
mechanisms governing the generation, evolution and decay of the western tropical Atlantic barrier layers, 
especially those related to local circulation patterns and small-scale processes. The growth and decay of 
Atlantic barrier layers in the areas mentioned above in the tropical Atlantic is discussed in the present work 
in relation to ocean circulation features of the northwestern tropical Atlantic, such as the regional current 
systems (the NBC/NECC and the NEC), and certain other local processes (eddies and fronts). Along with 
temperature and salinity observations, output from an eddy-resolving simulation at 4 km resolution forced 
by fluxes computed with the ECMWF ERAinterim reanalysis facilitates our study of the finer details of the 
upper ocean dynamics.

The remaining study is structured as follows. Section 2 describes the model setup, the observational data 
sets and the methods employed. Section 3 presents the comparison of model and observations especially 
with regard to the seasonal variability of BLT. The governing mechanisms responsible for the growth and 
decay of barrier layers are identified and examined in two particular regions, the NBC rings area and the 
NEC region further to the north, in Sections 4 and 5, respectively. Section 6 provides a discussion and sum-
marizes the main conclusions.

2.  Data and Methods
2.1.  Data

2.1.1.  Atlantic Ocean Simulation

Our analyses are based on daily output from an integration of the Massachusetts Institute of Technology 
general circulation model (MITgcm) (Marshall et  al.,  1997) covering the Arctic Ocean and the Atlantic 
Ocean north of 33°S at 4 km horizontal resolution (henceforth termed ATL4km) for the period 2003–2011. 
The model was set up with a bipolar curvilinear grid, with one pole located over North America and the 
other over Europe. In the vertical, the model uses 100 layers of varying thickness, ranging from 5 m in the 
upper ocean to 185 m in the deep ocean. The model uses a z-coordinate vertical grid. Bottom topography is 
derived from the ETOPO 2-min resolution database. The model integration starts in year 2002 from initial 
conditions taken from an 8 km resolution 1948-present model integration, which in turn had initial con-
ditions derived from the annual mean temperature and salinity from the World Ocean Atlas 2005 (Boyer 
et al., 2005). The vertical mixing parameterization employed in the simulations uses the KPP formulation. 
Background coefficients of vertical diffusion are set to 10−5 m2/s and of vertical viscosity to 10−4 m2/s. Hori-
zontally, biharmonic diffusion and viscosity represent unresolved eddy mixing, with coefficients of horizon-
tal diffusion and viscosity set to 1 × 109 m4/s.

The model simulation is forced at the surface by fluxes of momentum, heat, and freshwater computed 
using bulk formulae and the 2002–2011 ECMWF ERA-Interim reanalysis (Dee et  al.,  2011). At the vol-
ume-balanced open northern and southern boundaries, the simulation is forced by the output of a 1° res-
olution global solution of the MITgcm forced by the NCEP reanalysis. A barotropic net inflow of 0.9 Sv 
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(1 Sv = 106 m3/s) into the Arctic is prescribed at Bering Strait, the model's northern open boundary, which 
balances a corresponding outflow through the southern boundary at 33°S. A constant river runoff is applied 
at river mouths and a dynamic thermodynamic sea ice model solves for sea ice parameters.

Details about the model performance and previous validations against observations can be found in Serra 
et al. (2010), Köhl and Serra (2014), Koldunov et al. (2014), Sena Martins et al. (2015) and Biri et al. (2016).

2.1.2.  Observational Data

The observational data set EN4.2.1 at 1° × 1° spatial resolution are used in our study. It is made available by 
the Met Office Hadley Center (https://www.metoffice.gov.uk/hadobs/en4). Both the observed subsurface 
ocean temperature and salinity individual profiles including data quality information and the monthly av-
eraged objective analyzed fields (henceforth called EN4) are used. To make correct use of the profile data, 
the quality control flags indicating elimination of temperature and salinity observations due to vertical 
stability checks, track checks and vertical outlier checks were applied. Elimination of a profile was carried 
out if the profile is on the altimetry quality control suspect list, the profile appears to be on land, the profile 
is at exactly 0° latitude and longitude, the profile is on the Argo gray list, the profile is on the EN3 reject 
list, if there were no background values for this profile, or if over half its levels were rejected. Details of the 
quality control flags are given on the above website. Details of how the data set was constructed is provided 
in Good et al. (2013). The data set version with the Gouretski and Reseghetti (2010) bias correction applied 
is used in the present study.

In some comparisons, we additionally use the climatology of observed BLT (de Boyer Montégut et al., 2004), 
available from 1961 to 2008 at 2°× 2° spatial resolution from the IFREMER/LOS Mixed Layer Depth Cli-
matology website (http://www.ifremer.fr/cerweb/deboyer/mld) (henceforth termed DeBoyer climatology).

2.2.  Methods

2.2.1.  Barrier Layer Thickness Computation

Following Sprintall and Tomczak (1992), de Boyer Montégut et al. (2004), de Boyer Montégut et al. (2007), 
Breugem et al. (2008), Mignot et al. (2012) and Drushka et al. (2014), we define ILD as the depth at which 
temperature has dropped by a value of ΔT = 0.2°C relative to the temperature at a reference depth of 2.5 m, 
the first depth level in the ATL4km simulation. MLD is defined as the depth at which potential density σθ 
has increased with respect to its value at the reference depth by an amount Δσθ. Here Δσθ is the potential 
density change equivalent to the above temperature change at the local salinity:

      0 0Δ ( Δ , , ) ( , , )ref ref ref refT T S P T S P� (1)

where Tref and Sref are the temperature and salinity at the 2.5 m reference depth and P0 is the pressure at the 
ocean surface. The thickness of the BLT is defined as the positive difference between the ILD and the MLD:

   .BLT ILD MLD for ILD MLD� (2)

This definition of MLD ensures that, in the absence of haline stratification, that is, in the absence of barrier 
layers, the MLD and ILD are identical. Also, this definition of ILD takes care of temperature inversions that 
may be present in the barrier layer (Mignot et al., 2012).

2.2.2.  Balance Equations and Governing Mechanisms

The growth and decay mechanisms of the barrier layers have not been quantified before in previous studies, 
though Cronin and McPhaden (2002) discuss these mechanisms qualitatively for the barrier layers in the 
western tropical Pacific. Our aim is to identify the mechanisms responsible for the growth and decay of the 
barrier layers in two localized regions of the northwestern tropical Atlantic, where large BLT is found: 1) in 
and around the NBC rings and 2) in the NEC. To understand how upper-ocean salinity/temperature strati-
fication can develop in the northwestern tropical Atlantic, we computed the terms from the balance equa-
tions derived by Cronin and McPhaden (2002) using salinity, temperature, and the zonal, meridional and 
vertical components of velocity from daily averaged ATL4km model output. To study the growth and decay 
processes of upper ocean stratification and therefore of BLT, it is essential to have the four-dimensional 
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fields of the above variables. Following Cronin and McPhaden (2002), the vertical derivative of the salinity 
balance equation is:
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The vertical derivative of the temperature balance equation is:
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In the above equations, S is the salinity, T is the temperature, U = (u, v) is the horizontal velocity, w is the 
vertical velocity, z is the depth and  w S  and  w T  are the vertical turbulent fluxes of salinity and temperature, 
respectively. At the air-sea interface (z = 0) the turbulent salinity flux depends on the surface freshwater 
forcing by precipitation (P), evaporation (E) and river runoff (R):

    0 0( ) ( )zw S S P E R∣� (5)

where S0 is the surface salinity. The surface forcing is thus contained in the turbulent mixing component 
(term 5 in the right hand side (RHS) of Equation 3). In Equation 4, ρcp is the volumetric heat capacity, Qrad 
is the penetrative solar radiation, and  w T  at z = 0 is proportional to the net surface heat flux reduced by 
the solar radiation at the surface.

Each RHS term of the balance equations corresponds to a physical mechanism. Term 1 is the contribution 
to the tendency (either of salinity or temperature stratification) from horizontal advection. If favorable 
T/S conditions are advected leading to a “translation” of the MLD with constant ILD, a local change will 
be noticed by a thickening of the barrier layer in the flow direction (Figure 1a). A barrier layer can also 
form when a vertically sheared horizontal flow advects a horizontal salinity gradient within the isothermal 
surface layer (term 3, termed tilting). This causes near-vertical isohalines to tilt into the horizontal, thus 
forming a shallow mixed layer on top of the isothermal layer (Figure 1b). Vertical advection (term 2) acting 
uniformly on both the MLD and ILD will cause the barrier layer to shift vertically, with no change in BLT. 
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Figure 1.  Schematics of (a) horizontal advection (term 1 in Equation 3), (b) tilting (term 3 in Equation 3), (c) 
stretching (term 4 in Equation 3) and (d) turbulent mixing (term 5 in Equation 3), the mechanisms responsible for 
barrier layer formation and growth. The black and gray dashed lines are, respectively, the initial and the resulting 
mixed layer depth (MLD). The black and gray solid lines depict, respectively, the initial and the resulting isothermal 
layer depth (ILD). Hatched regions are the initial barrier layers and the blue shaded regions depict the resulting barrier 
layers. Adapted and expanded from Cronin and McPhaden (2002).
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Thus this term is not implicated in the formation/evolution of barrier layers. But if the vertical velocity acts 
non-uniformly on the MLD and ILD surfaces, then the barrier layer can grow through vertical stretching 
(term 4, Figure 1c). Finally, rainfall (and/or river discharge) in the absence of strong turbulent mixing and 
surface heating, can cause a barrier layer to form between the base of the rainwater puddle (fresh lens) and 
the top of the ILD (term 5, Figure 1d).

The above four mechanisms lead to the formation and growth of barrier layers. These barrier layers decay 
when the same above mechanisms act in an opposite manner. Therefore, the T/S conditions forming a bar-
rier layer can be advected away from a location and the T/S conditions unfavorable for the existence of bar-
rier layers can be advected to that place. The tilting of a strong vertical salinity gradient (a horizontal front) 
that exists in presence of barrier layer can get tilted to form a horizontal salinity gradient (i.e., tilted into a 
vertical front) thus decaying the BLT. In order to reduce the BLT, the vertical velocities shown in the five 
cases of stretching in Figure 1c would have a reversed direction (in all five cases) and opposite magnitudes 
(in the cases when the different magnitudes of velocities act on both the surfaces, two right-most cases in 
Figure 1c). A strong turbulent mixing of saline and cold water from greater depths can destroy the BLT and 
turbulent mixing of warm water on the surface can also destroy the BLT.

Area averages of simulated BLT were computed in two regions: 1) the area where NBC rings form and prop-
agate and 2) the area of the NEC. The events showing a strong peak in the resulting daily time series were 
chosen and the mechanisms contributing to the growth and decay of each of those barrier layers were ex-
amined in detail. To study the relation between barrier layers and NBC rings, the NBC rings were identified 
in the daily model output with the help of the Okubo-Weiss parameter (Chelton et al., 2011; Isern-Fontanet 
et al., 2004). In the region of NBC rings and for each event, an average of T/S properties and of the balance 
terms were taken over a period of 3 days before the event and compared with those at the time of peak BLT 
to understand the formation/thickening of the barrier layers. Conversely, averages over 3 days after the 
peak BLT were used to understand the barrier layer destruction/thinning. For the NEC events, the same 
procedure was conducted, averaging over periods of 3–5 days (chosen depending on the changes seen in the 
daily BLT) before and after the day showing the peak BLT. Those averaging periods correspond to half the 
duration of the respective barrier layer growth + decay event.

The salinity and temperature vertical gradients 
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, where β is the haline contraction coef-

ficient, α is the thermal expansion coefficient, g is the acceleration due to gravity and ρ is the density (Maes 
& O'Kane, 2014).

3.  Comparison Between Observed and Simulated Barrier Layers
From comparisons with published work (Fonseca et al., 2004; Fratantoni et al., 2000; Schott et al., 1998; 
Stramma et al., 2005), the major regional circulation features of the tropical north Atlantic, such as the 
NEC, the NBC, and the NECC were seen to be well reproduced in the model. As Figure 2 illustrates, the 
simulated NBC advects the mixed layer properties (salinity in this case) toward the northwest throughout 
the year. The properties are transported toward the east in summer and fall by the NECC, starting in May-
June and persisting until December. A component to the north of this transport of properties is insured by 
the prevailing Ekman transport.

As previously shown in Biri et al. (2016), the ATL4km model simulates well the observed patterns of eddy 
kinetic energy. The eddy activity related to the NBC is also realistic in the simulation, with about seven large 
rings being formed per year from the NBC retroflection. All this gives us confidence in using the model to 
correlate the variability of barrier layers with ocean dynamical features.

The average BLT computed from monthly EN4 temperature and salinity profiles and EN4 objective ana-
lyzed fields is here compared with the BLT computed from daily and monthly ATL4km output. Selected 
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months from climatological averages are shown in Figure 3. In the case of the model, the number of days 
that a barrier layer was present in that given month is shown in the last respective panel (Figures 3d, 3h, 3l, 
and 3p) as an average over the 9-years period. This helps locate the places where barrier layers are of com-
mon occurrence in the model.

The northwestern tropical Atlantic is the region with largest barrier layer coverage almost throughout the 
year. The ATL4km simulation and the EN4 analyzed fields show similar spatial patterns in the distribution 
of BLT, but there are some large differences as well. Maximum spatial coverage in the northwestern tropical 
Atlantic occurs in February (Figures 3a–3d) and minimum in May (Figures 3e–3h).

Overall, EN4 has larger BLT than the simulation. Since spurious barrier layers could be generated by spatial 
and temporal interpolation of the sparsely available temperature and salinity profiles, the individual in situ 
profiles are used here to validate the BLT found in the EN4 and in the model. BLT computed from available 
Argo and CTD individual profiles of temperature and salinity show that barrier layers are a very localized 
phenomenon. The sparsely observed (in space and time) BLT distribution (Figures 3b, 3f, 3j, and 3n) is 
consistent with the results from the simulation and other data sets, but not enough profiles are available 
for a detailed comparison for each month in the period 2003–2011. Due to the small amount of data, it is 
not clear if the visible discrepancy in barrier layer spatial coverage between model and the EN4 analyzed 
fields is due to model deficiencies or due to interpolation of in situ profiles to regions with no information. 
Indeed, the EN4 results should be interpreted with some care. In fact, some signals seen in EN4-derived 
BLT have no correspondence in the profiles that serve as basis for the objective analysis. Studies suggest that 
interpolation of in situ profile data in gridded data sets creates BLT artifacts (de Boyer Montégut et al., 2007; 
Katsura & Sprintall, 2020; Mignot et al., 2007; Sato et al., 2006). We take therefore the EN4 results as being 
only illustrative rather than giving true BLT amplitudes. We conclude that the results from the profiles give 
a closer look at what has been observed regarding barrier layers. The results from the profiles indicate that 
coherence of barrier layers is less than what the EN4 analysis shows. When taking only the profiles into 
account, the model BLT amplitude and spatial variability seem realistic.
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Figure 2.  Climatology of simulated mixed-layer salinity and simulated flow at 20 m depth for the months of (a) February, (b) May, (c) July, and (d) October. 
The flow trajectories result from a 30-days integration of particles using the climatological three-dimensional ocean velocity of the respective month. Labeled 
are the North Brazil Current (NBC), the North Brazil Current retroflection (NBC-r), the North Equatorial Countercurrent (NECC), a North Brazil Current ring 
(NBC ring), the Guiana Current (GC1), the Caribbean Current (CC1), the Loop Current (LC), the Florida Current (FC), the Antilles Current (AC1), the North 
Equatorial Current (NEC), the Canary Current (CC2), the Guinea Current (GC2), the South Equatorial Current (SEC) with the northern (nSEC) and central 
(cSEC) branches, the Equatorial Undercurrent (EUC) and the Angola Current (AC2).
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Figure 3.  Spatial variability of BLT (meters) in February (top-left), May (top-right), July (bottom-left) and October (bottom-right) computed from monthly EN4 
objective analyzed fields (a,e,i,m), in situ profiles (b,f,j,n) and ATL4km daily model output (c,g,k,o). The average number of days positive BLT was present in 
the period 2003–2011 is shown (d,h,l,p). The black boxes delimit the areas of large BLT studied in the present work: Southern box (6°N–10°N, 51°W–59°W) and 
northern box (14°N–20°N, 46°W–58°W). BLT, barrier layer thickness.
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During February BLT goes up to 75 m in EN4 and up to 55 m in the DeBoyer climatology (not shown) and 
in ATL4km. Compared to the other data sets, EN4 has a larger spatial coverage of high BLT than the simu-
lation. The reason for this is a deeper simulated winter mixed layer compared to observations, what could 
be attributed to unrealistic forcing or to missing/unresolved mixed layer processes in the model. During 
February (and in general during winter), the model generates barrier layers mostly at the Amazon mouth 
region and further north along the NEC and Antilles Current (AC1) (Figure 3c, currents in Figure 2c). The 
reasons for the growth and decay of those latter barrier layers (northern black NEC-box) will be explored 
in Section 5. Between the two regions, there is a stripe of moderately large BLT (southern black NBC-box), 
which the model shows being supported by the presence of NBC eddies. That BLT signal is investigated in 
Section 4.

In May, BLT is only up to 35 m in EN4 in the northwestern tropical Atlantic and most of the signal along the 
NEC and AC1 is not present. On the other hand, during May, maximum Amazon discharge near the coast 
gives rise to a freshwater plume there with consequent large barrier layers, as seen in the simulation. The 
large signal in the region adjacent to the Amazon mouth is not visible in the EN4 analysis, however, when 
inspecting the actual in situ profiles, large BLT is seen in the locations pointed by the model.

During July (Figures 3i–3l), the discharged Amazon freshwater spreads northwestward and eastward, lead-
ing to barrier layers being present 1) along the eastern limb of the Amazon plume and 2) further north to the 
east of the Lesser Antilles. This is due to the presence of the NECC, bringing the Amazon low salinity water 
into the ocean interior. The model reproduces this tendency seen in the observations. The model presents 
still a strong BLT signal offshore of the Amazon mouth (6°N–10°N, 51°W–59°W NBC-box), not seen in the 
EN4 analysis. However, there are a few profiles with barrier layers in that region during the months of May 
and July (Figures 3f and 3j).

In October, the BLT distribution from the EN4 analysis resembles still the one in July, with a further in-
tensification along the NECC and the emergence of large BLT north of 16°N, a region which is building in 
importance toward winter. The model BLT distribution for October shows the largest amplitude discrepan-
cy compared with EN4 profiles, with the model underestimating the observed BLT. Still, a tendency is seen 
toward increasing BLT in the northern NEC-box.

The model provides, however, more details than the observations about the spatial variability of barrier 
layers. Judging by the number of days per month with barrier layers (Figures 3d, 3h, 3l, and 3p), it is con-
cluded that barrier layer formation is a common feature, albeit most of the times with small amplitudes. 
In those frequency distributions, it is seen how the winter (February) barrier layers are frequent in the 
Lesser and Greater Antilles regions and how they extend along the NEC and along the equator. In spring 
(May), the equatorial and off-equatorial currents show barrier layer formation, with the NEC region losing 
importance. In summer (July), the large impact of the NECC and of NBC eddies (more on this in Section 4) 
is seen, making barrier layers frequent at the southern NBC-box, along the NECC and east of the Lesser 
Antilles. That tendency continues through the fall (October), until the NEC region starts to develop large 
barrier layers again.

As seen in the simulation, barrier layer formation is a highly variable phenomenon, sometimes made up of 
sporadic events. Therefore, an average over the whole time series is not a good indicator of typical BLT, since 
a barrier layer absence will bias locally the mean BLT estimate toward zero. In Figure 4, a time average of 
BLT which is over 2 standard deviations of the local time series is presented. The regions where large barrier 
layers form are now more visible. At all months except November, the model forms large barrier layers in 
the region immediately adjacent to the Amazon mouth. In February there are large barrier layers occurring 
to the north of 12°N (Figure 4a), but only around 16°N are they often forming (Figure 4b). In May, large 
BLT (>25 m) is mostly confined to the South American coast (Figure 4c). In July, the region of large BLT 
extends toward the Caribbean Sea and to the east along the NECC (Figure 4e). The frequency of occurrence 
plot for July illustrates in particular the latter extension (Figure 4f). During October, the Caribbean Sea re-
mains with large BLT and the NECC region fades compared to July (Figure 4g). The pattern of occurrence 
in October shows a shift to the north, but corresponds only to more moderate barrier layers (Figure 4h). It 
can also be noticed that the southern box area indeed shows large barrier layers most of the year; however, 
they are only present less than 15 days in an average month. Comparing with Figure 3, the BLT values in 
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Figure 4 better approach the ones from observations, probably suggesting that a large under sampling is 
present in the observational estimate.

There are two localized regions in the northwestern tropical Atlantic which have large BLT peaking in dif-
ferent months. These are enclosed in the two small boxes in Figures 3 and 4 and will be further discussed in 
this work. In the northern NEC-box (14°N–20°N, 46°W–58°W) BLT is large in the months December-March, 
with largest spatial coverage and magnitude in February-early March (Figures 4a and 4b), and weak in the 
months May-September, with the smallest spatial coverage and magnitude in May (Figures 4c and 4d). In 
the southern NBC-box (6°N–10°N, 51°W–59°W), BLT peaks in June-July (Figures 4e and 4f) decreasing 
toward October. During winter and spring BLT in the southern NBC-box is still large, but more sporadic.

The seasonal cycle of the area-averaged BLT for the southern NBC-box (Figure 5a) shows that BLT peaks in 
the model in the summer months of June/July, with a tendency for an overestimation when using monthly 
profiles instead of daily. The EN4 analysis, in contrast, shows a maximum in March decreasing toward 
September, completely missing the simulated summer peak BLT. The DeBoyer climatology shows an over-
all constant value throughout winter and spring. The EN4 profiles, on the other hand, corroborate the 
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Figure 4.  Spatial variability of the largest simulated BLT (average over 2 standard deviations) in February (top-left), May (top-right), July (bottom-left) and 
October (bottom-right). The corresponding average number of days in the period 2003–2011 is shown in (b,d,f,h). BLT, barrier layer thickness.
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existence of a maximum in June (being seen in 80% of the profiles). There are, however, only 5 profiles 
in this region in June (and in general not many over the whole year), making the observational estimates 
rather uncertain.

For this box, the seasonality and spatial distribution of BLT in the model and observations (Figures 3–5) 
found in our work also agrees with the findings of Pailler et al. (1999) and Masson and Delecluse (2001) for 
the region south of 10°N, where the NBC rings and the Amazon and Orinoco river plumes are at their peak 
in summer.

The seasonal cycle of area-average BLT in the northern NEC region (14°N–20°N, 46°W–58°W) from the AT-
L4km, DeBoyer climatology, and EN4 analysis and profiles is presented in Figure 5b. In this NEC-box, there 
is a good agreement between all data sets in terms of temporal evolution. As was seen in the spatial com-
parisons, the temporal plot also shows largest BLT occurring during winter months of December-March, 
when the EN4 analysis and profiles show larger values compared to the rest of the data sets, which in turn 
peak in February-March. A seasonal minimum is seen in May. The ATL4km simulation agrees well with 
the DeBoyer climatology but seems to underestimate the EN4 estimates. This can be partly due to the above 
discussed tendency to lower the estimates when complete coverage in space and time is taken into account.

In summary, BLT daily fields from ATL4km for the period 2003–2011 showed two distinct localized regions 
with barrier layers having different seasonal cycles: 1) thick barrier layers in the NBC area in June-August, 
and 2) thick barrier layers in the NEC region during January-March. An explanation for this seasonality of 
BLT is given in the following sections with details on the mechanisms responsible for the growth and decay 
of the barrier layers at those two locations.

4.  Barrier Layer Growth and Decay in the NBC Rings Area
The regional circulation in the western tropical Atlantic is dominated by the NBC, an intense western 
boundary current. The maximum Amazon discharge during May-June (Fournier et al., 2017; Masson & 
Delecluse, 2001; Silva et al., 2005; Varona et al., 2019), and Orinoco discharge during July-August (Fournier 
et al., 2017) causes a surface plume of freshwater which spreads northwestward due to the NBC and asso-
ciated rings, not just during the months of maximum river discharge, but all year round. Previous studies 
have shed some light on the advection of the Amazon/Orinoco freshwater and their interaction with the 
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Figure 5.  Monthly variability of area-averaged BLT (meters) in the (a) NBC region (6°N–10°N, 51°W–59°W) and (b) NEC region (14°N–20°N, 46°W–58°W), 
from EN4 objective analyzed data (2003–2011, blue), Observation profiles (2003–2011, green), DeBoyer climatology (1961–2008, yellow), ATL4km simulation 
with daily data (2003–2011, violet) and with monthly data (2003–2011, red). The values at the bottom of the error bars represent the percentage of the number 
of profiles with barrier layers (top number) with respect to the total number of profiles present (bottom number) for that month in the period 2003–2011. BLT, 
barrier layer thickness; NBC, North Brazil Current; NEC, North Equatorial Current.
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seasonally varying NBC and NBC rings (Ffield, 2007; Fournier et al., 2017; Fratantoni & Glickson, 2002). 
This interplay between river runoff and surface ocean dynamics cause the emergence of variability in barri-
er layer formation associated with the NBC rings, which is the topic explored in this section. To our knowl-
edge, the relation between BLT and NBC rings has never been studied in detail, though barrier layers have 
been observed in a Caribbean Sea eddy in September 2014, suspected to originate from the NBC (Rudzin 
et al., 2017) and in another eddy in February 2018 also in the Caribbean Sea (van der Boog et al., 2019). In 
the latter case, the surface water in the eddy is suggested to originate from the Orinoco River.

Through inspection of daily fields of the zero line of meridional velocity at every model depth level, the 
east and west limits of the NBC were determined, with the NBC seen to extend down to about 150 m depth, 
beyond which depth the current becomes very faint and the North Brazil Undercurrent (NBUC) emerges. 
Daily fields of temperature and salinity in the NBC show that the NBC carries cool (17°C–25°C) and saline 
(>36 psu) water from 5°S to around 6°N and northwards at depths 50–180 m. Warmer (>26°C) and fresher 
(34–35.5 psu) water is transported by this current starting from the Amazon mouth at 0°N50°W toward the 
northwest, at depths from surface down to 50–80 m. The time series of meridional non-recirculated fresh-
water transport by the NBC (not shown) reveals how much of this freshwater discharged from the Amazon 
and Orinoco rivers is transported northward. The simulation for years 2003–2011 shows a high seasonality 
in the NBC transports. The freshwater transport signals start from the equator and propagate to 10°N in a 
span of 2–3 months, with a maximum transport being in the months of May-August, peaking in July. The 
non-recirculated transport for July 2007 is 24.45 Sv at 2.3°N. According to Hellweger and Gordon (2002), 
the Amazon plume water takes around 2–3 months to reach the Barbados Island at 13°N, after the max-
imum Amazon discharge in May. Our results corroborate this observation. The Amazon discharge is the 
lowest from October to February (Fournier et al., 2017; Masson & Delecluse, 2001; Silva et al., 2005; Varona 
et al., 2019), also seen in the individual daily SSS model fields.

The simulated NBC rings were tracked using daily fields of the Okubo-Weiss parameter and of relative vor-
ticity, according to a criterion involving negative values of the Okubo-Weiss parameter and positive values 
of relative vorticity. It was seen that an average of six large NBC rings plus a few smaller rings in a total of 
7–9 eddies form every year in the model in the period 2003–2011, a total of 75 rings in the 9 simulated years. 
An instantaneous view of the existing rings on the June 17, 2005 is presented in Figure 6a, which shows a 
mask defining the eddies, computed based on the criterion described above. North of 5°N the NBC breaks 
down into NBC rings, mainly forming around 6°N–9°N. NBC rings have been characterized earlier with 
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Figure 6.  (a) Simulated NBC rings shown as an instantaneous mask, defined using a criteria which uses the Okubo-
Weiss parameter and relative vorticity. (b) Percentage of the nine years (2003–2011) when NBC rings are present. The 
black box encloses the studied NBC rings region (6°N–10°N, 51°W–59°W NBC-box). NBC, North Brazil Current.



Journal of Geophysical Research: Oceans

observations (Fratantoni & Glickson, 2002; Fratantoni & Richardson, 2006; Schiller & Smith, 2018) and sim-
ulations (Jochum & Malanotte-Rizzoli, 2003). They have a diameter ranging from 100 to 500 km and form 
throughout the year. Most of the rings last for 3–5 months and travel along a “corridor” offshore the south 
American coast, reaching up to 13°N–15°N, with some surviving up to 18°N (Figure 6). In the simulated 
9 years, the studied southern box encloses the region where the passage of NBC rings is more frequent, as 
can be seen by the “heat” map in Figure 6b.

Daily area-averaged ILD, MLD, and BLT for the southern NBC-box (6°N–10°N, 51°W–59°W) are shown in 
Figure 7. Large BLT is found from May to August, thickest being in late June-July (blue curve in Figure 7). 
All the events enclosed in circles are cases when there are barrier layers present in the NBC rings. The green 
circles depict rings formed in winter or spring, when the NBC retroflection is further to the northwest, and 
the red circles correspond to rings generated in summer, when the retroflection into the NECC is more 
pronounced. A total of 22 NBC rings had the thickest barrier layers in summer and 10 NBC rings had large 
BLT in late winter-spring.

Our investigation of the mechanisms behind the growth and decay of barrier layers in this NBC region will 
be conducted separately for the seasonal cycle and for the extreme isolated events, since they have different 
reasons. Before we take a look at those events marked with circles in Figure 7, we will first focus on the 
seasonal evolution over which the events are superimposed.

4.1.  Mechanisms Behind the Seasonal Evolution

Figure 7 shows that the ILD and MLD are deep every winter. This is due to the well-known winter convec-
tive mixing in the upper ocean, when the cool, saline and dense water on the surface sinks and when there 
is mixing in the upper layer due to intense wind stirring caused by strong trade winds, as shown by Foltz 
et al. (2004) and Foltz and McPhaden (2008).

Typical in summer are shallow mixed and isothermal layers due to higher surface temperatures than in win-
ter. The MLD is shallow in summer also because of the large freshwater outflow from the rivers in May-July 
and the large transport and spreading of this freshwater by the NBC and its rings in July. The MLD remains 
shallow until October, as the surface water still remains fresher due to the river plume water, and starts 
increasing only after November. But the deepening of the isothermal layer from May to August in spite of 
the warm water at the surface is a peculiarity seen in Figure 7. A deep ILD and a shallow MLD are both 
responsible for the BLT being large during that period of the year, but to a certain extent the magnitude of 
BLT is determined by the deepening of ILD from May to August. In winter, the BLT is small in this southern 
box, having only a few peaks every year (total 10 peaks encircled in green in Figure 7).
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Figure 7.  Daily time series of area-averaged ILD (black), MLD (gray) and BLT (blue) (meters) in the region of NBC rings (NBC-box, 6°N–10°N, 51°W–59°W). 
Red circles are events of large BLT in summer. Green circles are events of large BLT in winter. BLT, barrier layer thickness; ILD, isothermal layer depth; MLD, 
mixed layer depth; NBC, North Brazil Current.
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Since this box is populated by NBC rings, the first question to answer is if the seasonal behavior in the box 
is imposed by what is happening in the core of the rings, or if, on the other hand, the rings are acquiring the 
seasonal evolution of ILD and MLD from their periphery, that is, from the large scale seasonal evolution 
of temperature and salinity. To that end, the eddies were tracked as mentioned and those quantities (ILD, 
MLD, and BLT) where masked, therefore isolating what is happening in the core of the eddies. Averaging 
over only the cores of the NBC rings, the same behavior as in Figure 7 was seen (not shown).

Most of the times a barrier layer is created near the Amazon/Orinoco shelf break due to the tilting of the 
strong salinity fronts created at the plume edge, as the freshwater immediately comes in contact with the sa-
line ocean water (Silva et al., 2005). Daily distributions of BLT from 2003 to 2011 in the ATL4km simulation 
show that the NBC rings transport the conditions for barrier layer maintenance, which were formed near 
the Amazon/Orinoco shelf break. But the barrier layers can also newly form within NBC rings themselves 
when the ring starts to generate, as we will see next. The barrier layers in the NBC rings erode away as the 
ring dissipates, sometimes in the Caribbean Sea, and sometimes in the east of the Lesser Antilles after in-
teracting with the chain of islands.

There is a positive linear relation between MLD and ILD within the cores of NBC rings generated through-
out the year except in June and July (marked with red circles in Figure 7). This is because during those 
months there is an increase in ILD inside the eddy (also seen in Figure 7, reason to be seen ahead), while 
the MLD remains nearly constant.

In order to check if the seasonal evolution in ILD, MLD, and BLT between the core of the NBC rings and 
their periphery differs, a climatology of the area average of these quantities over the core and only over the 
periphery were computed separately. Again no significant difference in the seasonal evolution was seen, 
meaning that the core of the eddies mainly acquires the seasonal conditions for the development of the 
barrier layers from the background where they are embedded. Furthermore, two regions following the eddy 
translation were analyzed, one more to the east, closer to the generation region and one in the west, where 
the eddies are matured and dissipate. The eddy cores in the east have the deepest winter MLD and ILD in 
February, however the BLT curve in March is much smaller than that further downstream in the west. In 
May-June the MLD remains almost constant and the ILD increases, causing a second pronounced peak BLT 
in July. In the west, instead, the late winter peak is larger or comparable to the summer one. This reveals 
that the eddies experience different conditions as they travel downstream to the northwest. The difference 
seem to be attributable to the March MLD, which in the west decreases faster than in the east.

In order to more easily correlate the ILD, MLD, and BLT seasonal evolution in the NBC-box with surface 
fields of temperature and of atmospheric forcing, the time series in Figure 7 were low-pass filtered with a 
cut-off period of 60 days (Figure 8). As can be immediately seen, the summer maximum of BLT is always 
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Figure 8.  Time series of ILD, MLD, and BLT, normalized net surface heat flux and normalized SST low-pass filtered with a 60 days cut-off filter. Red circles 
depict events when the eddies have large summer BLT; green circles show events when the eddies have large winter BLT; gray circles correspond to the 
remaining eddies which have significant BLT. BLT, barrier layer thickness; ILD, isothermal layer depth; MLD, mixed layer depth; SST, sea surface temperature; 
NBC, North Brazil Current.
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associated to a second deepening of the ILD in June/July, with the MLD shoaling progressively toward the 
peak of summer.

The reasons behind this behavior are various. On one hand, there is freshwater carried in the periphery of 
the NBC rings, what causes mostly the MLD to shoal due to salinity stratification being strong. On the other 
hand, and more importantly, during the second maximum in ILD magnitude, one can observe a plateau in 
the warming trend toward summer, as seen in the SST seasonal evolution. This small plateau (or even in 
some years an actual reduction in SST) is associated to a pronounced reduction in the net heat flux forcing 
the upper ocean. So, the semi-annual cycle in net heat fluxes in the region imparts a tendency for a reduc-
tion in the warming in June-July of the surface and subsurface. As a consequence, the layers below the 
surface remain more homogeneous (and sometimes develop a temperature inversion, when the surface is 
colder than the subsurface) and the ILD criterion (SST − 0.2°C) is met at deeper depths. If the heat fluxes 
would only show an increase toward summer, the continuous warming of the surface and subsurface would 
lead to a fast development of a strong seasonal thermocline, resulting in a small ILD, which together with 
an also small MLD would lead to a vanishing barrier layer. That is seen to happen during September. In 
conclusion, in this region of NBC rings, the seasonal BLT time series match that of the seasonal ILD more 
than that of the seasonal MLD. The reason seems to be the behavior of the net heat fluxes, which show a 
relative minimum during late spring-early summer.

When removing the low-pass filtered version of ILD, MLD, and BLT from the original time series, the re-
maining high-frequency variations have an overall amplitude of about 10 m with strong amplitude events 
occurring in spring reaching 15 m (not shown). Nearly all events correspond to the time when a NBC ring 
was present in the box. It is therefore concluded that, in the region, the passage/presence of eddies is re-
sponsible for the emergence of large amplitude BLT variations. In the following section we will focus on 
those events and search for the mechanisms responsible for the large BLT associated with NBC rings.

4.2.  Mechanisms Behind Short Timescale Events

In the following, we present results regarding the analysis of the summer cases of high-frequency barrier 
layer growth/decay in NBC rings (22 cases).

4.2.1.  Barrier Layer Growth

In the NBC rings area, the evolution of the summer BLT, the period of seasonally large barrier layers, is 
caused mainly by changes in ILD. Figure 9 shows a snapshot of BLT and variables affecting it for a day with 
large BLT in one of the NBC rings (this episode corresponds to one of the red circles in Figure 7).

The largest BLT in the box (about 85 m) is concentrated in the anticyclonic eddy, depicted by the clockwise 
pattern of currents. As most of the NBC rings, this ring forms around 6°N from the NBC retroflection and 
transports to the northwest at its periphery fresh Amazon water after its maximum discharge in May-June. 
The NBC ring itself encloses a mass of comparatively higher salinity water inside its core (SSS around 
34 psu) than at the periphery (SSS around 33 psu) (Figure 9d), with the large BLT not coinciding with the 
locations of fresher surface water. The ILD, with a maximum at the core of the eddy of about 95 m, causes 
the BLT to be maximum at the eddy core (Figure 9b). The MLD in the ring, in turn, is small and does not 
have as high a difference from its surrounding as in the case of ILD.

As discussed earlier, the NBC transport is maximum in June-August and the magnitude of the top 150 m 
transport is large at the NBC in Figure 9e on this day, transporting the fresher water from the river mouth 
to the northwest. Moreover, the ITCZ is at its northernmost location at this time of year, shown by Foltz 
et al. (2004) and Foltz and McPhaden (2008) (their Figure 1). The E-P-R is therefore negative up to 15°N in 
these months on the region of low SSS (Figures 9h and 9d). SST is high in regions of large BLT, as summer 
conditions prevail during the shown snapshot. In summer, the SST is larger in the Atlantic Warm Pool (Liu 
et al., 2012) encompassing this region. All in all, from Figure 9, the spatial distribution of barrier layers re-
semble the spatial distribution of SSS and surface currents. However, the localization of the maximum BLT 
in the core of the NBC eddy is unexpected and will be studied in detail next.

In order to study the mechanisms that are responsible for the growth of the barrier layers, the terms of 
the temperature and salinity vertical gradient balance equations (Equations  3 and  4 in Section  2) were 
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computed on a daily basis and averaged over the day of the event of maximum BLT in the ring (June 30, 
2007) and 2 days before this date (i.e., a 3-days average). With this, we can study the behavior of the physical 
mechanisms (each of the terms in the balance) acting between two days before the event and the event day, 
when the resulting ILD, MLD, and BLT are seen (Figure 10). With the balance terms we are able to quantify 
the contribution of each term in bringing about the change in ILD and MLD needed to explain the observed 
BLT distribution. Since the focus is to explain the high-frequency event, the averaging period is small.

We focus on the changes at a section across which the NBC ring passes. This section is taken at 52.32°W 
(from 5.5°N to 10°N) through the core of the NBC ring seen on June 30, 2007 (Figure 10). From this figure 
(see dashed and solid lines) it is clear that, from the June 28, 2007 to the June 30, 2007, what changed was 
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Figure 9.  Snapshots for June 30, 2007 (summer) of (a) BLT (meters) with vectors showing surface currents, (b) ILD 
(meters), (c) MLD (meters), (d) SSS (psu) with vectors showing surface currents, (e) top 152.5 m horizontal transport 
magnitude (Sv) and direction, (f) salinity (psu) at 82.5 m with corresponding currents, (g) SST (°C) and (h) E-P-R (× 
10−7 m/s). BLT, barrier layer thickness; ILD, isothermal layer depth; MLD, mixed layer depth; SSS, sea surface salinity; 
SST, sea surface temperature.
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a deepening of the ILD, as seen by the change in position of the solid green to solid black curves. When 
looking at the tendency term (Figure 10a), it is clear that co-located with this change there is a positive tem-
perature gradient tendency from the June 28, 2007 to the June 30, 2007 at those particular depths. We note 
that stronger changes are seen elsewhere outside the barrier layer, namely in the eddy peripheries, where 
strong dynamical or thermodynamic changes occur. They are not of relevance for explaining the signal at 
hand, which lies in between the green and black curves.

From Figures 10g and 10h we see that the temperature gradient drastically increased in the southern part 
of the ring in the region where the ILD resides during June 30, 2007. Furthermore, we see a moving apart 
of the isotherms on the southern lateral edge and a downward shift of the isotherms in the region between 
the green and black curves from June 28, 2007 to the June 30, 2007. This corroborates the computed pos-
itive temperature gradient tendency seen in the tendency term. Looking now at the terms in the RHS of 
the balance equations (Figures 10b–10f), the summation of which give the left hand side (LHS) term, one 
sees a large amount of compensation in the patterns. In the region between the green and black curves, the 
dominant mechanisms causing the isotherms to move apart on the south and shift downward in general, in 
the process growing the ILD, are horizontal advection and to a minor extent vertical advection, tilting and 
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Figure 10.  Vertical section at 52.32°W through the core of the NBC ring present on June 30, 2007 in the southern 
NBC-box. Temperature gradient balance terms (a) LHS; (b) Term 1: Horizontal advection; (c) Term 2: Vertical advection; 
(d) Term 3: Tilting; (e) Term 4: Stretching; (f) Term 5: Turbulent mixing, averaged from June 28, 2007 to June 30, 2007, 
units (× 10−7°C/m.s). Temperature vertical gradient (°C/m) with contours being isotherms (°C) are shown for (g) June 
28, 2007 and (h) June 30, 2007. Black (green) solid line correspond to the ILD, black (green) dashed line corresponds to 
the MLD for June 30, 2007 (June 28, 2007).
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stretching (Figures 10b–10e). Turbulent mixing (Figure 10f) balances only partly the above terms, so that a 
residual positive tendency results.

In the presented event, at the lateral edges of the barrier layer, the processes acting are mainly horizontal 
advection (depths of 40–80 m), stretching and tilting. At the bottom of the barrier layer, horizontal advec-
tion and stretching sum up, with mixing partially canceling them. The salinity vertical gradient balance 
equation terms are not discussed in this case since 1) we see negligible changes in MLD and 2) the ILD is 
solely dependent on temperature.

From an inspection of every summer event showing a peak in the BLT time series (all red circles in Fig-
ure 7), it was inferred that when the ILD grows, the temperature vertical gradient tendency between the 
days before and the resulting ILD is mostly positive. From all analyzed summer events, the ILD grows 1) 
when the isotherms move apart (16/22 cases) or 2) when the isotherms move together but the gradient 
deepens (6/22 cases).

4.2.2.  Barrier Layer Decay

To investigate the mechanisms responsible for the decay of the high-frequency barrier layer events in NBC 
rings, we averaged the terms over a period of three days from the day when the BLT is at its peak to the 
day when an afterward significant change in ILD/MLD is seen, that is, when an increase in MLD and/or a 
decrease in ILD occurs in the NBC ring.

The barrier layers in NBC rings get usually thinner when the ILD gets smaller. After examining the decay 
of the barrier layers in all the 22 events it was observed that the temperature vertical gradient tendency is 
mostly negative. Associated to the reduction in ILD, in most cases (17/22 cases, 77.3%) the isotherms are 
moving vertically apart. One of these decay events is shown in Figure 11, occurring from July 11, 2003 to 
July 13, 2003. The vertical section is now taken at 56.12°W through the core of the eddy on July 11, 2003 and 
the change in BLT two days after is studied.

From the temperature vertical gradients with isotherms superimposed in Figures 11g and 11h, it is notice-
able that the ILD shoaled, as the isotherms around the ILD moved vertically apart. In the tendency term 
(LHS) in Figure 11a one sees a negative tendency between the solid black and solid green curves, which led 
to the ILD criterion being met at a shallower depth. The dominating term contributing to the negative tem-
perature gradient tendency is again horizontal advection in the southern part of the eddy and stretching in 
the base of the isothermal layer (Figure 11e). Turbulent mixing once again opposes the horizontal advection 
to the south but contributes slightly to the LHS tendency at the isothermal layer base, as seen in Figures 11b 
and 11f. In this event there is negligible change in MLD compared to ILD.

The decay of the barrier layer happens also due to the deepening of the mixed layer in certain cases. The 
deepening of the mixed layer is associated with a negative salinity vertical gradient tendency, which indi-
cates a reduction in salinity vertical gradient between the MLD of the day of peak BLT in the ring and 2 days 
after. It occurs due to the stretching of isohalines, with in this case horizontal advection, stretching and 
tilting being dominant for deepening the MLD.

In conclusion, we saw in this section that the BLT is at its maximum in the region of NBC rings during the 
summer months of June-August and has a seasonal minimum in fall. The high-frequency, event-like growth 
of the ILD and consequent growth of the barrier layer is associated with a stretching of isotherms most of 
the times. Horizontal advection, tilting and stretching are dominant processes in generating a barrier layer 
in the NBC rings. ILD shoals and reduces the barrier layer again by stretching of isotherms. The evolution 
of barrier layers here is controlled more by the changes in ILD than in MLD.

In winter there are fewer rings with barrier layers in them (green circles in Figure 7). NBC rings in winter 
have larger BLT in their periphery, rather than in the core. The shoaling of the MLD by horizontal advec-
tion and turbulent mixing of freshwater in the periphery of the NBC rings and a tilting of the salinity fronts 
is rather responsible for growing those barrier layers, than an increase in ILD. But in the decay phase, an 
increase of MLD and a decrease of ILD both are equally responsible.
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5.  Barrier Layer Growth and Decay in the NEC Region
The NEC area studied here resides in the southern part of the subtropical gyre, where barrier layers per-
sist almost throughout the year. Figure 12 shows the simulated daily variability of ILD, MLD, and BLT for 
2003–2011 in the NEC-box. During December-March there are thick barrier layers, with the largest extent 
being in February-March. From April-May onwards, the BLT has small amplitudes, increasing slightly in 
July-August, and thinning again in September-November (Figures 5b and 12). As for the NBC area, besides 
the dominant seasonal signal in BLT, there is high-frequency variability superimposed, although of much 
smaller amplitude than in the previous section. Those short events are marked in red circles (29 events) and 
in green circles (7 events), the latter corresponding to events after which the winter BLT is completely erod-
ed. The growth and decay of the seasonal barrier layer and of the individual peak events were investigated 
and results are presented next.

5.1.  Mechanisms Behind the Seasonal Evolution

The ILD and MLD have similar seasonality, being large in winter due to wind- and buoyancy-induced mix-
ing and presenting a secondary maximum in May-July. The MLD in winter overlies, however, a relatively 
deep isothermal layer, giving rise to the large barrier layers in winter (Figure 12, blue curve). During the 
secondary maximum, ILD and MLD roughly have the same behavior, leading to reduced or almost vanish-
ing barrier layers.
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Figure 11.  Same as Figure 10, but for a vertical section at 56.12°W through the core of the NBC ring present on July 
11, 2003. Balance terms are averaged from July 11, 2003 to July 13, 2003. Black (green) solid lines correspond to the ILD, 
black (green) dashed lines to the MLD for July 11, 2003 (July 13, 2003).
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As seen so far in Figures 3, 5b, and 12, the maximum seasonal BLT is in winter. Figure 13 presents a vertical 
section at 53.72°W (between 15°N and 20°N) of the salinity and temperature gradient balance terms. They 
are averaged from November to February in order to retain the main contribution at the seasonal scale (with 
the contribution from all small scale events being averaged out). The black and green curves in the figure 
show how the MLD and ILD change from November, when the barrier layer just starts to form, to February, 
when there is a maximum BLT.

The BLT growth from November to February is due to a large ILD growth and a comparatively small MLD 
growth (as depicted, respectively, by the solid, and dashed lines in Figure 13). The isothermal layer deepens 
because of turbulent mixing, as this term contributes most to the positive temperature vertical gradient 
tendency between the ILD in November and February (Figures 13b and 13l). In our opinion, this is due to 
winter convective mixing due to cooling or wind forcing. On the other hand, the salinity gradient tendency 
shows only small values between the mixed layers in November and February. In fact, the strong turbulent 
mixing in the salinity case is balanced by the tilting of the salinity field (Figures 13g and 13k) and the re-
sultant small signal in the tendency mostly is a consequence of horizontal/vertical advection (Figures 13c 
and 13e).

There is a somehow abrupt seasonal decay of the barrier layers from March to April. We see that the barrier 
layers are destroyed due to a shallowing of the ILD and MLD, that is the opposite situation compared to 
the slow growth during fall and winter. The negative temperature vertical gradient tendency between the 
ILD in March and April is again due to a contribution of turbulent mixing of the warmer water on top in 
spring, which destroys the barrier layer during that season. The MLD reduces due to tilting and stretching 
and moderately due to turbulent mixing (not shown).

After the erosion of the winter BLT in spring, a comparatively thinner BLT grows from May to July and 
decays in September (Figure 12). In summer, compared to winter, increased surface heating stratifies the 
surface layer, reducing the ILD. As in the NBC area, a semi-annual behavior of net heat flux, SST and wind 
stress magnitude exists in this region. There is a reduction in SST due to the forcing from the reduction in 
net heat flux and a second peak in wind stress magnitude in July. Convective and wind mixing therefore 
cause the small increase in ILD and MLD. Turbulent mixing of temperature mainly contributed to the pos-
itive temperature gradient between the ILDs in May and July (not shown). Additionally, during summer 
the maximum spatial extent of spread of the freshwater from the Amazon and Orinoco rivers occurs and 
the ITCZ reaches its northernmost position. The seasonal maximum transport of NBC in July, carrying the 
above fresher water northwards, and the seasonal maximum NEC in late-summer getting salty water from 
the open ocean to the west, cause tilting of salinity fronts and shoal the MLD. The shoaling MLD over the 
slightly deepened ILD gives rise to this thin summer BLT. Alternatively, the increase in ILD due to penetrat-
ing solar radiation, with MLD maintained at constant depth in summer, could also cause this thin barrier 
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Figure 12.  Daily time series of area-averaged ILD (black), MLD (yellow) and BLT (blue) (meters) in the NEC region (14°N–20°N, 46°W–58°W). Red circles 
denote the large peak events of BLT. Green circles indicate the events when the winter barrier layer peaks before getting eroded in spring. BLT, barrier layer 
thickness; ILD, isothermal layer depth; MLD, mixed layer depth; NEC, North Equatorial Current.
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layer to occur (Mignot et al., 2012). Turbulent mixing and tilting shoal the ILD from July to September, 
causing the thin summer BLT to decay.

5.2.  Mechanisms Behind Short Timescale Events

5.2.1.  Barrier Layer Growth

By closely inspecting the daily evolution in the simulation, it was seen that during September-November, 
horizontal advection of the existing runoff and precipitation freshwater takes place up to 23°N. As seen in 
the seasonal evolution, the ILD and MLD start both to become deep in late fall, but with the MLD change, 
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Figure 13.  Vertical section at 53.72°W through the maximum climatological BLT in February of salinity and 
temperature gradient balance terms: (a), (b) LHS; (c), (d) Term 1: Horizontal advection; (e), (f) Term 2: Vertical 
advection; (g), (h) Term 3: Tilting; (i), (j) Term 4: Stretching; (k), (l) Term 5: Turbulent mixing (units are × 10−7 psu/m.s 
and × 10−7°C/m.s, respectively). Terms are averaged from November to February. Black (green) solid line is ILD, black 
(green) dashed line is MLD for February (November). BLT, barrier layer thickness; ILD, isothermal layer depth; MLD, 
mixed layer depth; LHS, left hand side.
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in comparison to ILD, staying small. In October-January, the formation of barrier layers at the fresher side 
of the large-scale salinity front occurs in the form of faint filaments. The resulting BLT becomes maximum 
in February-March at 15°N–18°N. We now focus on those small-scale and highly frequent events superim-
posed on the seasonal evolution.

Figure 14a presents the BLT from one of the peak events (red circles in Figure 12) in February 17, 2009. 
The figure shows the BLT distribution in the middle of the winter season, when it is growing to reach its 
maximum extent. It can be seen that barrier layers occur on the lower SSS side of the large-scale salinity 
front (compare Figures  14a and  14d). From December to February, E-P-R is strongly positive from 5°N 
northwards (Figure 14h), meaning more evaporation in the place of this barrier layer than freshwater flux 
by precipitation. In fact, during this time of year, the ITCZ is located south of this region, and there are dom-
inant easterly trade winds (Foltz et al. (2004) and Figure 1 of Foltz and McPhaden (2008)), which cause the 
large evaporation in this region. From November to March around 15°N, the salinity in the upper ocean is 
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Figure 14.  Same as Figure 9, but for a winter event of barrier layers in the NEC region in February 17, 2009. NEC, 
North Equatorial Current.
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higher (Figure 14d) and water is colder (Figure 14g) as compared to summer (Figures 9d and 9g). Therefore, 
the cool, saline, dense surface water sinks in convective mixing processes. This, along with the wind stirring, 
causes the larger ILD and MLD in winter than in summer.

BLT of up to 40–80 m is present from 13°N to 22°N, with a maximum being located at 15°N–18°N. Those 
barrier layers align in an interesting pattern of very localized variability, in general terms, confined to the 
salinity frontal region. The ILD is deep (90–120 m) in this region and time of year (Figure 14b). The MLD 
is shallow, around 20–40 m, in exactly the locations where there are barrier layers present (Figure 14c), 
therefore also presenting the highly spatially variable pattern.

The event of barrier layer growth from February 14, 2009 to February 17, 2009 is illustrated in Figures 15 
and 16. The 40 m thick barrier layer present on February 14, 2009 extending from 55°W to 53°W in this sec-
tion along 17.69°N, grows to 60 m until February 17, 2009 due to dominantly a shallowing of the MLD dur-
ing those 4 days (see dashed curves in Figures 15a, 16a, and 16b). The thinning of the mixed layer causes the 
BLT to be larger and is associated with a positive salinity vertical gradient tendency, meaning an increase 
in the salinity vertical gradient from 3 days before until the day of the peak BLT (Figure 15a). A similar, but 
weaker, pattern is seen in the temperature gradient tendency.

Looking at the individual contribution of salinity and temperature for the density stratification (Fig-
ures 16c–16e), it can be noticed that once again the MLD is mainly controlled by salinity, as the salinity 
stratification almost entirely match that of density. It can be also seen that the isohalines mostly move apart 
(stretch) and shift upwards during those 4 days (Figures 16a and 16b), which is the general case in 18/29 
cases (62.1%).

Analyzing now the terms of the balance equations, the shifting upwards of the salinity gradient, seen in 
the tendency as a dipolar structure surrounding the MLD from February 14, 2009 (Figure 15a), can almost 
entirely be explained by horizontal advection (Figure 15c) and tilting (Figure 15g). Vertical advection and 
stretching are small and turbulent mixing of salinity acts to reduce the tilting and horizontal advection 
mechanisms. On the other hand, the temperature gradient tendency is entirely determined by horizontal 
advection, demonstrating that the tilting mechanism indeed is changing mostly salinity, since that is the 
variable possessing strong fronts in the region. So, despite the fact that evaporation exceeds river runoff 
and precipitation in this region (Figure 14h), there are thick barrier layers dominantly formed in this NEC 
region due to a tilting mechanism.

At the surface, there is northward horizontal advection of fresher waters from the Amazon river outflow 
and ITCZ precipitation by the NBC and associated rings, which are prevalent throughout the year and by 
equatorial divergence in fall and winter (Mignot et al., 2007). Indeed, Figure 14d shows the SSS and the cur-
rents at the surface pointing to a northwestward movement in the location of maximum BLT (Figure 14a). 
The Salinity Maximum Water (SMW) also exhibits a strong seasonality, with maximum subduction and 
export of the “salt river” toward the Caribbean Sea occurring in winter-spring (Blanke et al., 2002; Schmitt 
& Blair, 2015, Figure 4 in Qu et al., 2011). Blanke et al. (2002) pointed out that most of the flow from the 
center of the gyre enters the Caribbean Sea (8.2 Sv, 73%) and the peripheral salty water (1.1 Sv, 10%) reach 
10°N. That means, the high salinity water is transported equatorward out of the formation domain in the 
subtropical gyre by the southwestward-oriented NEC.

In Figure  14f we see the large-scale southwestward flow and SMW spreading southwestward at 82.5  m 
which is a depth inside the ILD on this day. The saline water >37 psu is seen to penetrate the ILD depth 
range and in the process raise the MLD (Figures 16a and 16b). This explains the horizontal advection neg-
ative contribution to the salinity gradient tendency (Figures 15a and 15c). But a vertical shear is created 
when the southwestward moving SMW subducts and penetrates into the isothermal layer, and, above that, 
a fresher northward flow is present. The shear in turn promotes a tilting of the vertical salinity front, leading 
to the positive signal in the tendency term (Figures 15a and 15g).

Turbulent mixing of fresher water homogenizes the water column near the surface above MLD thus de-
creasing the salinity vertical gradient (Figure 15k), but below and at the MLD the turbulent mixing of the 
salinity increases the salinity gradient as the saltier water from below the MLD is entrained into the MLD, 
also reducing the MLD and contributing to the growth of BLT.
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Figure 15.  Vertical section at 17.69°N through the maximum BLT present on February 17, 2009 of salinity and 
temperature gradient balance terms: (a), (b) LHS; (c), (d) Term 1: Horizontal advection; (e), (f) Term 2: Vertical 
advection; (g), (h) Term 3: Tilting; (i), (j) Term 4: Stretching; (k), (l) Term 5: Turbulent mixing, averaged from February 
14, 2009 to February 17, 2009 (units are × 10−7 psu/m.s and × 10−7°C/m.s, respectively). Black (green) solid lines 
correspond to the ILD, black (green) dashed lines correspond to the MLD for February 17, 2009 (February 14, 2009). 
BLT, barrier layer thickness; ILD, isothermal layer depth; MLD, mixed layer depth; LHS, left hand side.
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In conclusion, barrier layers in the NEC region are formed in an area of 
relatively uniform temperature, due to mainly tilting of salinity fronts. 
Barrier layers exist on the lower SSS side where the MLD is around 20 m 
adjacent to the higher SSS side where the MLD is around 90  m (Fig-
ures  14a,  14c and  14d). This is consistent with the results of Katsura 
et al. (2015) for the subtropical Pacific and Veneziani et al. (2014) for sub-
tropical south Atlantic. If a strong shear does not exist above the ILD base 
due to a weaker northward flow in some areas, simply the convergence 
of the two water masses may also cause the salinity gradient to intensify. 
The heavy dense salty water could subduct into the isothermal layer at 
this region of convergence, thus also shoaling the MLD and forming a 
barrier layer. This process is explained by Vialard and Delecluse (1998) 
for barrier layers in the Pacific. In the total 36 events analyzed with our 
simulation, we found that the NEC BLT grew due to a shoaling of MLD 
with negligible or no change in ILD.

5.2.2.  Barrier Layer Decay

In order to study the decay of the above described barrier layers, the aver-
age of the salinity and temperature gradient balance terms are now taken 
for the day of the peak BLT in each of the events encircled in the BLT 
time series and few days after the peak, when we see the barrier layer 
getting thinner.

In the shown case of January 06, 2006 (Figure 17), the mixed layer deep-
ens during the course of the averaged 4 days (see depth change of black 
to green dashed curves). The pattern of salinity gradient tendency is now 
the opposite of the one seen before when analyzing the growth of BLT 
in the region. The deepening of the MLD is associated with a negative 
salinity vertical gradient tendency (blue in Figure 17a) above the result-
ing MLD (green curve) and below it to a positive tendency. This reveals 
a downward shift of the salinity gradient (see change from Figures 17g 
to 17h) and an increase in its magnitude. In fact this is happening in the 
majority of the cases identified (18/29 times, 62.1%).

As in the case of the barrier layer growth, the dominant terms contribut-
ing to the tendency are still horizontal advection and tilting (Figures 17b 
and 17d), but in the decay phase, turbulent mixing (Figure 17f) is funda-
mental. Tilting is now being completely counteracted by turbulent mix-
ing, so that in the end the tendency above the MLD is negative.

In conclusion, we saw in this section that the BLT is maximum in the 
NEC region during the winter months of February-March and has a sea-
sonal minimum in April-May. Tilting followed by stretching, horizontal 
advection and turbulent mixing are the dominant mechanisms that most-
ly stretch the isohalines to reduce the MLD, generating a barrier layer in 
this region. The barrier layers here decay mostly when the MLD deepens 
due to the compression and a downward shift of isohalines brought about 

by turbulent mixing and horizontal advection. On a seasonal perspective, the barrier layer grows due to 
slower deepening of MLD and comparatively faster deepening of ILD in winter and is completely eroded 
in spring by shoaling of ILD due to temperature stratification change. Specifically, during this increase in 
temperature stratification, there is compression of isotherms due to turbulent surface heat mixing (known 
from examining (not shown) the events in green in Figure 12).
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Figure 16.  Vertical section at 17.69°N through the maximum BLT on 
February 17, 2009. Salinity vertical gradient (psu/m) with isohalines (psu) 
superimposed for (a) February 14, 2009 and (b) February 17, 2009. Density 
(c), salinity (d) and temperature (e) stratification (× 10−4/s2) for February 
17, 2009 are shown. Black (green) solid lines correspond to the ILD, black 
(green) dashed lines to the MLD for February 17, 2009 (February 14, 2009). 
BLT, barrier layer thickness; ILD, isothermal layer depth; MLD, mixed 
layer depth.
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6.  Summary and Concluding Remarks
The results shown indicate that the northwestern tropical Atlantic has quasi-permanent barrier layers pres-
ent in two localized regions: The NBC rings area and the region along the NEC, having different seasonality 
of barrier layers and different mechanisms behind their growth and decay.

In this study, the NBC rings have been identified to play a major role in advecting conditions that support 
the existence of barrier layers toward the northwest, by transporting freshwater originating from the Ama-
zon and Orinoco rivers and from ITCZ precipitation. The dynamics intrinsic to the NBC rings and intrinsic 
to their formation, also are per se capable of growing barrier layers within the rings. All the NBC rings gen-
erated in the analyzed simulation have barrier layers either in their core or in their periphery during some 
period of their lifetime. According to our findings, the BLT is maximum in the ring's core and periphery in 
summer. There are thin barrier layers in the core and periphery of the rings in fall. The BLT in the NBC rings 
during winter is larger at the periphery than at the core of the ring.

The localized barrier layers larger than 80 m inside NBC rings during late June to July (summer) are mainly 
due to a deepening of the ILD by a stretching of the isotherms (Figure 10), caused by horizontal tempera-
ture advection, tilting of temperature fronts and stretching mechanisms. The decay of the BLT in the NBC 
rings is also mainly due to stretching of the isotherms (Figure 11) due to horizontal temperature advection, 
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Figure 17.  Vertical section at 14.23°N through the maximum BLT of January 06, 2006. Salinity gradient balance terms 
(× 10−7 psu/m.s) are averaged from January 06, 2006 to January 10, 2006. The salinity vertical gradient (psu/m) with 
isohalines (psu) superimposed are shown for (g) January 06, 2006 and (h) January 10, 2006. Black (green) solid lines 
correspond to the ILD, black (green) dashed lines to the MLD for January 06, 2006 (January 10, 2006).
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stretching, tilting and turbulent mixing mechanisms which cause the ILD to reduce. The seasonal ILD 
increase in June to July in the NBC rings region is due to the reduction in the net heat flux forcing in the 
middle of increasing net heat forcing toward summer, causing a short period of reduction in SST, which 
brings about an increase in ILD which gets isolated in the NBC rings. Apart from that, the ILD increases and 
reduces moreover due to the internal eddy dynamics as explained above.

Amazon freshwater advected by NBC rings have been referred to before in Ffield (2007) but the barrier 
layers in those eddies were not studied. Overall, the occurring large summer BLT in NBC rings seems to be 
determined by changes in ILD rather than changes in MLD. This constitutes a novel finding in the present 
work.

The seasonal maximum in barrier layer presence in the NEC region further to the north is in winter and the 
minimum in spring (Figures 5b and 12), a result that is consistent with previous studies (Balaguru, Chang, 
Saravanan, & Jang, 2012; Breugem et al., 2008; Mignot et al., 2012; Sprintall & Tomczak, 1992). Winter con-
vection and turbulent mixing cause the deepening of MLD and ILD in winter, but the rate of deepening of 
MLD is smaller than that of ILD. The largest barrier layers (>90 m) form and grow in winter during January 
to early March due to a reduction in MLD caused by stretching apart of the isohalines (Figure 16), over the 
deeper seasonal ILD. Tilting of salinity fronts caused by the northward and northwestward flow of fresh 
equatorial water at the surface by NBC, NBC eddies and Ekman currents, and the equatorward flow of the 
SMW at the subsurface “entering” into the isothermal layer, was identified to be dominant in the growth 
of barrier layers there (Figure 15). This corroborates recent studies by Katsura et al.  (2015) and Katsura 
and Sprintall (2020), in which tilting of salinity fronts is suggested to be the main mechanism acting in the 
subtropical Pacific and eastern tropical north Pacific in forming the barrier layers there. In the subtropical 
Atlantic it was hypothesized earlier by Sprintall and Tomczak (1992) and Sato et al. (2006). Apart from tilt-
ing, we found that stretching, horizontal advection and turbulent mixing also contribute in the formation 
of the barrier layers in the NEC region.

It was found that the barrier layers in the NEC region get thin mainly because of compression and shifting 
down of isohalines (Figure 17), due to turbulent mixing and horizontal advection, which cause the mixed 
layer to deepen. The winter BLT is completely eroded in spring due to the shallowing of the isothermal 
and mixed layers by surface temperature stratification, a finding which corroborates results from (Mignot 
et al., 2012). The ILD shoals in spring by compression of isotherms due to turbulent mixing. In summer 
there is thin BLT due to the shoaling of MLD by again mainly tilting of salinity fronts and a slight deepening 
of ILD due to turbulent heat mixing. This thin BLT decays in September due to shoaling of the ILD. Overall, 
the formation and evolution of barrier layers in the NEC area is mostly depending on changes in the MLD.

We have seen that, in general, the magnitudes of all the mechanisms responsible for the growth and evolu-
tion of barrier layers are larger in the NBC rings in comparison to the magnitudes in the NEC region. This 
may be because the region south of 13°N close to the western boundary has higher magnitude of temper-
ature and freshwater forcing and stronger western boundary currents and eddy dynamics. Also, there is 
stronger dynamics and gradients at the river plume edge. Second, though the seasonal cycles of the ILD and 
MLD are different in the different regions, it was seen that the reduction in net heat flux, forcing the SST, 
played an important role in cooling the surface and thus giving rise to convective mixing at the surface. This, 
along with mixing due to strong winds, caused the ILD and MLD to deepen. The semi-annual behavior of 
wind stress and of the net heat flux are important factors in determining the seasonal variability of ILD and 
MLD in both the regions in the western tropical Atlantic.

This work highlights that barrier layers are localized phenomena, which can form and grow at times solely 
because of ocean dynamics, such as surface and subsurface currents, subduction, fronts, eddies, and fila-
ments, without the presence of a local surface freshwater influx. With the growing availability of compre-
hensive observations of ocean temperature, salinity and zonal, meridional and vertical currents, resolved 
spatially and in depth and also in coastal regions, it will be interesting to apply our findings from the simu-
lation to observations. At present, it is only possible to study these detailed mechanisms of growth/decay in 
four dimensions with high resolution model outputs.

Our results give an insight into the mechanisms governing the formation, evolution and erosion of the 
quasi-permanent barrier layers in the western tropical Atlantic. Extending this study to a longer period 
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could enhance the robustness of our conclusions. The growth and decay mechanisms discussed here can 
be translated into other regions of the World Ocean, where similar physical conditions for barrier layer 
existence are prevalent, for example, in the subtropical and equatorial Pacific, in other river plume regions, 
other areas in the tropics which receive ITCZ rainfall and in farthest northern or southern latitudes where 
the freshwater influx is due to ice melt.

Data Availability Statement
The observational EN4.2.1 data set are available from the Met Office Hadley Center website (https://www.
metoffice.gov.uk/hadobs/en4) and the barrier layer climatology is available from the IFREMER website 
(http://www.ifremer.fr/cerweb/deboyer/mld). The model results presented in this work can be retrieved 
from https://www.doi.org/10.5281/zenodo.4247363.
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