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Abstract
We describe a low-cost three-dimensional underwater particle tracking velocimetry system to directly mea-

sure particle settling rate and flux in low-turbulence aquatic environments. The system consists of two water-
proof cameras that acquire stereoscopic videos of sinking particles at 48 frames s−1 over a tunable sampling
volume of about 45 × 25 × 24 cm. A dedicated software package has been developed to allow evaluation of parti-
cle velocities, concentration and flux, but also of morphometric parameters such as particle area, sinking angle,
shape irregularity, and density. Our method offers several advantages over traditional approaches, like sediment
trap or expensive in situ camera systems: (1) it does not require beforehand particle collection and handling;
(2) it is not subjected to sediment trap biases from turbulence, horizontal advection, or presence of swimmers,
that may alter particulate load and flux; (3) the camera system enables faster data processing and flux computa-
tion at higher spatial resolution; (4) apart from the particle settling rates, the particle size distribution, and mor-
phology is determined. We tested the camera system in Lake Stechlin (Germany) in low turbulence and mean
flow, and analyzed the morphological properties and settling rates of particles to determine their sinking behav-
ior. The particle flux assessed from conventional sediment trap measurements agreed well with that determined
by our system. By this, the low-cost approach demonstrated its reliability in low turbulence environments and a
strong potential to provide new insights into particulate carbon transport in aquatic systems. Extension of the
method to more turbulent and advective conditions is also discussed.

Settling of particulate organic matter (POM) plays a central
role in carbon transport and productivity in lakes and oceans
(Grossart and Simon 1998; McDonnell and Buesseler 2012; Li
and Minor 2015). During sinking through the water column,
POM undergoes continuous biogeochemical transformations
and remineralization, such as consumption and degradation by
heterotrophic organisms, but also exchanges with dissolved
organic matter (Meyers and Eadie 1993). The remaining POM
reaching the lake bottom becomes a food source for the benthic
community (Ostrovsky and Yacobi 2010), can be resuspended by
mixing events or is stored (sequestered) in the sediments.

POM sinking in the field is assessed via the in situ downward
particle flux F and its settling rate, SV. F (No. m−2 d−1) is the prod-
uct betweenSV (m d−1) and theparticleconcentrationC (No.m−3)
and determines the particle abundance or carbon content sinking
through the water column per area and unit time. Measurements
of F and SV can span several orders of magnitude depending on
sampling environment, methodology, depth, turbulence, and
biological origin of particles (Turner 2002; Stemmann et al. 2004;
Armstrong et al. 2009;McDonnell and Buesseler 2010).

Throughout the last decades, sediment traps have been widely
used to directly measure F and infer SV by counting particles col-
lected within these devices (Lee 2002; McDonnell and Buesseler
2012). Even though specific criteria have been developed tomini-
mize numerous trap biases (Bloesch and Burns 1980; Larsson et al.
1986), this methodology provides varying levels of accuracy
depending on (1) trap geometry and deployment configuration,
(2) hydrodynamic disturbances, such as turbulence or horizontal
advection, (3) grazing by swimmers, and (4) sediment res-
uspension (Kozerski 1994; Peterson et al. 2005; Buesseler et al.
2007). Data processing may also be limited by exposure time of
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the traps leading to severe uncertainties in SV due to its large vari-
ability in space and time (McDonnell and Buesseler 2012). Tradi-
tional sediment traps solely provide bulk flux measurements
only, integrated over the trap exposure time and over the water
column above the trap. Flux differentiation between particle type
and size is possible, but only during sample processing (Tang et al.
2014; Dubovskaya et al. 2015). Recent studies have tried to
improve estimates of F and SV by combining polyacrylamide gel
traps, for precise measurements of particle size and shape, with
video recorders, for high-resolution particle abundance
(McDonnell and Buesseler 2010, 2012). This recent, but relatively
difficult-to-handle methodology, also enables semiautomatic
measurements and parametrization of F into particle size classes.
To improve SV accuracy, other studies have instead exploited
waterproof cameras installed within sediment traps (Van Leussen
and Cornelisse 1993; Sternberg et al. 1996; Diercks and Asper
1997; Asper and Smith 2003; Mikkelsen et al. 2004; Smith and
Friedrichs 2011, 2015) or directly observed sinking particle by
SCUBAdiving (Alldredge andGotschalk 1988).

Based on the recent advancement in camera technology and
video-processing algorithms, the particle tracking velocimetry
(PTV) technique has been successfully applied in the field to
estimate particle 3D velocities from videos taken by high-
precision cameras (Smith 2008; Tauro et al. 2017). The study of
Smith and Friedrichs (2015) is the only one that simultaneously
measured density, SV, and size of particles with PTV; this
method may, however, be affected by the same hydrodynamic
biases as sediment traps, since data were only measured after
trapping particles in a settling column. In the present study, we
aimed to further exploit the advantages of the PTV systems to
improve particulate flux measurements. We propose a simple

solution to directly determine abundance, settling rate, size and
shape of individual particles, and estimate in situ particle fluxes
by in situ stereoscopic imaging. Compared to existing PTV solu-
tions, the proposed three-dimensional underwater particle track-
ing velocimetry (3D-PTV) system is low-cost, compact, easy-to-
build and circumvents biases of traditional sediment traps that
may affect flux computation. The method is successfully tested
in low-turbulent lake environments. Its extension on a wider
range of turbulence, waves, and mean horizontal flow condi-
tions is as straightforward as for other in situ imaging systems.
Here, we provide a precise description of the PTV system and
the developed software package for particle analysis and data
processing for rapid and reliable velocity and flux estimation.
The algorithm code is available as a configurable MATLAB®

package at URL reported in the Supporting Information.

Materials and procedures
This section is divided into six parts. In the first part, we

describe the stereo camera rig setup. The second part deals
with the algorithms required to detect particles in situ and to
extract and analyze their morphometric features. In the third
part, we explain how the spatial position of particles is tracked
from consecutive frames over time. The last three parts cover
data postprocessing and accuracy as well as computation of
particle sinking rate, abundance, and fluxes.

Camera rig setup
We designed and built a compact, easily reproducible, fast-

to-deploy, and low-budget stereoscopic video system (Fig. 1)
to record underwater in situ videos of moving particles. The

Fig. 1. Schematic of the stereoscopic camera system (a) with details of the camera arrangement and the noise-reduction box (b).
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rig consists of two identical stereo cameras “GoPro Hero 4”
manufactured by GoPro (http://gopro.com) disposed in a fron-
tal parallel arrangement (Fig. 1b). The cameras were installed
in a small plastic housing (Dual HERO System Housing by Go
Pro) that guarantees waterproofness and a fixed distance (base-
line) b between the camera lenses (see Fig. 1b). A hollow black
box, with a transparent acrylic window (noise-reduction box
in Fig. 1a), was also attached on the housing front and filled
with particle-free tap water. This box had a twofold purpose:
(1) it enhanced the underwater lighting conditions thanks to
the eight LEDs incorporated on the box edges (Fig. 1b); the
LED strip was connected to an external battery pack in a
water-tight case. (2) The box also ensured to record particles
only from a distance zMIN from the camera lens (Fig. 1a). This
avoided sampling objects too close to the lenses, which would
have appeared too large and that might have partially
obstructed the far field of view (FOV) during deployment.

The camera system (housing and plastic box) was mounted
on a stainless-steel frame in front of a laminate 37 × 60-cm black
and flat screen. The screen acted as a uniform and fixed back-
ground to enhance particle contrast and improve their detection
even at low-light conditions. Screen distance can be adjusted to
the maximum distance ZMAX at which particles can be detected.
ZMAX was set to avoid introducing noise in the system that may
have been generated by too distant and very small particles. The
parameters ZMIN and ZMAX defined the water volume sampled by
the stereoscopic system. In our application, we used ZMIN = 8 cm
and ZMAX = 32 cm, equivalent to a sampling volume of
2.7 × 104 cm3. The cameras were also counter balanced, on the
side opposite to the screen, with a weight to maintain the entire
rig always in a horizontal position during the deployment (see
Fig. 1a). Two vertical bars were also soldered onto the frame mid-
dle to connect the rig to a surface buoy and to an additional
weight to keep the entire system vertical. A picture of the frame
is given in Supporting Information Fig. S1.

The cameras were set up to acquire videos at a frequency fV
of 48 frames s−1 with a 2.7 K resolution (2704 × 1520 px) and
with an ultra-wide FOV to capture as many particles as possi-
ble. The choice of the image quality was dictated by camera
storage space and camera battery limitations. Due to the cam-
era arrangement, the position (XP; YP; ZP) of a particle P,
exemplified as a zooplankton sinking carcass (Fig. 2), can be
found when its pixel coordinates (x1, y1, and x2, red and blue
points and segments in Fig. 2) are known at the same time
instant. When the camera focal length f (green line between
camera and image plane 1), baseline b (green line between the
two cameras) and the principal point coordinates (xO; yO) are
also available, particles can be triangulated by using:

XP =
b
d
� x1−xOð Þ YP =

b
d
� y1− yO
� �

ZP =
b
d
� f ð1Þ

where d = x2 − x1 is the particle disparity. Equation 1 allows
converting pixel coordinates to real-world coordinates.

The stereo cameras were calibrated to estimate such camera
parameters, as focal length and principal points, as well as
intercamera geometry constrains that are needed for particle
tracking and triangulation. The calibration was performed by
acquiring pictures of a checkerboard in a 0.7 m × 0.5 m × 0.5 m
tank filled with clean particle-free water to simulate in situ
conditions and correctly estimate the lens distortion coeffi-
cients (Lavest et al. 2003; Li et al. 2016b). Additional photos of
the calibration tank are reported in the Supporting Informa-
tion Fig. S2. Sixty-seven images of the calibration pattern were
taken for both cameras and analyzed with the MATLAB®

Computer Vision Toolbox™. Table 1 contains the main esti-
mated parameters (see f, b, xO, and yO in Fig. 2 and Eq. 1)
needed for particle triangulation. A complete list of all calibra-
tion outputs is given in Supporting Information Table S1.

The calibration accuracy was then assessed in terms of
mean reprojection error (eR) and mean epipolar error (eE). The
former provides a measure of the calibration precision for each
single camera; the latter is a proxy for the precision of the
entire stereo rig. For our calibration, we obtained eR = 0.5 px
and eE = 0.05 px, which are low and within the acceptable
range used in other stereo systems (Smith 2008; Balletti et al.
2014; Shortis 2015; Li et al. 2016a,b; Rathnayaka et al. 2017).
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Fig. 2. Triangulation of spatial position (XP; YP; ZP) for particle
P illustrated as a zooplankton carcass. P is projected as P1 (red dot and
gray dashed line) and P2 (blue dot and gray dashed line) onto the image
planes (gray rectangles) of the two cameras (black boxes) whose distance
is b. The particle coordinates in pixels on the image plane is (x1; y1) (red
segments) and (x2; y1) (blue segment) taken from the upper-left corner of
each frame. The distance between the image plane and the camera sen-
sor is the focal length f and (xO; yO) is the coordinate of the principal
point of the first camera.
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Hardware frame synchronization between two cameras of the
same type is not supported by default. Neither it was implemented
in the GoPro 4 cameras we used. As a result, the videos from the
two cameras can be delayed by a drifting number of frames, which
depends on the relative drift of the camera internal clocks. To
fix the synchronization issue, we implemented an original algo-
rithm based on parallel audio track recording, easily applicable to
any set of two cameras with microphones (see Section S1 in the
Supporting Information).

Particle analysis
Video frames from the two cameras were processed in pairs

using a combination of algorithms, explained in the follow-
ing, to detect, analyze, and stereo-match particles. The algo-
rithms were applied on the frames after rectification to
remove any distortions and projects images onto a common
image plane. The rectification partially crops the frames to
2691 × 1488 px to obtain the common area sampled by the
cameras. For each frame, we also applied the MATLAB®

unsharp masking technique with a standard deviation of
10 for the Gaussian low-pass filter. This was done to remove

possible blurring of particles close to the lens, as the optimal
focus of GoPro cameras is about 17 cm (www.gopro.com; last
accessed 23 July 2019). In the following, the number of
processed frames from camera j (with j = 1,2) is indicated with
the letter i. The kth particle detected in frame i by camera j is
referred as Pijk.

Particles Pijk were detected using a combination of the fore-
ground detection (FD) and blob detector (BD) algorithms
available in the MATLAB® Computer Vision Toolbox™. With
the FD algorithm, we first built a background model to iden-
tify which pixels of the frames belonged to the background.
Once the background was identified, any objects in the fore-
ground could be extracted for further processing by the BD
algorithm.

The FD model was trained independently for both cameras
using the first 100 consecutive frames and based on changes
in the pixel intensity due to the moving particles. The training
number of frames was chosen to ensure the algorithm stabil-
ity, so that the background image could be reconstructed
without any foreground object. Particles were detected from
the videos when i > 100. The FD model provides a binarized
image or mask of the frame in which pixels marked with zero
represent the background and with one particle. From the
mask, particles were finally identified by analyzing connected
pixel regions with the BD algorithm.

After detection of particles, their morphometric features
were extracted from the mask (see Fig. 3a). Each particle was
enclosed by a bounding box (blue rectangle) identified by the
points Qijk, Rijk, Sijk, and Tijk (blue dots). The particle centroids

Cijk (black dot), with coordinates xCijk; y
C
ijk

� �
, was calculated by

Table 1. Main parameters of the stereo system estimated from
the camera calibration. f is the focal length, b the system baseline,
and xO and yO the coordinates of the principal point of the first
camera.

f (px) 1.661 × 103

b (mm) 3.300 × 101

xO (px) 1.353 × 103

yO (px) 7.030 × 102
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Fig. 3. Panel (a) shows a particle k from frame i and camera j shaped as an ellipse, with area Aijk. The blue rectangle is the bounding box containing the
particle and is identified by the blue dots Qijk, Rijk, Sijk, and Tijk whose coordinates are reported in the round brackets. The black dot Cijk is the blob cen-
troid. CijkEijk and CijkF ijk are the minor and major semi-axis of the ellipse circumscribing the particle. αijk is its orientation with respect to the horizontal

axis CijkRijk. The arrows in the upper-left corner indicate the positive directions of the x and y axis. Panel (b) shows an example of particle P10,1516
detected in the lake deployment from frame i = 200 in camera j = 1 with disparity d200,516 of 250px, and with a ×10 magnification level. The lower and
upper part of the image contains the measured morphometric information in pixels and millimeters.
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extracting the pixels marked with one and weight averaging
their spatial coordinates by the particle mass, that was
assumed to be equally distributed on each pixel. The particle,
with an area Aijk, was approximated as an ellipse with major

semi-axis CijkEijk and minor semi-axis CijkFijk (dotted red lines).
Both lengths were computed assuming that the ellipse had
the same normalized second central moment as the region
whose pixels were marked with one. All the parameters were
in pixels and the coordinates were from the upper-left corner
of the image. The angle −π/2 < αijk< π/2 (green sector in Fig. 3a)
defined the particle orientation with respect to the horizontal

axis CijkRijk.
Given the pixel coordinates

Eijk =
xEi1k = x

C
ijk +CijkEijk �cos αijk

� �
yEi1k = yCijk−CijkEijk � sin αijk

� �
8<
:

Fijk =
xFi1k = x

C
ijk + sign αijk

� � �CijkFijk �cos π=2− jαijkj
� �

yFi1k = yCijk +CijkFijk � sin π=2− jαijkj
� �

:

8<
:

ð2Þ

with sign(αijk) being the sign function for the orientation, the
spatial position of the points Cijk, Eijk, and Fijk was triangulated

to find the particle real-world coordinates XC
ijk;Y

C
ijk

� �
, XE

ijk;Y
E
ijk

� �
and XF

ijk;Y
F
ijk

� �
, using Eq. 1 and the parameters in Table 1. The

particle lengths CijkEijk and CijkFijk in millimeters were then cal-
culated as:

CijkEijk =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XE

i1k−X
C
i1k

� �2
+ YE

i1k−Y
C
i1k

� �2q
ð3Þ

CijkFijk =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XF

i1k−X
C
i1k

� �2
+ YF

i1k−Y
C
i1k

� �2q

Figure 3b shows an example of particle P200,1516 processed
from the field deployment in frame i = 200 in camera j = 1
with disparity d200,516 of 250 px.

Once particles are detected in both frames, particle Pi1k
located at xCi1k; y

C
i1k

� �
(Fig. 4a, red dot) needs to be matched

with the exact same particle Pi2k at xCi2k; y
C
i2k

� �
(Fig. 4b, red dot).

This problem is referred as stereo correspondence (SC). Once
the particles are matched, the disparity dik = xCi2k−x

C
i1k can be

used in Eq. 1 to triangulate the particle location in real-world
coordinates. Stereo matching is usually accomplished with a
correspondence algorithm that identifies similar regions
among two frames to assign a disparity value for each image
pixel (Bradski and Kaehler 2008). Traditional algorithms, how-
ever, were not able to determine disparities of millimeter-sized
particles, such as those in our application. This was due to dis-
continuities between the background and the particle edges,
their small size and the presence of dark or noisy or textureless
regions that would have produced no valid disparities (Brown
et al. 2003; Sabater et al. 2011). Some more accurate tech-
niques are also sensitive to the choice of the input parameters
and their tuning may depend on the field conditions, such as
illumination or particle appearance (Scharstein et al. 2003). In
turn, the particle morphological features were already known
and could be used to improve correspondence or avoid false
matches. In the following, we therefore propose a new local
and feature-based approach to stereo match particle centroids
using the following constrains of the stereo system:

(1) yCi2k = yCi1k (horizontal dashed line in Fig. 4a,b) after

j=1 j=2
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Fig. 4. Schematic of the SC algorithm. The black rectangles represent the frame i from camera j = 1 (panel a) and j = 2 (panel b) in which particles are
detected. The red dots show the particle Pi1k at xCi1k; y

C
i1k

� �
and the correct match Pi2k at xCi2k; y

C
i2k

� �
. Light gray blobs show other detected particles, while

dark blobs indicate potential matches P̂i2k of Pi1k within the searching area (blue rectangle). dMIN and dMAX are the minimum and maximum disparity,
respectively.
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rectification (see above); (2) xCi2k < x
C
i1k because of the camera

arrangement (Fig. 4b); (3) also, in our system, dik was restricted
by ZMIN and ZMAX and, according to Eq. 1, dMIN < dik< dMAX,
where dMIN = b � f/ZMAX and dMAX = b � f/ZMIN were the mini-
mum and maximum system disparities, respectively (blue rect-
angle in Fig. 4b).

For each detected particle Pi1k, the SC algorithm proceeded

to select potential matches P̂i2k (see Fig. 4, dark gray dots)
within a searching area (blue rectangle) with width
dMAX− dMIN and height 15px. The height was set to take into
account deviations of yCi2k with respect to yCi1k due to the cali-
bration parameters, additional small distortions introduced by
flowing water (Li et al. 2016a,b) and the fact that the videos
were out of sync by τ frames. The matrix representations Mi1k

of particle Pi1k and the matrixes Mi2m of particles P̂i2k were
then extracted from the frames based on the coordinates of
their bounding boxes (blue dots in Fig. 3a,b). These matrixes

had three dimensions with width xRijk−x
T
ijk and height ySijk− yQijk

(see Fig. 3a), while the third dimension contained instead
information about the pixel intensity. Mi1k was compared
against each Mi2m with the template matching (TM) algorithm
(Bradski and Kaehler 2008), which provided a score S between

0 and 1; a high score indicated that P̂i2k was visually similar to

Pi1k. The particle areas Ai1m of Pi1k and Âi2k of P̂i2k were also
considered as additional matching parameters, so that the cor-
rect match was finally selected when

S> SMIN

AMIN <Ai1k=Âi2k <AMAX

8>><
>>: ð4Þ

SMIN, AMIN, and SMAX were thresholds for the score and the
area ratio, respectively. The lower limit on S was introduced
because the intensity of each pixel in Mi1k and the correct
match Mi2k would never be identical due to pixel dissimilar-
ities for noise or other degrading factors (Birchfield and Tom-
asi 1998). The constraints on the area were instead set to
account for possible small pixels differences in the particle
boundaries between the two frames. When conditions in Eq. 4
were satisfied for more than one particle, the match was
ignored. Equation 4 was also conceived so that no match was
produced when Pi2k was situated outside the FOV. To correctly
choose SMIN, AMIN, and AMAX, we selected about 20 particles
from five different frames; the frames were chosen from the
field deployment videos to be about 40 s apart so that individ-
ual particles appeared in varying locations. Particles were then

manually matched and their scores S and area ratios Ai1k=Âi2k

were determined with the TM and BD algorithms. According
to the results in Fig. 5, we chose SMIN = 0.8, AMIN = 0.7, and
AMAX = 1.3 to ensure correct matches.

Particle temporal tracking
Particle tracking consists of finding particle trajectories

among consecutive 2D frames. In our implementation, we
exploited the Kalman filter (KF), which is the most common
method for object tracking and navigation systems (Blackman
1986; Li et al. 2016a). The KF is an iterative algorithm that
employs a discrete-time motion model, based on the physics
of a moving object, to predict its kinematic state in the future
(i.e., centroid, velocity, and acceleration), only relying on its
previously observed states. The KF takes also into account pos-
sible deviations of the state model from the particle actual
motion and potential noise in the input states, such as uncer-
tainties in the centroid detection. In our implementation, the

estimated state Ŝi1k of particle Pi1k was provided by:

Ŝi1k = x̂Ci1k ŷCi1k
_x̂Ci1k

_ŷCi1k
h iT

ð5Þ

where x̂Ci1k and ŷCi1k were the estimated centroid coordinates in

pixels by the KF and _x̂Ci1k and _ŷCi1k the velocity in px frame−1.
Equation 5 assumes a constant-velocity motion model, which
was chosen as compromise between the number of tunable
parameters in the model and the physics of the detected parti-
cles. We therefore assumed a smooth particle motion with
small changes in velocity among frames.

Once the KF parameters were initialized (see Section S2 of the
Supporting Information) for each detection Pi1k = xCi1k; y

C
i1k

� �
in

frame i (Fig. 6a, black dot), the algorithm predicted the new
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Fig. 5. Each dot shows the score S and area ratios Ai1k=Âi2k of manually
matched particles. The dotted lines indicate the parameter limits used in
the stereo matching algorithm for SMIN, AMIN, and SMAX (see Eq. 4).
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particle position in the next frame i+1 with coordinates

x̂C+1,i1k; ŷ
C
i+1,1k

� �
(red dot). The correct particle position

xCi+1,1k; y
C
i+1,1k

� �
(green dot) was then detected with the FD

and BD algorithm. The prediction (red dot), linked to the par-
ticle in the previous frame (black dot), was assigned with the
correct detection (green dot) using the Munkres’ assignment
(MA) algorithm (Munkres 1957). The algorithm performs the
assignment when the distance between the prediction
(Fig. 6b, red dot) and the detection (Fig. 6b, green dot) was less
than the assignment cost CMAX (black arrow). After assign-
ment, the particle path (black line in Fig. 6a,c) was then fixed

using the correct centroid xCi+1,1k; y
C
i+1,1k

� �
, linking the particle

among the consecutive frames. The algorithm simultaneously
performed the assignment for multiple particles tracked at the
same time. It also resolved which tracks were missing, when
particles left the sampling volume, and which detections

began as new tracks when new particles enter the FOV. The
KF and MA algorithms were calibrated to determine their
parameters as detailed in Section S3 of the Supporting
Information.

Video analysis
Figure 7 depicts the scheme to process the stereo videos

using the algorithms outlined above. Once frame i was
extracted from camera j = 1 (Fig. 7a), the frame was analyzed
with the FD and BD algorithms (Fig. 7b) to find the particle
centroids xCi1k; y

C
i1k

� �
(Fig. 7c). The information about the tracks

at the previous step i−1 (Fig. 7d) was then used to predict the

particle centroids x̂Ci1k; ŷ
C
i1k

� �
at step i with the KF (Fig. 7e,f).

The detections xCi1k; y
C
i1k

� �
and predictions x̂Ci1k; ŷ

C
i1k

� �
were then

provided to the Munkres’ algorithm (Fig. 7g) to link particles
among consecutive frames. The tracks were consequently
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updated with the corrected and detected centroids (Fig. 7h,i).
The same frame i from camera j = 2 (Fig. 7j) was processed to
detect the centroids xCi2k; y

C
i2k

� �
(Fig. 7k). Each pair xCi1k; y

C
i1k

� �
was then matched with the corresponding coordinates
xCi2k; y

C
i2k

� �
with the SC algorithm (Fig. 7l). This process was

repeated until the end of the video sequence was reached.
Because the video from camera j = 2 was advanced or delayed
with respect to j = 1 by τ frames, the coordinates xCi2k were out

of sync with respect to xCi1k. Assuming that between two con-
secutive frames from j = 2, the particle trajectory varied line-
arly, xCi2k was synced using:

if L > 0 i:e: j=2 was delayedð Þ if L < 0 i:e: j=2 was advancedð Þ

xCi+1,2k
xCi2k +mk � 1− τij jð Þ τi <0

xCi2k +mk � τi τi >0

(
xCi2k

xCi2k +mk � 1− τij jð Þ τi <0

xCi2k +mk � τi τi >0

(

ð6Þ

where mk = xCi+1,2k−x
C
1,2k is the slope of the line between the

coordinates from the two consecutive frames and τi is the
frame-dependant delay from Supporting Information

Figure S1F1 and Eq. S1a. τi is negative when ~L<L. (see
Supporting Information Eq. S1a). Once this correction was cal-
culated for all the processed frame, the particle disparities were

computed as dik = x
C
i1k−x

C
i2k and the points were triangulated to

find the time series of the real-world coordinates XC
ik;Y

C
ik;Z

C
ik

� �
,

particle lengths (CijkEijk, CijkFijk) and sinking angle αijk. The
time series were finally filtered with a 3rd order median filter
to remove any noise due to limited resolution of the cameras,
possible irregularities in particle shapes (Smith 2008) and dif-
ferences in particle detection between the two cameras that
were affected by the deployment environment.

Uncertainties in the measurements and detection limits
Although the camera coordinates were corrected for radial

and tangential distortions via calibration, residual errors in
the distortion coefficients and in other calibration parameters
(see standard deviations in Supporting Information Table S1)
may affect the accuracy in the estimation of the particle cen-
troids, lengths, and velocities. The uncertainties in these
measurements were statistically computed via simulations as
detailed in Section S3 of the Supporting Information. The
mean uncertainties for particle centroid were about 0.3 mm
in the X direction, 0.15 mm in the Y direction, and 0.3 mm
in the Z direction. The uncertainties in the particle lengths
were instead 10−2 mm, 0.5 × 10−2 mm, and 2.1 × 10−2 mm
for the X, Y, and Z direction, respectively. Finally, the veloc-
ity accuracies were as high as 7.6 × 10−2 mm s−1 in the X
direction, 3.2 × 10−2 mm s−1 in the Y direction, and
1.5 × 10−1 mm s−1 in the Z direction.

The SC and TM algorithms set also a limit on the minimum
detectable particle length. The minimum particle area cannot
be smaller than A0

MIN = 10 px2, as the matrixes Mijk rep-
resenting the particles in the SC algorithm would be too small
and would not contain enough information to be reliably
processed by the TM algorithm. According to Eqs. 1, 3, a spheri-
cal particle with an area equal to A0

MIN, has a length of
0.17 mm at Z = ZMIN = 8 cm and 0.68 mm at Z = ZMAX = 32 cm.
This implies that particles below ~ 0.2 mm are still detectable
but only when they are very close to the screen of the noise-
reduction cone. This differs from sedimentation traps since
they are able to potentially collect particles of all sizes. Finally,
according to Eq. 1, the minimum detectable length of a particle
varies depending on the disparity plane on which the particle
is situated; this implies that some particles may be detectable
only from a specific distance from the camera lenses.
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Flux and sinking rate computation
The sinking speed UY,k of each particle was determined from

the average of the first derivative of the particle trajectory along

YC
ik; an example is shown in Fig. 8a (red line). To obtain one

set of particle morphological parameters per track, the particle

mean axes μ Ci1kEi1k
� �

and μ Ci1kFi1k
� �

as well as sinking angle
μ(αijk) were computed from the average of the respective time
series (Fig. 8b–d, red lines). Finally, the particle equivalent

length was defined as lEQ,k =2 � μ Ci1kEi1k
� � �μðCi1kFi1kÞ

h i0:5
.

After binning particles into a defined size class c based on
lEQ, k, the particle downward flux (Fc, No. m−2 d−1) for a class
c was calculated as

FC =UY,c �N’
C ð7Þ

where UY, c (m d−1) is the mean settling rate and N’
C =NC �

24=tD (No. m−3), the daily particle concentration for the class
c (McDonnell and Buesseler 2010); NC is the observed concen-
tration from the camera; and tD the deployment time of the
3D-PTV system in hours.

Assessment
In summer 2018, we tested the 3D-PTV system in two dif-

ferent environments. We first deployed it, along with sedi-
mentation traps, in an enclosure facility with low horizontal
advection and very low turbulence conditions; this allowed us
to compare particle fluxes estimated from the cameras and
traps minimizing the bias from both systems. We also tested
the system in the littoral zone of Lake Stechlin where advec-
tion was not negligible, but low. In this case, a direct compari-
son with sedimentation traps was not possible as their biases
would add further uncertainties to the measurements. The
acquired videos from the deployments were analyzed with the
same scheme as explained in Fig. 7 and with the algorithm
parameters provided in Tables 1, 2.

Deployment in an enclosure facility
On 24 July 2018, we deployed the 3D-PTV system in the

LakeLab enclosure facility (www.lake-lab.de, accessed on
01 May 2019) of Lake Stechlin (Fig. 9a), a dimictic oligo-
mesotrophic lake in northeast Germany (53�10.20N, 13�000E).
The enclosure (gray cylinder in Fig. 9b) had a radius of 4.5 m
and water depth of 20 m with a total water volume of about
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Fig. 9. Panel (a) shows the deployment positions of the 3D-PTV system in Lake Stechlin. Panel (b) depicts the cylindric enclosure (gray) whose
walls were partially buried at the bottom into the lake bed (brown color) isolating it completely from the surrounding lake water (blue background). The
3D-PTV camera system was deployed at ZC = 9.3 m with ropes (vertical green line). Panel (c) shows the mooring configuration when the system was
deployed at location A at 9 m depth with the help of two submerged buoys (orange circles).

Table 2. Parameters used in the algorithms to analyze the ste-
reo videos from the field deployments.

Parameter Unit Value

Stereo correspondence

SMIN - 0.8

AMIN - 0.7

AMAX - 1.3

Kalman filter

εPOS px 2

εVEL px s−1 18

M0 [px; px s−1] [200; 50]

Z0 px 1

Munkres’ assignment algorithm

CMAX px 3
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1270 m3. The water inside the enclosure was isolated from the
surrounding lake water by its impermeable walls. The water
column of the enclosure was routinely profiled with a multi-
parameter probe YSI 6920 V2-2 2 (Yellow Spring Instruments,
U.S.A.) to routinely profile the whole water column for the
major environmental parameters (water temperature, conduc-
tivity, dissolved oxygen, turbidity, and photosynthetically
active solar radiation). The camera system was deployed for
about 40 min twice at ZC = 9.3 m from the surface-water level,
at the base of the metalimnion (see Supporting Information
Fig. S3). The two deployments (deployment 1 and 2 in the fol-
lowing) were 1 h apart from each another. Turbulence in this
part of the enclosure was expected to be very low due to

stratification and lack of external turbulence-generation mech-
anisms, such as lake circulation or internal waves. The camera
frame was slowly lowered and anchored to avoid generating
turbulence that would have affected the particle sinking
behavior. At the same depth, three sediment traps were also
installed to collect zooplankton carcasses (length < 0.8 mm)
and estimate the daily flux FTRAPS. The trap design and meth-
odology for flux computation is reported in Dubovskaya et al.
(2015). The traps were deployed for 3 d and on a different
date than the PTV system due to space limitations in the
enclosure and to avoid interferences with the camera sam-
pling. The flux estimated from the sediment trap could be
compared with that of the PTV system, because the traps were
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Fig. 10. Panel (a, b) shows the relative probability distribution of mean μ 2 �Ci1kEi1k
� �

and μ 2 �Ci1kF i1k
� �

(bars) of the major Ci1kEi1k and minor Ci1kF i1k
lengths of the particle (see Fig. 3). Panel (c) reports the probability distribution (bars) of particle aspect ratios calculated as μ Ci1kEi1k

� �
=μ Ci1kF i1k

� �
. Panel

(d) shows the sinking angle μ(αi1k) of particles (bars). Gray bars refer to deployment 1, blue bars to deployment 2; the red vertical lines indicate the distri-
bution mean and the black horizontal lines the 95% confidence interval for all particles.
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not affected by hydrodynamic biases due to the almost com-
plete lack of horizontal advection and very low turbulence in
the enclosure.

For our assessment, we filtered the particle tracks before
processing. First, we removed tracks that started within
~ 25 min after the deployment; this was done to avoid sam-
pling of potential velocities generated by the deployment of
the camera system. The time was chosen by visually inspecting
the videos, when small generated eddies stopped and turbu-
lence visibly subsided. Finally, from the remaining tracks, we
removed any particles moving upward: these were swimming
zooplankton that could be easily seen from the videos. The
total number of remaining tracks was 247 for deployment
1 and 136 for deployment 2. The average track duration was
34 s with a maximum duration of 180 s. The code, written in
MATLAB®, run on a 3.00 GHz Intel® Core™ i5-8500 with 8 GB
of RAM for about 48 h per deployment.

Results for all tracks show that the distributions of the par-

ticle mean lengths μ 2 �Ci1kEi1k
� �

and μ 2 �Ci1kFi1k
� �

(Fig. 10a,b,
gray and blue bars for the two deployments) were right-
skewed and that the majority of particles (about 90%) had a
length less than 2mm and never below 0.5mm. No particles
larger than 2.7mm were observed in the enclosure. The mean

for μ 2 �Ci1kEi1k
� �

was 1.3mm (red line) with a 95% confidence
interval of CI95 = [1.27, 1.34] mm (black line), while the aver-

age μ 2 �Ci1kFi1k
� �

value was 1mm with CI95 = [0.98, 1.03] mm.
The probability distribution of the particle aspect ratio

χk = μ Ci1kEi1k
� �

=μ Ci1kFi1k
� �

(Fig. 10c, gray and blue bars) sug-
gests in turn that particles were almost spherical with a mean
ratio of 1.29 and CI95 = [1.28, 1.31]. The particles sank with
an angle αi1k varying between −70� and 60� (Fig. 10d, gray
and blue bars), with the majority of particles sinking with
the major axis horizontal or slightly tilted (mean of αi1k=3.3�

and CI95 = [0.5, 5.5]). Both deployments revealed the same
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Fig. 11. Panel (a) shows the sedimentation rate UY,k by classes (bars). Panel (b) shows UY,k as a function of the equivalent length squared lEQ, k (dots);
the dotted line is the linear least squares fit, R2 its coefficient of determination and p its p value. Panel (c) reports instead the estimated particle density ρP
from Eq. 8. Gray bars refer to deployment 1, blue bars to deployment 2; the red vertical lines in panels (a) and (c) indicate the distribution mean and the
black horizontal lines the 95% confidence intervals for all particle.
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distribution for all parameters, but with a slightly different rel-
ative probability.

The sinking rate UY,k in Fig. 11a shows a variation in the
particle settling behavior, with a mean settling speed UY,k of
97 m d−1 and CI95 = [89, 106] m d−1. Both deployments had
the same distribution, but deployment 1 had slightly faster
sinking particles than deployment 2. The bulk of particles
(~ 95%) sank, however, with a speed no larger than
200 m d−1. From our results, the velocities of 1-mm particles
were between 2 and 280 m d−1, with an average of 86 m d−1.
For particle of the same size, direct estimates from SCUBA
divers report a more conservative average of 75 m d−1 (Shanks
and Trent 1980; Alldredge and Gotschalk 1988), although
these may partially be affected by operator. Indirect estima-
tions from sediment traps provide instead varying results with
a speed as low as 1.7 m d−1 for freshwater zooplankton car-
casses (Dubovskaya et al. 2015) and up to 500 m d−1 for
marine snow (Asper 1987; Peterson et al. 2005; Trull et al.
2008; Armstrong et al. 2009; Xue and Armstrong 2009). How-
ever, numerical simulations by Kirillin et al. (2012) for zoo-
plankton carcasses 1 mm in size revealed a sinking rate of
[38–100] m d−1, which is in the same range as those measured
with our 3D-PTV system.

According to the Stokes’ equation and other parameteriza-
tions of sinking rates of ellipsoidal objects (Happel and Brenner

1965), UY,k linearly depends with the equivalent length l2EQ,k

and particle density ρP, and may be altered by nonlinear
effects due to χk and μ(αi1k). Since particles were almost spheri-
cal (χk~1 in Fig. 10c) and in our data we did not observe any
correlation of UY,k with χk and αi1k (not shown), we assumed
that UY,k could be described with the Stokes’ equation:

UY,k =
1
18

ρP−ρW Tð Þ½ �
μW Tð Þ g � l2EQ,k ð8Þ

where g is the gravitational acceleration; T, μW, and ρW the
water temperature, dynamic viscosity, and density, respec-

tively. UY,k plotted vs. l2EQ,k in Fig. 11b shows a weak linear cor-

relation (coefficient of determination R2 = 0.2, p value<0.0001)
with respect to the linear least squares fit (dotted line). The
sinking rate increased for larger particles, but the points were
moderately scattered for smaller lengths due to differences
in ρP.

The particle density was estimated by inverting Eq. 8 and
using the observed value for T = 9.45�C, and μW =1.33 ×
10−3 kg s−1 m−1 and ρW = 999.75 kg m−3 from the parameteri-
zations by Chen and Millero (1986). The result in Fig. 11c
shows that ρP varied between 999 and 1013 kg m−3, with an
average of 1002 kg m−3. These values were smaller than
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in vitro estimations of zooplankton carcasses by Kirillin et al.
(2012) and Simoncelli et al. (2018), but the excess density
ρP − ρW was in agreement with in situ measurements of
marine snow (Alldredge and Gotschalk 1988).

We finally binned the particles into eight classes c (0–0.6,
0.6–0.8, 0.8–1.0, 1.0–1.2, 1.2–1.4, 1.4–1.6, 1.6–1.8, and
1.8–2.0 mm) and computed the fluxes Fc (Fig. 12a, gray bars) as
product between N 0

c and the average velocity UY, c from all the
particles in each class c (see Eq. 7). The 95% confidence inter-
val CI95 for Fc was calculated by multiplying N 0

c by the CI95 for
the sample UY,k from c. The flux FTRAPS from the sediment
traps was instead averaged between the three deployed traps
(Fig. 12b, gray bars). FTRAPS was almost constant during the
deployment with an average of 3.1×104No. m−2 d−1 and
CI95 = [2.9, 3.4]×104No. m−2 d−1, with an average of 340 car-
casses collected daily. Since FTRAPS accounts only for zooplank-
ton carcasses with sizes less than 0.8mm, FPTV was calculated
using Eq. 7 and combing particles from the first two classes. For
deployment 1 (Fig. 12b, light gray bars), FPTV was 9.5×104No.
m−2 d−1 (NC=1+ NC=2 = 28, CI95 = [0.7, 1.2]×105No. m−2 d−1),

while for deployment 2 (Fig. 12b, blue bars) was 8.0×104No.
m−2 d−1 (NC=1+NC=2 = 26, CI95 = [0.5, 1.11]×105No.m−2 d−1). For
both deployments, the difference between the two first fluxes was
about 16%. FTRAPS and FPTV were very similar (Fig. 12b, light gray
blocks and horizontal patches), but FTRAPS slightly underestimated
the flux because it accounted for zooplankton carcasses only and
possibly due tomaterial removal by swimmers. These results gener-
ally show the reliability of the 3DPTV system in estimating particle
fluxes in environmentwith little advection and low turbulence.

Deployment in a lake environment
On 26 June 2018, we deployed the camera system in the lit-

toral zone of the same lake (Lake Stechlin) at Location A
(Fig. 9a) using the mooring design reported in Fig. 9c. To guar-
antee the frame stability, we employed two buoys one of
which was located 1.5 m below the surface to prevent the sys-
tem from oscillating due to surface wave motions. The camera
was positioned near the base of the metalimnion at 9 m for
about 40 min (see Supporting Information Fig. S4). For the
particle analysis, we removed the first 5 min of the video after

-2400

-2000

-1600

-1200

-800
-400

0 400
800

1200
1600

2000
2400

U
X,k

 (m d
-1

)

0

0.05

0.1

0.15

0.2

R
el

at
iv

e 
p

ro
b

ab
il

it
y

 (
-) Data

Mean

CI
95

-2400

-2000

-1600

-1200

-800
-400

0 400
800

1200
1600

2000
2400

U
Y,k

 (m d
-1

)

0

0.05

0.1

0.15

R
el

at
iv

e 
p

ro
b

ab
il

it
y

 (
-)

-3600

-2800

-2000
-1200

-400
400

1200
2000

2800
3600

U
Z,k

 (m d
-1

)

0

0.05

0.1

0.15

0.2

0.25

R
el

at
iv

e 
p

ro
b

ab
il

it
y

 (
-)

0 200 400 600 800

Camera system (m  d
-1

)

0

200

400

600

800

A
D

C
P

 (
m

 
 d

-1
)

Horizontal

Vertical

(a) (b)

(c) (d)

Fig. 13. Particle average velocities UX,k, UY,k, and UZ,k as gray bars in panels (a), (b), and (c), respectively. The red vertical lines indicate the distribution
mean and the black horizontal lines the 95% confidence interval. Panel (d) shows the comparison of the average velocities between the camera (horizon-
tal axis) and the ADCP (vertical axis) for the horizontal (black dot) and vertical (blue dot) components. The error bars show the 95% confidence interval
from the measurements. The dashed line refers to the 1:1 relationship.

677

Simoncelli et al. A PTV system for in situ particulate flux



the deployment to remove particle generated-velocities by the
camera system. No vibrations of the frame were observed from
the videos. The total number of analyzed tracks was 3021.

During the deployment, we also measured the averaged
water velocities using a 1000-kHz acoustic-Doppler current
profiler (ADCP, Nortek Signature 1000); the device was set to
acquire data from 2.7 m up to 9.4 m in 18-cm cells every
20 min for 10 min with a sampling frequency of 8 Hz. The
ADCP was located approximately 20 m away from the camera
system to be as close as possible to the camera sampling vol-
ume, but avoiding any interference with the camera measure-
ments. According to the ADCP during the video acquisition,
the average velocities in the 9-m cell were as low as
0.44 cm s−1 in the horizontal direction and 0.22 cm s−1 in the
vertical.

The average particle velocities UX,k, UY,k, and UZ,k for the hori-
zontal X, Z and vertical Y direction (see Fig. 2) are reported in
Fig. 13a–c. Particles had varying velocities peaking at −3400 and
3200 m d−1. The average speeds were instead UX,k = 355 m d−1

with CI95 = [337, 373] m d−1, UY,k = 203 m d−1 with
CI95 = [183, 223]m d−1, andUZ,k =−143 m d−1withCI95 = [−163,
−120] m d−1. To verify the reliability of the 3D-PTV system in
estimating particle velocities in the lake environment, we first
computed the averaged north (vN), east (vE), and up (vU) velocity
components from the ADCP turbulent velocities. We then com-
pared vN, vE, and vU against the average of UX,k, UY,k, and UZ,k for
all the particles sampled from the cameras. Sincewedid not know
the camera orientation with respect to north and east directions,
the horizontal velocity was assessed as the magnitude of vN and
vE for the ADCP andUX,k andUZ,k for the camera system. The ver-
tical componentsUY,k and vU had instead the same direction. The
good agreement of the average velocities between the two
methods (blue and black dots in Fig. 13d) demonstrates the cam-
era’s reliability in assessing particle velocities in a natural lake
environment with small advection. Deviations in the measure-
ments between the two methods may have been due the ADCP
distance from the camera sampling volume and differences in
the method or sampling volumes. The larger error bar of the
ADCPmeasurements is due to the lower precision of the Doppler
profiler in assessing velocities.

Discussion
We presented a new 3D-PTV method to determine particle

velocities and fluxes as a function of particle size, and tested
its reliability in a low turbulence environment. The method
allows estimation of particle morphometric parameters such
as area, sinking angle, and shape irregularity that drive particle
sinking dynamics. Particle density, a proxy for the composi-
tion and degradation level of POM, may also be estimated
using available parameterizations of sinking rate.

The advantages of 3D-PTV forflux estimations over traditional
approaches are manifold. (1) The system provides a nearly auto-
mated and low-cost solution for an accurate estimation of fluxes.

The apparatus consists of equipment that can be easily purchased
on the market, assembled, operated, and deployed, when com-
pared to commercial PTV systems (Smith and Friedrichs 2015).
An adjustment or extension of the system can be performed
without a big effort. (2) The solution is time-efficient and less
onerous, allowing automated, accurate, and high-throughput
image analysis of particles than traditionalmethods (such as sedi-
mentation traps), as it does not require collection, handling, and
analysis of samples. This also enables multiple deployments in
varying locations to enhance our understanding of the spatial
and time variability of particle fluxes, which is still not properly
known. The possibility of fast (re)-deployment at different depths
is especially advantageous for investigation of density stratifica-
tion effects on particle sinking. At relatively low expenses, the
system can be replicated to measure simultaneously at different
depths the role of environmental factors in the vertical flux of
POM and particle degradation. This allows measurement of the
vertical flux at higher temporal and vertical resolution, which is
not possible with sedimentation traps. The camera system can
thus improve flux estimates and provide new insights about car-
bon distribution and its variability, in particular in those environ-
ments where sediment trap biases are large. (3) The key benefit in
estimating fluxes from PTV is that several issues, related to trap-
ping efficiency andhydrodynamic biases, can be overcome. Trap-
ping efficiency of sedimentation traps is affected by trap tilt with
respect to the mean current and particle sinking trajectory and
greatly depends on the particle advective transport (Buesseler
et al. 2007). Our method is instead passive and does not rely on
any trapping mechanism. The camera system is also less destruc-
tive compared with traditional sediment traps, in which aggre-
gates could potentially break, from interaction between water
flow and trap opening, or being remineralized or partially
removed by microbes and swimmers or via solubilization during
trap deployment (Alldredge and Gotschalk 1988; Buesseler et al.
2007). Further trap biases may be also due to additional material
introduced by swimmers’ vertical transport (Buesseler et al.
2007). Consequently, a PTV system may provide better flux esti-
mates and understanding of sinking dynamics; the camera sys-
tem may also allow quantification of particle resuspension in
lakes or coastal regions (Kozerski 1994).

Particular attention should be paid to the stability of the camera
system during deployment. When attached to a moored frame,
the system can be disturbed by waves or currents, introducing
blurring or spurious velocities. Depending on the deployment
environment, type, and intensity of the frame perturbations,
velocity and flux computation would be still possible by (1) apply-
ing software or hardware stabilization of the footage, (2) by chang-
ing the parameters of the KF to improve particle tracking, or (3) by
removing unwanted motions in the postprocessing phase. For
example, Supporting Information Fig. S5 shows a particle path
(black lines) perturbated by oscillations in the y direction gener-
ated by the frame’s vibrations when the camera was deployed in
another lake location during strong wave activity near the surface.
To remove these perturbations and assess the path average
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velocity,we smoothed the signals xCi1k and yCi1k (blue lines in Sup-
porting Information Fig. S5a,b) with a moving average filter.
The corrected real-world coordinates (blue line in Supporting
Information Fig. S5c,d) were computed from the corrected
pixel paths using Eq. 1 and the parameters from Table 1.
Other low-pass filters may also be used with a cutoff frequency
that would depend on the nature of the oscillations.

A potential bias introduced by the SC algorithm should be
mentioned. In order to ensure that a particle from camera
j = 1 is correctly matched with the same one in camera j = 2,
we disregarded particles that have multiple matches according
to the criteria in Eq. 5. Multiple matches correspond to
similar-looking particles close to each other (i.e., they are
within the searching area in Fig. 4 at the same time). This may
lead to a temporary loss of a part of tracks for a few particles.
Other biases on the flux estimation may come from advection
and camera exposure time. Advection may generate turbulent
eddies, when water interacts with the camera frame, and
potentially break particle flocs or alter their velocity. The cam-
era exposure time may affect the flux of small and slow-
sinking particles that would appear less frequently than the
faster sinking particulate.

The perspectives of the method extension on environments
with strong currents, such as estuarine systems, bottom
boundary layers of lakes, or coastal regions, include mounting
of the cameras on a rigid bottom-anchored platform to pre-
vent any vibrations, or attaching the system to a submerged
zero-buoyancy float moving with the main current. The basic
algorithm of video processing would remain essentially the
same as presented here.

Comments and recommendations
In our deployment, the camera exposure time was limited by

the internal camera battery. The deployment length may be pro-
longed by using an external battery. Furthermore, from the
videos, it is not possible to determine the biological origin of the
particles. Particles usually comprise dead algae cells, organic and
inorganic debris, molts, and zooplankton carcasses (Grossart and
Simon 1993; Kirillin et al. 2012; Dubovskaya et al. 2015). This
issue could be overcome in future studies by increasing the cam-
era’s resolution up to 4 K and further improving the illumination
(i.e., adding another light source). The focal distance of cameras
may also be manually reduced to better focus on objects close to
the lens or cameras with adjustable focal length may be
employed. By this, the size resolution of particles can be
improved compared to the present ~ 0.17 mm in length. It will
also require reducing or complete removal of the noise-reduction
cone and (or) decreasing the distance between the screen and the
camera. For example, if the size of the cone is set to 1 cm and the
screen distance to 10 cm, the minimum detectable length would
be between 0.02 and 0.2 mm. Finally, the camera resolution can
also be increased to 4 K to allow sampling twice as more pixels
than our current setup to detect tinier aggregates.

Further development of the particle track processing algo-
rithm, for example, by using spatial spectral characteristics,
could allow differentiating between live and dead particles.
The issue is particularly important in highly turbulent envi-
ronments, where particles can undergo both positive and neg-
ative vertical movements at relatively short times, strongly
reducing the overall sinking rate. Samples may also be col-
lected near the PTV system to create empirical time-dependent
relationships between the particle and carbon flux as a func-
tion of particle sizes (McDonnell and Buesseler 2012).

Finally, our tracking method is based on algorithms that
contain a total of eight calibration parameters. However, the
four parameters of the KF are already calibrated for this type of
application. The only parameters that may depend on the
deployment environment are the ones from the SC algorithm
that can however be chosen based on the methodology we
described above in the text.
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