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Multiple Bragg reflection by a thick mosaic crystal.
II. Simplified transport equation solved on a grid
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The generalized Darwin–Hamilton equations [Wuttke (2014). Acta Cryst. A70,

429–440] describe multiple Bragg reflection from a thick, ideally imperfect

crystal. These equations are simplified by making full use of energy

conservation, and it is demonstrated that the conventional two-ray Darwin–

Hamilton equations are obtained as a first-order approximation. Then an

efficient numeric solution method is presented, based on a transfer matrix for

discretized directional distribution functions and on spectral collocation in the

depth coordinate. Example solutions illustrate the orientational spread of

multiply reflected rays and the distortion of rocking curves, especially if the

detector only covers a finite solid angle.

1. Introduction

In a preceding paper, designated as Part I (Wuttke, 2014a),

multiple Bragg reflection from a thick, ideally imperfect

crystal was studied mainly by analytical means. The planar

two-ray transport equations of Darwin (1922) and Hamilton

(1957) were generalized to account for out-of-plane trajec-

tories. Expanding these equations into a recursive scheme led

to some asymptotic results, but did not provide a practicable

solution algorithm for the generic case with crystals of finite

thickness. Reflection probabilities depend strongly on propa-

gation directions, and with each reflection the next reflection

probability can vary by orders of magnitude. This makes the

transport equations ill conditioned, and straightforward

Monte Carlo simulations inefficient and unreliable.

In this paper, a completely different solution method is

presented. Instead of following individual rays through

forward and backward reflections, we study reflection-order-

independent fluxes (current distributions) I as a function of

propagation direction k̂k and penetration depth z. They are

governed by a system of linear ordinary differential equations

in z with separated boundary conditions [equations (1) and (4)

below]. We present spectral collocation as a practicable solu-

tion method. Solutions are iterated with increasing numbers of

collocation points until a required accuracy is reached. Our

algorithm is fast enough to be used interactively or/and within

complex instrument simulations.

This paper can be read independently of Part I. We re-

derive most of the theory, making it simpler and more generic.

By consequential use of energy conservation, we get rid of one

phase-space dimension. By positing translational invariance

along the surface of the mosaic plate, two other dimensions

are eliminated. This reduction to three argument dimensions is

the precondition for an efficient numeric solution on a grid.
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Large parts of the theory are now formulated coordinate

free. Block normals ĜG that fulfill the Bragg condition are

parameterized by a polar instead of a Cartesian coordinate;

this eliminates an apparent singularity that forced us in Part I

to exclude near-backscattering from consideration. Further-

more, the transport equations are simplified and generalized

by removal of any reference to two distinct beams.

While all worked-out examples assume a simple geometry

with the mean crystallite normal collinear to the mosaic

normal, our formalism can be used with any other orienta-

tional distribution. One application we have in mind is beam

deflection by a rotating stack of tilted mosaic crystals of highly

oriented pyrolytic graphite as used in the phase-space trans-

form chopper of third-generation neutron backscattering

spectrometers (Meyer et al., 2003; Frick et al., 2006; Wuttke et

al., 2012).

In Section 2, we derive the mathematical model to be

studied. Discrete k̂k grids are chosen in Section 3. In Section 4

our numeric solution method is presented and verified against

the two-ray model. Example solutions are shown in Section 5

and conclusions drawn in Section 6. Some derivations,

computational details and special cases can be found in

Appendices A–D. The supporting information provides the

source code and additional documentation of the software

MultiBragg developed along with this work.

2. The mathematical model

2.1. Crystal model and current distribution

Following Darwin (1922), a mosaic crystal is modeled as an

assembly of perfectly crystalline blocks that are to some

degree orientationally disordered. In an ideally imperfect

crystal every block is so thin that it reflects at most a small

fraction of the incident beam. Primary extinction and multiple

reflections within a block can be neglected. As in Part I, we

consider a thick, ideally imperfect crystal, consisting of so

many block layers that secondary extinction and multiple

reflections are of practical importance.

Since reflections from different blocks add incoherently, the

adequate description level is classical transport theory. Our

task is to compute the stationary flux (current distribution)

Iðk; rÞ. Only elastic diffraction shall be fully accounted for.

Inelastic scattering will be dealt with by a loss term. Accord-

ingly, the wavenumber k is a conserved quantity, and can

therefore be dropped from the argument list of Iðk; rÞ, leaving

over a dependence on the propagation direction k̂k.

As in Part I, we concentrate on a mosaic crystal in the form

of a slab that can be approximated as an infinite plate (Fig. 1).

Altogether the flux is projected from six-dimensional phase

space to the three-dimensional function Iðk̂k; zÞ. This opens the

possibility of solving the boundary problem with manageable

effort on a grid, thereby overcoming the limitations of the

Monte Carlo method used in Part I.

The price is that we have to neglect the lateral displacement

of the beam, which is correlated with the reflection order,

which is correlated with the directional spread. At least in the

above-mentioned application scenario (graphite deflector in a

neutron spectrometer, far from grazing incidence), this is

harmless: the mean lateral displacement is at most a low

multiple of the crystal thickness, which is a few millimetres,

and therefore corresponds to a fraction of a degree at the next

optical element, located 2 m downstream, whereas the

deflector crystals have a rocking width of several degrees.

2.2. Transport equation and boundary conditions

The flux obeys the transport equation (Sears, 1989, equation

8.1.24),

ðk̂kz@z þ AÞIðk̂k; zÞ � B � Iðk̂k; zÞ ¼ 0; ð1Þ

a stationary Boltzmann equation with drift and scattering

terms. The linear operator B describes gains by Bragg

diffraction,

B � Iðk̂kÞ :¼
R

d2k̂k0�ðk̂k; k̂k0ÞIðk̂k0Þ; ð2Þ

where d2k̂k0 is the solid-angle differential associated with the

integration variable k̂k0. The kernel � is reviewed below in

Section 2.3. The attenuation operator A is a multiplicative

factor,

Aðk̂kÞ :¼
R

d2k̂k0�ðk̂k0; k̂kÞ þ �a: ð3Þ

The integral accounts for losses by diffraction. The constant �a

stands for absorption, inelastic scattering, diffuse scattering

and diffraction by parasitic reflections (Dorner & Kollmar,

1974).

To specify boundary conditions, we consider an infinite

plate of thickness d, extending from z ¼ 0 to z ¼ d. The

incident flux Iin comes from the half space z < 0. Accordingly,

the boundary conditions are

Iðk̂k; 0Þ ¼ Iinðk̂kÞ for k̂kz > 0;

Iðk̂k; dÞ ¼ 0 for k̂kz < 0:
ð4Þ

Our task is to compute the reflected and the transmitted flux

Ireflðk̂kÞ :¼ ½k̂kz < 0�Iðk̂k; 0Þ;

Itransðk̂kÞ :¼ ½k̂kz > 0�Iðk̂k; dÞ
ð5Þ
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Figure 1
Bragg reflection by a crystalline block within a mosaic plate. Block
normals ĜG are distributed around ĤH, as indicated by the blue cone. The
angular width of the distribution is grossly exaggerated; typically, it is a
few degrees only. Here, and in all specific examples in this work, we have
chosen ĤH to be collinear with the real-space depth direction ẑz. Much of
our theory also holds for ĤH 6k ẑz.



with the indicator function [true] = 1, [false] = 0.

In Part I, we had divided Iðk; rÞ into two functions, I�,

representing the forward and backward traveling beam.

Accordingly, the transport equation consisted of two coupled

differential equations, generalizing the two-ray Darwin–

Hamilton equations of the conventional planar approxima-

tion. That notation was useful for describing the reflection-

order expansion [Section 3.2 of Part I; see also Grabcev &

Stoica (1980)] as a zigzag walk (Wuttke, 2014b) with a strictly

alternating sign of kz. To distinguish two beams we had to

exclude the case of grazing incidence. The notation (1), with

just one function I defined for all k̂k, is simpler, more generic

and more convenient for our present purpose. Only later,

when we choose a grid in k̂k to approximate I by a histogram,

will we take into consideration the effective two-beam

geometry.

2.3. Reflection kernel

The transport kernel in (2) is a transfer function that gives

the probability per unit length �ðk̂k0; k̂kÞd2k̂k0 for a particle with

incident direction k̂k to be scattered into an infinitesimal solid

angle d2k̂k0 around the outgoing direction k̂k0. It is a sum

�ðk̂k0; k̂kÞ ¼
P
hkl

�hklðk̂k
0; k̂kÞ ð6Þ

over single-reflection transfer functions, given by an integral

�hklðk̂k
0; k̂kÞ ¼

R
d2ĜGWhklðĜGÞ�

block
hkl ðk̂k

0; k̂k; ĜGÞ ð7Þ

over the block transfer function �block
hkl (47) derived in Section

A1. The scattering directions ĜG depend on the block orien-

tations, and have the statistical distribution Whkl.

In certain situations, multiple diffraction by multiple Bragg

reflections can be of practical importance (Ohmasa et al.,

2016). Nonetheless, to simplify our exposition, we shall

consider only one pair of reflections, hkl and h k l. With the

joint distribution

WðĜGÞ :¼ WhklðĜGÞ þWh k lðĜGÞ ð8Þ

we can merge (6) and (7) into the total transfer function

�ðk̂k0; k̂kÞ ¼
R

d2ĜGWðĜGÞ�blockðk̂k
0; k̂k; ĜGÞ: ð9Þ

An integration, explained in Section A2, reduces the total

transfer function (9) to

�ðk̂k0; k̂kÞ ¼ � cos �B

R2�
0

dtW½ĈCðk̂k; tÞ��2½k̂k0 � ĵjðk̂k; tÞ�: ð10Þ

This simplifies in several ways equation I,25 [denoting equa-

tion number (25) in Part I], as discussed in Section A3. We

now define the symbols �, �B, ĈC and ĵj introduced with (10).

The prefactor

� :¼
ð2�Þ3jFhklj

2

2V2k3 cos �B sin �B

ð11Þ

depends on the unit-cell volume V and structure factor Fhkl. It

has the dimension of an absorption coefficient, i.e. inverse

length. The Bragg angle �B is constant because we consider a

fixed reflection hkl and a constant radiation wavenumber k.

Both �B and � are independent of the sign of the reflection.

The outgoing beam direction k̂k0 is given by the deflection

function

ĵjðk̂k; tÞ :¼ k̂k� 2 sin �BĈCðk̂k; tÞ: ð12Þ

The parametric curve ĈCðk̂k; tÞ with t 2 ½0; 2�� contains all

possible scattering directions ĜG that satisfy the Laue–Bragg

condition

ĜGk̂k ¼ sin �B ð13Þ

for an incoming wave direction k̂k.

To construct ĈC, we choose an orthonormal base fêex; êey; êezg

for the reciprocal-space vectors k̂k and ĜG. Note that êez is not

required to coincide with the plate normal ẑz (though it does so

in our code and our worked-out examples). Choose a rotation

matrix Rk so that k̂k ¼ Rkêez (for readability, we omit carets in

subscripts). The circle of possible scattering directions ĜG can

then be written

ĈCðk̂k; tÞ :¼ Rk

cos �B cos t

cos �B sin t

sin �B

0
@

1
A ¼ RkĈCðêez; tÞ: ð14Þ

It is straightforward to verify that ĜG ¼ ĈCðk̂k; tÞ, for all t, satisfies

(13).

The condition k̂k ¼ Rkêez leaves Rk underdetermined,

allowing for an arbitrary rotation around êez. This is irrelevant

because the origin of the polar coordinate t is arbitrary, and

ĈCðk̂k; tÞ only appears under integrals that run from t ¼ 0 to 2�.

2.4. Specializing the distribution of scattering directions

For most mosaic crystals, W is isotropic, i.e. invariant under

rotation around the mean block normal ĤH. Thereby WðĜGÞ

depends only on ĜGĤH.

All the following theoretical developments, including the

numeric methodology of Section 4, are independent of what

isotropic distribution we choose for WðĜGÞ. For our numeric

examples, however, we need to be more specific. In certain

cases (Ohmasa & Chiba, 2018), W can be a ring-like distri-

bution. Here we concentrate on 00l reflections, where scat-

tering vectors are parallel to the block normals so that WðĜGÞ is

a disc-like distribution. As is customary, we will choose a

Mises–Fisher (MF) distribution (a Gaussian on the unit

sphere),

W�ðhklÞðĜGÞ ¼
1

2��2CMFð�Þ
exp �

ðĜG� ĤHÞ2

2�2

" #
ð15Þ

with the normalization constant CMFð�Þ ¼ 1� expð�2=�2Þ.

Usually, there is negligible overlap between Whkl and Wh k l so

that the sum (8) can be approximated as

WðĜGÞ ’
1

2��2CMFð�Þ
exp
�1þ jĜGĤHj

�2

 !
: ð16Þ
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A mosaic with ĤH ¼ ẑz shall be called normal oriented. Some

consequences of the rotational symmetry around ẑz are

discussed in Appendix C.

In all numeric examples we assume an isotropic, normal

oriented mosaic, and we choose êez :¼ ẑz. Unless differently

stated, the standard deviation is � = 2.5�. The orthographic

projection of the circle ĈCðk̂k; tÞ into the êex; êey plane is an ellipse.

Fig. 2 shows examples and puts them in relation to WðĜGÞ.

2.5. Parameterization

In our numeric examples, we will characterize crystals by

two dimensionless constants that have a simple intuitive

meaning in the two-ray limit (68) for a collimated beam with

incident angle �in ¼ �B. The first of these parameters is the

opacity

� :¼
d

sin �B

�Gð0Þ þ �a

� �
; ð17Þ

where Gð0Þ ¼ 1=½ð2�Þ1=2��. The second dimensionless crystal

parameter is the relative reflectivity

� :¼
�Gð0Þ

�Gð0Þ þ �a

: ð18Þ

These parameters will enter the following derivations through

the products

d� ¼ sin �B

��

Gð0Þ
ð19Þ

and

d�a ¼ sin �Bð1� �Þ�: ð20Þ

Note that �;�a are not pure material constants but also

depend on the wavelength of the used radiation. So, in prin-

ciple, one could tune �; � to almost arbitrary values by suitable

combinations of wavelength and crystal thickness.

3. Discretization in k̂k

3.1. Binning

So far, we have assumed that Iðk̂k; zÞ as a function of k̂k is a

distribution on the unit sphere. We now request that the

relevant regions of the unit sphere be partitioned in M

bins, and we replace Iðk̂k; zÞ by M histograms IrðzÞ with

r ¼ 1; . . . ;M. Each histogram represents a current that is

defined as flux integral over the solid angle ��r,

IrðzÞ :¼
R

��r

d2k̂k Iðk̂k; zÞ: ð21Þ

Combining this with the definition (2) of the operator B, we

get

ðB � IÞr ¼
R

��r

d2k̂k B � Iðk̂k; zÞ

¼
R

��r

d2k̂k
PM
s¼1

R
��s

d2k̂k0�ðk̂k; k̂k0ÞIðk̂k0; zÞ: ð22Þ

We assume that � is a sufficiently smooth function of k̂k0 so that

it can be drawn in front of the second integral. We obtain

ðB � IÞr ’
PM
s¼1

BrsIsðzÞ ð23Þ

with

Brs :¼
R

��r

d2k̂k �ðk̂k; k̂ksÞ: ð24Þ

The attenuation factor, discretized in analogy with (24), is

Ar :¼
PM
s¼1

Bsr þ �a ð25Þ

and the transport equation (1) takes the form

ðk̂kr;z@z þ ArÞIrðzÞ �
PM
s¼1

BrsIsðzÞ ¼ 0: ð26Þ

In this paper, we will not investigate errors introduced by the

approximation (23). It is up to practitioners to choose

appropriate histogram grids so that both discretization errors

and computing time be kept within reasonable bounds.

3.2. Grids in zero, one, two dimensions

In Section 4, spectral collocation will be introduced without

reference to a particular histogram grid. For our numeric

examples, we choose three different grids.

The smallest meaningful grid consists just of M ¼ 2 bins,

representing a forward and a backward traveling beam, with

k̂kz > 0 and k̂kz < 0, respectively. It will be used in Figs. 5 and 6 to

illustrate our approach in the simplest possible way, and to

allow verification against the known analytical solution.

Instead of the indices r = 1, 2, we will use the signs� to denote

the beam direction.

If we are only interested in the total intensity or in the polar

distribution of radiation reflected or transmitted by an

isotropic, normal oriented mosaic, as in Figs. 9, 10, 12, then we

can take an azimuthal average (Section C3), and solve the

transport problem on a fine-grained one-dimensional grid in �.
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Figure 2
Crystal orientations ĜG that fulfill the Laue–Bragg condition, projected
into the êex; êey plane, form ellipses. The two plots have different Bragg
angles �B. Each plot shows ellipses for three different incident angles
� ¼ arctanðkz=kxÞ, with ky ¼ 0. The concentric gray discs contain 50%
and 90% of all mosaic blocks, assuming a Mises–Fisher distribution WðĜGÞ
that is centered around ĤH ¼ êez, with standard deviation � = 2.5�.



In all other cases, we need a two-dimensional partition of

the unit sphere. Any possible map projection and coordinate

system can be chosen to construct the grid. In our examples,

we want to preserve the symmetry of the isotropic, normal

oriented mosaic and therefore choose a rectangular grid in the

spherical coordinates � and ’.

The one- or two-dimensional grids must not necessarily

cover the entire unit sphere. For computational efficiency, we

restrict them to two contiguous regions around the trans-

mitted and the reflected beam. These regions can be iteratively

adapted, keeping the cut-off error (estimated from the loss

channel b, Section B2) under a given tolerance 	b (Section

4.6).

3.3. Diffraction matrix

The integral (24) can be carried out at once since the kernel

�ðk̂k0; k̂kÞ, given by (10), contains a delta function. The result is

Brs ¼ � cos �B

R2�
0

dtW½ĈCðk̂ks; tÞ� ĵjðk̂ks; tÞ 2 ��r

� �
ð27Þ

with the indicator bracket as introduced in Section 2.2.

For given k̂ks, and sweeping t, the outgoing directions ĵjðk̂ks; tÞ

form a one-dimensional manifold on the two-dimensional

sphere. This is illustrated in Fig. 3, which shows these mani-

folds for three different s. In consequence, for a two-

dimensional histogram grid, the matrix B is sparse: most

entries are zero, the more so the finer the grid. If each of the

two coordinate axes is divided into OðM1=2Þ bins, then B has

OðM3=2Þ nonzero entries.

Section B1 presents an algorithm for the actual computa-

tion of (27). In Section B2, the M directional bins are extended

by three loss bins. One of them accounts for absorption; the

other two allow us to quantify unphysical losses originating

from numeric cut-offs. Therefore we can detect violations of

particle conservation, and quantify, and ultimately control,

numeric approximation errors.

4. Spectral collocation in the depth coordinate

4.1. Depth rescaling

As we will use Chebyshev polynomials in the depth coor-

dinate, it shall be transformed from ½0; d� to the standard range

½�1; 1�. We therefore introduce the reduced coordinate


 :¼ �1þ 2z=d ð28Þ

and the transformed histograms

Jrð
Þ :¼ Ir d
1þ 


2

� �
: ð29Þ

The transport equation (26) becomes

ð2k̂kr;z@
 þ dArÞJrð
Þ �
PM
s¼1

dBrsJsð
Þ ¼ 0 ð30Þ

with the separated boundary conditions

Jrð�1Þ ¼ Iin;r for k̂kr;z > 0;

Jrðþ1Þ ¼ 0 for k̂kr;z < 0:
ð31Þ

Grids should be constructed such that no bin crosses the

equator of the unit sphere.

4.2. Equation system

The equation system (30) consists of M coupled first-order

linear differential equations in Jrð
Þ. While a formal solution

can easily be written down as a matrix exponential, it is

numerically not viable (Moler & Loan, 1978, 2003). The

method of choice for this kind of problem is spectral collo-

cation; it is based on the expectation that the solution is a

smooth function of 
 and therefore can be expanded in

Chebyshev polynomials (Gottlieb et al., 1984; Canuto et al.,

1988; Trefethen, 2000).

We approximate the functions Jr by polynomials Pr of order

N that match Jr in N þ 1 collocation points 
i. We defer the

choice of f
ig to Section 4.3; until then, we only require

�1 ¼ 
0 <
1 < . . . <
N�1 <
N ¼ 1. Function values at the

collocation points are abbreviated

pir :¼ Prð
iÞ: ð32Þ

These are MðN þ 1Þ unknowns. M of them can immediately be

read off from the boundary conditions (31):

p0r ¼ Iin;r for k̂kr;z > 0;

pNr ¼ 0 for k̂kr;z < 0:
ð33Þ

The others will be obtained from the transport equation (30).

To discretize this differential equation, we replace Jr by Pr, @

by a differentiation matrix D, specified by the requirement

PN
j¼0

Dijpjr ¼ P0rð
iÞ ð34Þ

[for an introduction to differentiation matrices, see Trefethen

(2000)]. The resulting MN equations

PN
j¼0

2k̂kr;zDijpjr þ dArpir � d
PM
s¼0

Brspis ¼ 0 ð35Þ
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Figure 3
The three bands represent three columns of the reduced reflectivity
matrix Brs, with ’s ¼ 0 and with three different values of �s, shown as a
function of ’r and �r. The Bragg angle is �B = 70�. There are 80 ’ bins
from 55� to 85�, and 180 � bins from �180� to 180�. The dimensionless
intensity scale applies for � ¼ 1 and � ¼ 1.



must hold for all histogram bins (r ¼ 1; . . . ;M) and in all

collocation points (i ¼ 0; . . . ;N).

We collect all linear operators in the matrix

Lirjs :¼ ð2k̂kr;zDij þ dAr�ijÞ�rs � dBrs�ij ð36Þ

with the Kronecker delta �ij :¼ ½i ¼ j� so that the transport

equation (35) becomes simply

8
N
i¼08

M
r¼1 :

PN
j¼0

PM
s¼1

Lirjspjs ¼ 0: ð37Þ

These are MðN þ 1Þ equations in MðN þ 1Þ variables pjs, of

which M are known from (33).

The matrix L is sparse because of the Kronecker deltas in its

definition (36) and because its component Brs is also sparse

when it matters, namely in the computing-intensive case of a

two-dimensional grid. In that case, per Section 3.3, of the M2

entries of matrix B, only OðM3=2Þ are nonzero. Overall, of the

N2M2 entries of L, onlyOðN2M þ NM3=2Þ are nonzero. This is

visualized in Fig. 4.

In view of the boundary conditions (4), we now distinguish

between histogram bins with forward and backward propa-

gation direction, according to the sign of k̂kr;z. We split the sum

over s in (37) accordingly, omitting the zero terms in pNs with

backward s, and bringing the nonzero terms in p0s with

forward s to the right side:

PN
j¼1

Pforward

s

þ
PN�1

j¼0

Pbackward

s

 !
Lirjspjs ¼ �

Pforward

s

Lir0sJin;s: ð38Þ

This system of MðN þ 1Þ inhomogeneous linear equations in

MN unknown pjs is overdetermined, due to the loss of infor-

mation that goes along with the reduction of polynomial order

in differentiation.

Overdetermination can in principle be avoided by using a

rectangular differentiation matrix (Driscoll & Hale, 2016; Xu

& Hale, 2016). However, this would be unsuitable for the full

multi-ray problem because the necessary ‘downcasting’ inter-

polation of linear terms would make the matrix L much less

sparse. We rather opt for the standard procedure of simply

ignoring redundant equations. We choose to delete the M

equations with i ¼ 0, r 2 forward or i ¼ N, r 2 backward.

4.3. Collocation points and differentiation matrix

All of Section 4.2 holds regardless of the collocation points.

Their choice, however, is of critical importance for the

resulting convergence. We make the standard choice of

Chebyshev–Gauss–Lobatto points, which are located at the

extrema of the Chebyshev polynomial TN ,


i :¼ � cos
�i

N
: ð39Þ

They only enter our computation through the corresponding

differentiation matrix (34).

This matrix has the outer diagonal entries

Dij ¼
1þ �i0 þ �iN

1þ �j0 þ �jN

ð�1Þiþj


i � 
j

ði 6¼ jÞ; ð40Þ

the interior diagonal entries

Djj ¼ �

j

2ð1� 
2
j Þ
ð0< j<NÞ ð41Þ

and the diagonal endpoints

D00 ¼ �DNN ¼ �
2N2 þ 1

6
: ð42Þ

For a derivation, see e.g. Gottlieb et al. (1984) or Trefethen

(2000), but note that our choice of ascending 
i has led to a

minus sign on the right-hand side of (42).

4.4. Collocation error for the two-ray reference

By the collocation error we understand the error caused by

approximating the functions Jr by polynomials Pr. We first

consider the two-ray approximation (re-derived in Section

D1) for which we can determine the collocation error by

comparing with the known analytical results (summarized in

Section D2). We choose �in ¼ �B so that the Bragg operator

(68) is simply B ¼ �� and the total attenuation A ¼ �.

Fig. 5 shows currents J�ð
Þ versus 
 for a moderately thick

crystal with realistic attenuation: � ¼ 5, � ¼ 0:9. On the linear
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Figure 4
Visualization of a small part of a small matrix L. Parameters: �B = 70�,
� ¼ 0:9, � ¼ 5. Discretization: three collocation points in z; three bins for
55� � � � 85�; 36 bins for �180� � ’ � 180�. Only the 1262 entries with 0
� ’ � 60� are shown. Since some entries are negative, the figure shows
absolute values jLirjsj.

Figure 5
Directional currents (29) as a function of depth for � ¼ 5, � ¼ 0:9. Lines
show the analytical solution (70). Symbols have been computed by
spectral collocation with different N.



scale of this plot, the numeric data points and the analytical

curves (70) agree perfectly for collocation orders as low as

N 	 4.

The rapid convergence of the spectral collocation is further

demonstrated in Fig. 6, which shows the deviation from the

analytical result as a function of N. The decrease of the error

with increasing N is roughly exponential until some base level

is reached.

Note that the figure represents the absolute error. This

could become a problem in shielding calculations for very

thick mosaic crystals where a tiny transmittivity would result

in an unacceptable relative error. We exclude this peculiar case

from further consideration.

Fig. 6(c) shows the error of the total current

Jtot :¼ Jþð1Þ þ J�ð�1Þ þ Jað�1Þ where Ja is the absorption

loss channel (Section B2). Analytically, the true value is 1. For

odd N, convergence takes about as long as in Figs. 6(a), 6(b).

In contrast, even for the smallest even N the error is only of

the order of machine precision, thanks to pairwise cancelation

at collocation points i, N � i. Therefore we generally prefer

even N in our computations.

4.5. Collocation error for the full model

We now investigate the collocation error for a two-

dimensional k̂k grid, for representative crystal parameters and

for an ideal collimated incoming beam

Iinðk̂kÞ ¼ �
2ðk̂k; k̂kinÞ: ð43Þ

We only consider the reflected flux Ireflðk̂krÞ ¼ Prð�1Þ.

In contrast to Section 4.4, no analytical solution is known.

Therefore we estimate the overall collocation error by

comparing approximate solutions at successive collocation

orders N,

	ðNÞ :¼
Pbackward

r

½PðNÞr � PðN��NÞ
r �

2

� �1=2

: ð44Þ

In Figs. 7 and 8, we increase N from Nini ¼ 2 in steps of

�N ¼ 1; elsewhere, larger values of the hyperparameters Nini

and �N are more convenient (Section 4.6).

In Fig. 7, the error estimate 	ðNÞ is

shown as a function of N for different

solver tolerances. The behavior is

known from Fig. 6(b): after a roughly

exponential decrease the 	ðNÞ cross over

to a noisy base level that lies safely

below the solver tolerance.

The collocation order N is deter-

mined by repeating the entire compu-

tation for increasing values of N until

	ðNÞ lies below a given bound 	C (Section

4.6). Fig. 8 shows how the so-

determined minimal collocation order

N varies with the grid size M ¼ M�M’

and with the model parameters �B,

�in � �B, �, �, �. All these parameters

are found to be uncritical, except the

opacity �, for which Fig. 8 suggests a possible asymptote

N 
 �1=2. Therefore our computational method should not be

applied to extremely thick crystals with � � 100. This is of no

concern for reflectivity computations: it is always possible to

restrict � to values of about 20 or 30; anything beyond is

inconsequential for the reflected current.

4.6. Hyperparameters and a posteriori tolerances

The numeric solution is controlled by hyperparameters (so-

called in opposition to the regular parameters that describe

the crystal model):

(i) Bounds in � and ’, and numbers of bins, to specify the

directional grid.

(ii) Initial number of collocation points and increment for

the iterative procedure described in the last paragraph of

Section 4.5. Our default choice is Nini ¼ 8 and �N ¼ 4.

(iii) Auxiliary parameters for the numeric evaluation of the

reflection kernel (27), as explained in Section B1: bisection

accuracy �t ¼ 10�15, maximum step size �t=� ¼ 0:2 and a

kernel cut-off 	K ¼ 10�5.
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Figure 6
Accuracy of spectral collocation as a function of the number of collocation points N, for the planar
two-ray model, for different crystal opacities. (a), (b) Absolute error of the transmitted and
reflected current, determined by comparison with the analytical result (71). (c) Deviation of the
total current (transmitted, reflected and absorbed) from the true value 1.

Figure 7
Estimates of the collocation error 	ðNÞ of the reflected current I

ðNÞ
refl ðk̂kÞ as a

function of the collocation order N, for different solver convergence
tolerances. Model parameters � ¼ 25, � ¼ 0:9, �B = 70�. Collimated
incoming beam (43) with �in = 70�. Discretization: 45 bins for 58� � � �
82�; 11 bins for �180� � ’ � 180�.



(iv) The collocation tolerance 	C (Section 4.5): the sparse

equation solver is called with increasing N until the estimated

error 	ðNÞ [equation (44)] falls below 	C. We use 	C ¼ 10�5.

(v) The solver tolerance 	S required by the sparse equation

solver (Section 4.7). It should be smaller than 	C. We use a

value of 10�7, except when we determine collocation errors as

a function of the number of collocation points: Fig. 6 is

computed with 	S ¼ 3� 10�15 and Fig. 7 with 	S ¼ 1� 10�9.

Additionally, some a posteriori tolerances are used in

checking the numeric integrity of the obtained solution. If any

check fails, then we recompute everything with stricter

hyperparameters. These tolerances are:

(i) A noise level 	N to disallow currents below �	N, as may

be caused by numeric inaccuracies at weak intensities.

(ii) A stricter limit 	F is imposed to the absolute value of the

total current (53).

(iii) The cut-off tolerances 	b and 	c are upper limits for the

loss channels Ib and Ic that account for unphysical losses due

to the finite k̂k grid and the deletion of weak matrix elements

(Section B2).

All our numeric examples have been checked with

	N ¼ 10�5 and 	F ¼ 	b ¼ 	c ¼ 10�4.

4.7. Numeric tools

A sparse LU solver is used to invert the remaining MN

equations. Our implementation is based on tools from the

numerical library Trilinos (Heroux et al., 2003), namely the

sparse compressed row matrix class from package Epetra,

the ILU(0) preconditioner from package Ifpack (Sala &

Heroux, 2005) and the GMRES (generalized minimal resi-

dual) block solver from package Belos (Bavier et al., 2012).

The mapping of array indices is described in the supporting

information.

5. Results

5.1. Open-source code MultiBragg

The software developed along with this work is released

under the GNU Public License (GPL v3 or higher), and

deposited in the form of a compressed tar.gz archive as

supporting information. The code comprises a library Multi-

Bragg for the numeric solution of the transport equation, and

application programs that generate the data for the figures in

this work. More information on the software is provided in the

textual part of the supporting information.
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Figure 8
Minimal collocation order N required to keep the overall error (44) of the
reflected flux below 	C ¼ 10�5. In each graph, one of the parameters of
the default model of Fig. 7 is varied. In each graph, a red disc indicates the
parameter value that is used in all other graphs.

Figure 9
Total reflectivity as in case 1 of Fig. 9 of Part I. Collimated incoming beam
with �in ¼ �B; mosaicity � = 0.025 rad; nominal opacity � ¼ 12:5; relative
reflectivity � ¼ 0:8. In terms of Part I: � ¼ ð ~��0 þ ~��0Þd; � ¼ ~��0=ð ~��0 þ ~��0Þ.
Blue symbols with error bars are from the Monte Carlo computation of
Part I; red circles are from the present numeric integration.

Figure 10
Total reflectivity near backscattering, for a collimated incoming beam
with �in ¼ �B; mosaicity � = 2.5�.



5.2. Total reflectivity

Fig. 9 of Part I showed the total reflectivity R for plates of

different opacities as a function of the Bragg angle �B,

computed by Monte Carlo integration. The present Fig. 9

compares old and new results. The perfect accord of both data

sets provides strong support for the correctness of both

computer codes. While error bars in Part I were of the order

�R<
 0:001, our new results are far more accurate and extend

over a wider �B range. Our new method is also much faster:

computing times are typically of the order of some minutes,

and only of a few seconds if no azimuthal resolution is needed,

as here and in Figs. 10 and 12.

In the �B range covered by Part I, corrections from non-

planarity amounted to 1% at most. Our numeric method now

allows us to compute R up to �B = 90�. Representative results

are shown in Fig. 10. With �B approaching 90�, the reflectivity

first increases, then decreases rapidly towards 0. These

observations are easily understood by looking back to Fig. 2:

close to backscattering, the ellipse of block orientations �; 
that fulfill the Bragg condition is almost a circle, and for

�in ¼ �B it is concentric with the disc representing Wð�; Þ.
This makes it plausible that the reflectivity can rise more than

15% above the constant value from planar theory. Even closer

to backscattering, however, the ellipse shrinks towards a point,

fewer blocks are available for Bragg diffraction, and the

reflectivity decreases proportionally.

5.3. Azimuthal distribution

Fig. 11 shows the directional distribution of the transmitted

and reflected radiation for three different incoming beam

inclinations �in. Since the coordinate representation does not

account for the different bin sizes ��r, this figure does not

show currents (flux integrals per bin) but the directional flux

Iðk̂kr; zÞ :¼ IrðzÞ=��r.

In transmission, a bright spot shows the attenuated

incoming beam. It is least pronounced at �in ¼ �B, where the

reflectivity is strongest. In the reflected distribution, the

parabolic trace comes from one-reflection trajectories,

whereas the diffuse cloud represents the sum of all higher

reflection orders. While the parabola is known from the

approximative treatment of Hennig et al. (2011), the two-

dimensional cloud is only accounted for by the full transport

equation solved here.

To visualize the relative importance of this cloud, Fig. 12

shows the intensity of the direct beam and the single-reflected

spray relative to the total transmitted or reflected intensity.

Multiple reflections are most important for high opacity �, high

relative reflectivity �, and for incident beam directions close to

the Bragg condition, �in ’ �B. For � ¼ 1 and �in ¼ �B, the

relative importance of direct transmission goes quickly to 0 for

increasing �. The relative importance of single reflections

decreases more slowly, and the limit of 50% is not fully

attained within the � range of the figure.

5.4. Rocking curves

The standard way to characterize a mosaic crystal experi-

mentally is by measuring a rocking curve (e.g. Schneider,

1974): the reflected or transmitted intensity is recorded while

the crystal is rotated around an axis normal to the scattering
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Figure 11
Directional distribution of the transmitted and reflected flux for three
different inclinations �in of the incoming collimated beam. Crystal
parameters: �B = 70�, � = 2.5�, � ¼ 5, � ¼ 0:9.

Figure 12
(a), (b) Relative contribution of the direct beam to the total transmitted
intensity; (c), (d) relative contribution of single reflections to the total
reflected intensity. All data for �B = 70�; (a), (c) as a function of � for
different values of �, with �in ¼ �B; (b), (d) as a function of �in for
different combinations of � and �.



plane. In our fixed-crystal frame, this is equivalent to scanning

the incident angle �in while maintaining the detector angle at

2�B � �in.

It is well known from theory and experiment (Dorner &

Kollmar, 1974) that rocking curves are generally wider than

the underlying crystallite orientation distribution G�. The

width increases with increasing opacity �. This is illustrated by

Fig. 13 where rocking curves for a very thin (� ¼ 0:1) and a

very thick (� ¼ 10) mosaic are shown. In the thin-crystal limit,

our solution of the full Darwin–Hamilton equations repro-

duces Sears’ solution of the planar approximation (71), and

both curves coincide almost perfectly with the Gaussian G�.

Conversely, for the thick crystal Sears’ solution is much

wider than G�, and our full solution deviates from Sears’ in

that it is shifted by about 1� and has a slight asymmetry. This

confirms the Monte Carlo result of Fig. I,10, and extends it to

Bragg angles further away from backscattering.

So far, we have discussed total reflected intensities. In

practice, detectors cover only a finite solid angle. Rocking

curves as measured by circular detectors are shown by the

colored open symbols in Fig. 13. Unless the opening angle is

considerably larger than � a considerable part of the reflected

intensity is indeed lost outside the detector. For the thick

crystal, the shape of the rocking curve also varies considerably

with the angular coverage.

6. Conclusions

To summarize, we have simplified the transport equation of

Part I (Wuttke, 2014a) by making consequential use of energy

conservation and projecting everything to the sphere jkj ¼ k.

For isotropic, normal oriented mosaics (Section 2.4),

azimuthal current distributions are insensitive to the resolu-

tion in the polar angle ’; if the polar distribution does not

matter, then numeric computations can be accelerated by

considering one single ’ bin (Sections 3.2, C3). From there,

only one more linearization (Section D1) is needed to explain

how the original planar Darwin–Hamilton equations got the

integral currents essentially right.

Our first numeric result (Section 5.2, Fig. 9) confirms that

off-plane trajectories have very little effect upon the integral

currents except near backscattering. The interest of our

present work is not in those minor corrections, but in deriving

information that is not at all available from the original

Darwin–Hamilton equations, namely the directional distribu-

tion of the transmitted and reflected radiation.

While Wuttke (2014a) presented some asymptotic results, a

formal expansion in reflection order and a Monte Carlo code,

we now have derived a numeric scheme that uses spectral

collocation in the depth coordinate to compute Ið�; ’Þ with

high speed and very high accuracy. Fig. 11 shows an example

outcome: a dot represents the direct beam, a parabolic spray

comes from single reflections, whereas all higher reflection

orders contribute to a diffuse, two-dimensional cloud of

propagation directions. Fig. 13 shows the consequences for

rocking-curve measurements.

As mosaic crystals are an important beam optical device,

numeric solutions of the transport equation will help to

improve instrument and radiation protection simulations. The

computer code produced for this work is open source and

freely available, and will hopefully find its way into established

ray-tracing packages.

APPENDIX A
Transfer function

A1. Block transfer function

In Part I, the transfer function of a single-crystalline block

was derived in three-dimensional wavevector space (equation

I,12),

�blockðk
0; k; ĜGÞ ¼ �k cos �B

� �ðkĜG� k sin �BÞ

� �3
ðk0 � kþ 2k sin �BĜGÞ: ð45Þ

The prefactor �, introduced in (11), agrees with equations I,7

and I,26, with equation 53 in Sears (1997), and equation A7 in

Grabcev & Stoica (1980). The three-dimensional delta func-

tion in (45) can be decomposed as

�3
ðk0 � kÞ ¼ k�2�ðk0 � kÞ�2

ðk̂k0 � k̂kÞ ð46Þ

where �2 is the delta function on the unit sphere. The scalar

delta function is implicit in our redefinition of distribution
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Figure 13
Rocking curves for (a) a thin, (b) a thick mosaic crystal with � ¼ 0:1 and
� ¼ 10, respectively. The gray area indicates the Gaussian mosaic
distribution with standard variation � = 2.5� as assumed throughout this
work. The dashed line is the reflectivity in planar approximation (71).
Symbols represent numeric solutions of the full transport equation: small
colored symbols show the intensity collected by circular detectors with
radius specified as an angle; thick black circles show the entire reflected
radiation.



functions, IPart IðkÞ ¼ �ðk� k0ÞI
hereðk̂kÞ. By comparing the

three- and two-dimensional variants of the transport equation

we see that it cancels. The factor k�2 cancels when casting the

three-dimensional integral (equation I,38) to our two-

dimensional definition (2) of the Bragg operator. A factor 1=k

can be drawn out of the first delta function in (45). Altogether

we obtain

�blockðk̂k
0; k̂k; ĜGÞ ¼ � cos �B

� �ðk̂kĜG� sin �BÞ

� �2ðk̂k0 � k̂kþ 2 sin �BĜGÞ: ð47Þ

The first delta function enforces the Laue–Bragg condition

(13). The second delta function in (47) ensures that the

diffracted wave propagates in a direction k̂k0 given by the

deflection function ĵjðk̂k; tÞ, defined in (12).

A2. Total transfer function

To carry out the integral (9), we consider how an integral in

ĜG acts on the first delta function of (47). We parameterize ĜG in

spherical coordinates �; t with respect to the axis k̂k, and

introduce a test function f to findR
d2ĜG �ðk̂kĜG� sin �BÞf ðĜGÞ

¼
Rþ�=2

��=2

d� cos �
R2�
0

dt�ðsin � � sin �BÞf ½ĜGð�; tÞ�

¼
R2�
0

dt f ½ĜGð�B; tÞ�: ð48Þ

The remaining integral involves a full circle in ĜG. This circle

arises as the intersection of the unit sphere with the plane

defined by the Bragg condition (13). For given k̂k, we will write

this circle as ĈCðk̂k; tÞ :¼ ĜGð�B; tÞ. Because it only appears under

integrals running from t ¼ 0 to 2�, we can leave the origin in t

(the orientation of the spherical coordinates around k̂k)

unspecified.

A3. Relation to Part I

The above is a simplification in three ways over Part I

(equations 25,27): thanks to the parameterization in t, there is

no more need to sum over two half ĜG circles (or ellipses, when

referring to the orthographic parameterization of Part I). The

singularity 1=ðcos2 �B � 
2Þ

1=2 in the correction factor h has

canceled under the substitution d ¼ dtðcos2 �B � 
2Þ

1=2, so

that there is no longer a singularity near backscattering. And

the  dependence in the second fraction in equation I,27 is

gone for good as we no longer use the approximation

d2ûu ’ dûuxdûuy implicit in equation I,13.

APPENDIX B
Diffraction matrix

B1. Numeric computation

To compute the matrix element Brs for given s, we divide the

integration domain in (27) in finite intervals. We use bisection

to determine points t0 ¼ 0< t1 < . . . < tm�1 < tm ¼ 2� such

that for t 2 ½tn; tnþ1� all ĵjðk̂ks; tÞ lie in one and the same bin �sn.

If necessary, intervals are further divided to ensure

tnþ1 � tn <�=5. This simplifies (27) to

Brs ¼ � cos �B

Pm�1

n¼0

½�sn ¼ r�
Rtnþ1

tn

dtW½ĈCðk̂ks; tÞ�: ð49Þ

Integrals now extend over ranges so small that Gauss–

Legendre three-point quadrature is good enough; the accu-

racy has been ascertained by comparison with higher-order

rules. We compute ĵjðk̂ks; tÞ for the midpoint t ¼ ðtnþ1 � tnÞ=2.

From this, we easily deduce �sn and increment the corre-

sponding B�sns. Quite some computational effort can be saved

in the special case of an isotropic, normal oriented mosaic, as

discussed in Section C2.

To make the matrix B sparser, and thereby speed up the

solution of the discretized transport equation, we delete

matrix entries that are too tiny to have any consequence for

the question under study. Specifically, we set Brs to zero if it is

smaller than 	K maxðBrsÞ=M. Our default choice for the cut-off

hyperparameter is 	K ¼ 10�5 (Section 4.6).

B2. Loss channels

If �a ¼ 0, then the total current in the ẑz direction is

constant,

@z

PM
r¼1

k̂kr;zIrðzÞ ¼ 0: ð50Þ

This identity can be used to check the accuracy of a numeric

solution.

To maintain (50) even in the presence of non-diffractive

losses, we increment M by 1 to allow for a loss channel IaðzÞ.

Numeric experimentation shows that the preferred propaga-

tion direction is backward, say k̂ka ¼ �ẑz, which implies that the

proper boundary condition is IaðdÞ ¼ 0. The diffraction matrix

acquires the additional entries

Bas ¼ �a for s 6¼ a;
Bra ¼ 0 for all r;

ð51Þ

and the term �a appears no longer explicitly in the attenuation

factor (25),

Ar ¼
PM
s¼1

Bsr: ð52Þ

This approach comes to fruition with two more loss channels,

IbðzÞ and IcðzÞ, which account for errors introduced by two

approximations that reduce the number of nonzero matrix

entries Brs:

One approximation consists of choosing a grid that does not

cover the full unit sphere (Section 3.2). It makes (22) inexact

because for some s there is a finite probability Bbs of diffrac-

tion towards some k̂k0 that is not in the grid.

The other approximation is the zeroing of matrix entries Brs

that are too tiny to have any practical consequence (Section

B1). To assess the overall error made by this approximation,

we set Bcs to the sum of all deleted entries Brs for given s.
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As per (51), there is no scattering out of these channels:

Brb ¼ Brc ¼ 0. Starting from IbðdÞ ¼ IcðdÞ ¼ 0, intensity

accumulates with decreasing z. The total approximation losses

can be read off from Ibð0Þ and Icð0Þ. If they are below toler-

ances 	b; 	c (Section 4.6), then one can be sure that approx-

imations made by restricting the grid and by zeroing some Brs

are unproblematic.

Altogether, the total current, including all loss channels, is

Pforward

r

k̂kr;z½I
in
r ð0Þ � IrðdÞ� �

Pbackward

r

k̂kr;zIrð0Þ �
Pa;b;c

l

Il ¼ 0: ð53Þ

Allowing for some numeric inaccuracy, the absolute value of

the left-hand side is requested to stay below a tolerance 	F

(Section 4.6).

APPENDIX C
Isotropic, normal oriented mosaic

C1. Spherical coordinates

Isotropic, normal oriented mosaics (defined in Section 2.4)

have a rotational symmetry around ẑz that allows us to simplify

and accelerate some computations. For given êez ¼ ẑz ¼ ĤH, we

choose orthonormal vectors êex; êey. For a given reciprocal-

space direction k̂k, we define spherical coordinates �k; ’k with

respect to the base êex; êey; êez:

k̂k ¼:
cos �k cos ’k

cos �k sin ’k

sin �k

0
@

1
A: ð54Þ

We choose the rotation matrix in equation (14) as

Rk ¼ Rzð’kÞRyð�=2� �kÞ, where Rz;Ry are rotations around

the z; y axes. It is easily verified that k̂k ¼ Rkẑz. The deflection

function (12) is

ĵjðk̂k; tÞ ¼ k̂k� 2 sin �BĈCðk̂k; tÞ

¼ Rk ẑz� 2 sin �BĈCðẑz; tÞ
h i

¼ Rzð’kÞ Ryð�=2� �kÞĵjðẑz; tÞ
� �

: ð55Þ

With the last line, we obtained a factorization of the ’k and �k

dependence of ĵj.

C2. Computing the diffraction matrix

The algorithm to compute the diffraction matrix Brs

described in Section B1 has an outer loop that runs over the

bin index s ¼ 1; . . . ;M. If for an isotropic, normal oriented

mosaic bins are chosen on a rectangular grid in the spherical

coordinates �k; ’k, then that loop must only be executed for

s ¼ 1; . . . ;M� at one fixed ’k. In a second step, results are then

transcribed to all other ’k; the outgoing bin indices r are

translated accordingly. This is particularly easy if the ’ grid

extends over 2� so that a periodic boundary condition applies.

A further factor of 2 in computational effort can be saved by

using the symmetry of ĵj and W under a change of sign of t.

Given the circulancy of B in ’, one could also decouple

equations by Fourier transform. However, this would come at

an expense in sparsity, and it would not help for future

applications with non-normal oriented mosaics. Therefore, we

have not explored this idea any further.

C3. Azimuthal average

If we are not interested in the azimuthal distribution of the

radiation reflected or transmitted from an isotropic, normal

oriented mosaic then the rotational symmetry allows us to

integrate out the coordinate ’ so that only the � dependence

of the flux

Ið�; zÞ :¼
R2�
0

d’I½k̂kð�; ’Þ; z� ð56Þ

is studied further. To integrate over the transfer function (10),

we note that W½ĈCðk̂k; tÞ� is independent of ’k. We find the

deflection operator (2)

B � Ið�Þ :¼
R2�
0

d’B � I½k̂kð�; ’Þ� ¼
R�=2

��=2

d�0�ð�; �0ÞIð�0Þ ð57Þ

with the transfer function

�ð�0; �Þ :¼ � cos �B

R2�
0

dtW½ĈCð�; tÞ��½�0 ��ð�; tÞ� ð58Þ

and the polar deflection function

�ð�; tÞ :¼ arcsin ẑzRyð�=2� �kÞĵjðẑz; tÞ
� �

: ð59Þ

We integrate (58) to obtain the attenuation operator

Aðk̂kÞ ¼ �wðk̂kÞ þ �a ð60Þ

with the dimensionless total deflection probability

wðk̂kÞ :¼ cos �B

R2�
0

dtW½ĈCðk̂k; tÞ�: ð61Þ

APPENDIX D
The two-ray model

D1. Derivation

If the reflected polar angle (59) is expanded in � � �B and t,

then the lowest order is just [in accord with equation I,64, but

note that the next order has been corrected in Wuttke (2020)]

�ð�; tÞ ¼
:

2�B � �: ð62Þ

Accordingly, (58) and (61) are simplified to

�ð�0; �Þ ¼
:
�wð�Þ�ð�0 þ � � 2�BÞ ð63Þ

and

wð�Þ ¼ cos �B

R2�
0

dtW½ĈCð�; tÞ�: ð64Þ

An incoming collimated beam, through arbitrarily many

reflections, will propagate forward along �in and backward

along 2�B � �in, as described by the two-ray Darwin–Hamilton

equations.

Realistic mosaic distributions are narrow; in radians, � 1.

This justifies the above truncation, and motivates a series
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expansion of ĈC in the small arguments j�j � �B and t, for use in

(63). In lowest order, we find

ðĜG� ĤHÞ2¼
:
ðj�j � �BÞ

2
þ cos2 �Bt2: ð65Þ

Specifically, with the Mises–Fisher distribution (16), we can

carry out the integral (64) to find

wð�Þ ¼
:
Gðj�j � �BÞ ð66Þ

with the normalized univariate Gaussian

Gð�Þ :¼
1

ð2�Þ1=2�
exp �

�2

2�2

� �
: ð67Þ

In the two-ray notation of Part I, the Bragg operator (57)

becomes

B � I� ¼ �Gðj�j � �BÞI�; ð68Þ

in agreement with the standard treatment of the planar

Darwin–Hamilton equations (Zachariasen, 1945, equation

4.19; Sears, 1989, equation 5.2.70).

D2. Analytical solution

The two-ray boundary problem with plate geometry has

been solved in full generality by Sears (1997). Since our

notation deviates from Sears’ in potentially confusing ways,

translations are given in Table 1. According to (68), the Bragg

cross sections are the same for both rays: B :¼ Bð�þÞ ¼ Bð��Þ.
The abbreviations from Sears’ equation 12 are in our notation

p :¼
dA

2

1

sin �þ
þ

1

sin ��

� �
;

q :¼
dA

2

1

sin �þ
�

1

sin ��

� �
;

r :¼ p2 �
dB

sin �þ

dB

sin ��

� �1=2

: ð69Þ

The resulting directional currents I�ðzÞ are then given by

Sears’ equation 15.

We now specialize to the symmetric case �in ¼ �B, hence

�þ ¼ ��, as addressed in Fig. 5. With our abbreviations � and �
from Section 2.5 and with the further abbreviation

! :¼ ð1� �2Þ
1=2, (69) reduces to p ¼ �, q ¼ 0 and r ¼ �!.

Sears’ equation 15 yields

Jþð
Þ ¼
! cosh½�!ð1� 
Þ=2� þ sinh½�!ð1� 
Þ=2�

! coshð�!Þ þ sinhð�!Þ
Iin;

J�ð
Þ ¼
� sinh½�!ð1� 
Þ=2�

! coshð�!Þ þ sinhð�!Þ
Iin: ð70Þ

To discuss rocking curves, we need the transmittivity and

reflectivity for arbitrary �in (Sears’ equation 16)]:

T :¼
Jþðþ1Þ

Iin

¼ expð�qÞ
r

r cosh rþ p sinh r
;

R :¼
J�ð�1Þ

Iin

¼
dB

sin �þ

sinh r

r cosh rþ p sinh r
: ð71Þ

For �in ¼ �B, we obtain by specializing either (70) or (71)

T ¼
!

! coshð�!Þ þ sinhð�!Þ
;

R ¼
� sinhð�!Þ

! coshð�!Þ þ sinhð�!Þ
: ð72Þ
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