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Abstract Land surface-subsurface modeling combined with data assimilation was applied on the
Rollesbroich hillslope (Germany). Dense information from a soil moisture sensor network was assimilated
with the ensemble Kalman filter applying different scenarios including the update of model states with or
without updating of saturated soil hydraulic conductivity on an ensemble size of 128 (or 256) realizations
with 3-D heterogeneous fields of Mualem-van Genuchten parameters. Simulations were also carried out
with a synthetic test case mimicking the Rollesbroich site, to get more insight in the role of model structural
errors. The combination of joint updating of model states and hydraulic conductivity was more efficient in
updating the soil water content than state updating alone for the real-world case. On average, the root-mean-
square error at the sensor locations was reduced by 14% if states and parameters were updated jointly, but
discharge estimation was not improved significantly. Synthetic simulations showed much better results with
an overall root-mean-square error reduction by 55% at independent verification locations in case of daily soil
water content data assimilation including parameter estimation. Individual synthetic data assimilation
scenarios with parameter estimation showed an increase of the Nash-Sutcliffe-Efficiency for discharge from
—0.04 for the open loop run to 0.61. This shows that data assimilation in combination with high-resolution
physically based models can strongly improve soil moisture and discharge estimation at the hillslope scale.
Large performance differences between synthetic and real-world experiments indicated the limits of such an
approach associated with model structural errors like errors in the prior geostatistical parameters.

1. Introduction

Modeling the soil water content (SWC) is of high interest for various geoscientific research fields. The SWC
influences the water and energy cycles at the local, regional, and global scales (Vereecken et al., 2016). It con-
trols, for example, the partitioning of net radiation into latent, sensible and ground heat fluxes, as well as the
partitioning of precipitation into infiltration and runoff (Grayson et al., 1997; Robinson et al., 2008). Thus, a
precise characterization and prediction of the SWC patterns is essential for understanding and quantifying
the water and energy cycles for applications like weather prediction, flood prediction, and real-time
irrigation scheduling.

Given this importance, recent modeling studies have applied integrated terrestrial model platforms (e.g.,
AquiferFlow-SiB2, Tian et al., 2012; CATHY, Bixio et al., 2002; Camporese et al., 2010; MikeShe, Abbott
et al., 1986; Graham & Butts, 2005; ParFlow-CLM, Maxwell & Miller, 2005; Kollet & Maxwell, 2006;
ParFlow-WRF, Maxwell et al., 2011; PIHM, Qu & Duffy, 2007; Kumar, 2009; TerrSysMP, Shrestha et al.,
2014) for modeling two-way feedbacks between different terrestrial compartments. Coupled land surface-
subsurface models are well suited for in-depth investigation of SWC spatial variability in combination
with in situ SWC data at the hillslope scale. Examples are studies on the controls of SWC variability (e.g.,
Cornelissen et al., 2014; Fatichi et al., 2015; Herbst et al., 2006; Ivanov et al., 2010) as well as the relation
between SWC distribution and the rainfall runoff response (e.g., Herbst & Diekkriiger, 2003; Sciuto &
Diekkriiger, 2010). These studies demonstrated that fully coupled land surface-subsurface models can be a

GEBLER ET AL.

10,358


https://orcid.org/0000-0002-9421-7117
https://orcid.org/0000-0002-8547-4146
https://orcid.org/0000-0002-1290-9313
https://orcid.org/0000-0003-0095-1554
https://orcid.org/0000-0002-8051-8517
https://orcid.org/0000-0002-0004-8114
http://dx.doi.org/10.1029/2018WR024658
http://dx.doi.org/10.1029/2018WR024658
http://dx.doi.org/10.1029/2018WR024658
http://dx.doi.org/10.1029/2018WR024658
http://dx.doi.org/10.1029/2018WR024658
http://dx.doi.org/10.1029/2018WR024658
http://dx.doi.org/10.1029/2018WR024658
http://dx.doi.org/10.1029/2018WR024658
http://dx.doi.org/10.1029/2018WR024658
mailto:h.hendricks-franssen@fz-juelich.de
https://doi.org/10.1029/2018WR024658
https://doi.org/10.1029/2018WR024658
http://publications.agu.org/journals/

'AND SPACESCIENCE

Water Resources Research 10.1029/2018WR024658

valuable tool for a better understanding of the small-scale processes at the hillslope scale. However, due to
the high computational needs of these models, studies were often conducted with uncalibrated parameters
and without model uncertainty estimation. The uncertainty of modeled SWC is related to erroneous model
forcings (e.g., precipitation), model parameters (e.g., soil hydraulic properties), and initial conditions, as well
as model structural deficits.

With the help of data assimilation (DA) techniques, model predictions can be improved by merging (uncer-
tain) observation data with uncertain model predictions (Burgers et al., 1998; Vrugt et al., 2005). Ensemble
based sequential DA methods rely on a probabilistic framework where an ensemble of model realizations is
propagated forward and updated each time observation data are available. One of the most commonly
applied algorithms is the ensemble Kalman filter (EnKF; Evensen, 1994; Burgers et al., 1998). The EnKF
is also used for updating model parameters, for example, by an augmented state vector approach (Chen &
Zhang, 2006; Hendricks Franssen & Kinzelbach, 2008). This is especially important for subsurface applica-
tions, since parameter uncertainty is an important source of uncertainty for subsurface terrestrial system
models. The computational costs for the EnKF are not excessive as the needed ensemble size is in general
not too large (less than 1,000 ensemble members) and parallelization to speed up the simulations is trivial
(Kurtz et al., 2016; Pauwels & De Lannoy, 2009). This is one of the reasons that the EnKF has been used
in combination with different types of terrestrial system models (e.g., atmospheric models, hydrological
models, and land surface models) and various kinds of observation data.

Only relatively few studies at the hillslope scale combine DA with integrated terrestrial system models.
Nevertheless, some authors were able to show the high potential of the EnKF in combination with integrated
hydrological models. For example, Camporese et al. (2009) found that streamflow predictions improved by
assimilating different combinations of pressure head and streamflow data. They performed the DA experi-
ments for a synthetic tilted v-catchment with a fully coupled surface water-groundwater flow (CATHY)
model including 3-D subsurface flow and found that pressure head data always improved the characteriza-
tion of streamflow, whereas standalone streamflow assimilation showed less improvement. This was also
confirmed by Bailey and Bau (2012) who estimated the spatial distribution of hydraulic conductivity by
the assimilation of streamflow and water table data in a similar test case. Shi et al. (2014) assimilated six data
types (discharge, groundwater table depth, SWC, land-surface temperature, sensible heat, latent heat, and
transpiration) with the EnKF and the land surface-subsurface model Flux-PIHM mimicking a small forested
catchment. They estimated several, but spatially homogeneous, Mualem-van Genuchten soil hydraulic
properties and found an improvement of the model simulations in association with a high sensitivity of
the subsurface soil hydraulic properties (i.e., the Mualem-van Genuchten air entry and shape parameters).
Shi et al. (2015) confirmed these findings also for experiments with real-world observations of the Shale
Hills catchment in Pennsylvania, USA. Both studies by Shi et al. (2014, 2015) were conducted with a simpli-
fied representation of subsurface flow, namely, 2-D groundwater flow and 1-D flow in the unsaturated zone.

Some studies with integrated hydrologic models focused more on experimental design. For instance, in a
synthetic experiment, which mimicked the Biosphere 2 Landscape Evolution Observatory hillslopes,
Pasetto et al. (2015) estimated saturated hydraulic conductivity values and investigated the impact of the
number and spatial distribution of assimilated SWC data for a hillslope on the characterization of the hydro-
logic response of the CATHY model with a 3-D synthetic subsurface. If the number of sensors fell below a
certain threshold (100 instead of 496), the model was not able to reproduce the synthetic truth by SWC
assimilation with the EnKF. Rasmussen et al. (2015) investigated the relationship between the number of
ensemble members and the number of pressure head measurement data on the estimation of the discharge
rate with help of the ensemble transform Kalman filter. They performed this study for the agriculture domi-
nated Karup catchment in Denmark and concluded that less head observations required more ensemble
members to reproduce the synthetic discharge and pressure head observations. Assimilating discharge
observations in combination with parameter estimation required a larger ensemble size than the assimila-
tion of groundwater table measurements. Zhang et al. (2015) found that the EnKF performance is very sen-
sitive to the estimation of the initial model parameter uncertainty. The majority of these examples are
limited to synthetic test cases or, in case of real-world case studies, strong simplifications of the subsurface
compartment. In particular, complex subsurface structures (i.e., fully 3-D heterogeneous fields of subsurface
hydraulic properties) and their impacts on the EnKF performance within a fully coupled land surface-
subsurface model at high resolution have not yet been investigated.
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DA studies in combination with highly nonlinear vadose zone flow models and heterogeneity of soil hydrau-
lic parameters face additional challenges. The EnKF shows an optimal performance for Gaussian distribu-
tions, but strongly skewed pressure head distributions in the vadose soil zone can be expected under very
dry conditions (Erdal et al., 2015; Zhang et al., 2018). Furthermore, it is important that the spatial structure
of the heterogeneous soil hydraulic parameters (i.e., horizontal layers) is well captured. Otherwise, a calibra-
tion with the EnKF leads to poor results (Erdal et al., 2014). DA experiments for different soil types (e.g., Li &
Ren, 2011; Montzka et al., 2011; Tran et al., 2014) also indicated that, besides stratification and heterogene-
ity, the capacity of DA to adequately characterize model states and parameters depends on the soil type and
its related hydraulic properties. Within this context, Li and Ren (2011) indicated that the joint update of mul-
tiple hydraulic properties (i.e., Mualem-van Genuchten inverse air entry () and shape parameter (n) in
combination with hydraulic conductivity (K;) by the EnKF using a 1-D subsurface hydraulic model is more
efficient than updating hydraulic conductivity alone. Other examples for the joint update of hydraulic con-
ductivity, a, and n in combination with the EnKF and a 1-D subsurface model are given by Wu and Margulis
(2011, 2013). Montzka et al. (2011, 2013) used the particle filter for updating these soil hydraulic parameters
in a 1-D model. The vast majority of 2-D and 3-D studies where soil hydraulic properties are estimated only
update saturated hydraulic conductivity, since the estimation of other soil hydraulic parameters is associated
with numerical instability (Rasmussen et al., 2015; Vereecken et al., 2016). Exceptions are studies by Shi
et al. (2014, 2015) and Pasetto et al. (2015). However, these studies made various simplifications. Shi et al.
(2014, 2015) assumed spatially homogeneous zones within their subsurface setup. Pasetto et al. (2015) esti-
mated 3-D spatially distributed hydraulic conductivity and porosity under assumption of perfect knowledge
of the remaining hydraulic parameters. Chaudhuri et al. (2018) estimated 3-D spatially distributed hydraulic
conductivity and Mualem-van Genuchten parameters with an iterative filter for a synthetic case. The impact
of only updating saturated hydraulic conductivity on the performance of an integrated 3-D terrestrial model
for a real-world case, which includes also other spatial heterogeneous and uncertain soil hydraulic para-
meters (e.g., Mualem-van Genuchten a, n), has not yet been explored.

This gap of applying the EnKF on a complex high-resolution integrated terrestrial model at the field scale
with 3-D heterogeneous fields of Mualem-van Genuchten subsurface parameters using real-world data is
covered in this study. More specifically, SWC observations were assimilated in the Terrestrial Systems
Modeling Platform (TerrSysMP) developed by Shrestha et al. (2014), which was coupled to the Parallel
Data Assimilation Framework (PDAF) DA framework (Nerger & Hiller, 2013) by Kurtz et al. (2016). The
physically based model ParFlow (Ashby & Falgout, 1996; Jones & Woodward, 2001; Kollet & Maxwell,
2006) and the Community Land Model (Oleson et al., 2004; Oleson et al., 2008) of TerrSysMP were used.
ParFlow and Community Land Model (CLM) are fully coupled via source/sink terms at root zone layer.
This allows transient interaction between 3-D subsurface flow, overland flow, and land-surface processes.
Data sets collected in the context of the infrastructure initiative Terrestrial Environmental Observatories
(TERENO; Zacharias et al., 2011), and the Transregional Collaborative Research center (TR 32; Simmer
et al., 2015) were used for assimilation and also for verification. In particular, SWC, evapotranspiration
(ET), and discharge measurements were available for this study in the Rollesbroich headwater grassland
catchment in the Eifel (Germany). The simulations were made with fully 3-D heterogeneous fields of soil
hydraulic properties which results in a model system with 0.3 million unknowns. DA experiments were both
made for the real-world case and a synthetic case, which mimics the real-world case, with the aim to unravel
the role of model structural errors. In the DA-experiments different combinations of state (i.e., pressure
head) and parameter (i.e., saturated hydraulic conductivity) updating were explored. The following research
questions are addressed with the conducted experiments:

1. Can the characterization of the hydrology at the hillslope scale (SWC, ET, and discharge) be improved
with a combination of physically based integrated hydrological models and a dense network of SWC data
using DA?

2. Isthe joint update of model states and saturated soil hydraulic conductivity sufficient to adjust the model
simulations closer to the observations or is it necessary to include additional soil hydraulic properties
(e.g., inverse air entry) within the parameter update to constrain this complex nonlinear coupled model
system with spatially heterogeneous soil hydraulic properties?

3. Is there a systematic difference in the performance of DA between synthetic experiments and real-world
experiments which points to processes which are not captured by the high-resolution integrated model?
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Figure 1. Rollesbroich overview map showing the locations of discharge gauges, the meteorological station and the drai-
nage system. The locations for soil moisture assimilation (SoilNet) and verification are also indicated.

2. Materials and Methods
2.1. Study Site

The Rollesbroich study site (50° 37 27”N, 6° 18’ 17”E) is located in the Eifel low mountain range (Germany).
The Rollesbroich study site is a subcatchment of the river Rur and has an area of ~0.38 km?, an altitude vary-
ing between 474 and 518 m above sea level and slopes between 0% and 10%. As a part of the TERENO infra-
structure, the Rollesbroich test site is an extensively managed grassland site dominated by smooth meadow
grass (Poa pratensis) and perennial ryegrass (Lolium perenne). The prevalent soils are Cambisol (gleyic),
Stagnosol and Cambisol-Stagnosol (Food and Agriculture Organization classification) with a depth between
only 0.5 and 1.5 m (Korres et al., 2010; Koyama et al., 2010). The underlying bedrock is sandstone and silt-
stone with a heavily weathered top layer (saprolite) of ~0.1- to 0.5-m thickness. Data from a meteorological
station in approximately 4-km distance operated by the North Rhine-Westphalian State Environment
Agency (LUA NRW) for the period 1981-2001 show that the study site has an annual mean temperature
of 7.7 °C and a mean yearly precipitation of 1,033 mm. A drainage system in the northwestern part of the
study site prevents flooding induced by high groundwater tables. The outlet of the drainage system is located
close to the Kieselbach source. The diameters of the ~80-year-old clay pipes vary between 3 and 20 cm.
However, the state of the pipes (possibly broken or blocked) and their detailed impact on the hydrological
characteristics of the study site are uncertain. Figure 1 provides an overview map of the study site and the
measurement equipment used in this study.

Precipitation measurements at the study site are performed with an interval of 10 min and a resolution of
0.1 mm using a standard Hellmann type tipping bucket balance (TB) rain gauge (ecoTech GmbH, Bonn,
Germany). The device setup 1 m above ground is in agreement with the policy of the German weather ser-
vice for areas with heavy snowfall and altitude >500 m above sea level (World Meteorological Organization
guidelines recommend 0.5 m). To avoid measurement errors due to instrument freezing, the device is tem-
porally heated during the winter period.

Latent and sensible heat fluxes are measured by an eddy covariance station at the southern part of the study
site (50° 37" 19”N, 6° 18’ 15”E, 514 m above sea level). At this location also temperature and air humidity are
recorded by a HMP45C, Vaisala Inc., Helsinki, Finland, at 2.58 m above ground. Furthermore, a four-
component net radiometer (CNR-1, Kipp and Zonen, Delft, The Netherlands) measuring incoming and out-
going longwave and shortwave radiation, a sonic anemometer (CSAT3, Campbell Scientific, Inc., Logan,
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USA) recording wind speed and direction are installed there at 2.6 m above ground surface. At this location
also a gas analyzer (117500, LI-COR Inc., Lincoln, NE, USA) for specific humidity and air pressure measure-
ments is installed. These on-site data were used as hourly forcing for the CLM model simulations for 2011.
For 2010 and for gap filling off-site meteorological data from the nearby LUA NRW station were applied
instead. Furthermore, the data were used to calculate actual ET, which was used for verification in
the project.

The SWC at the study site is measured with a wireless sensor network (SoilNet; Qu et al., 2013). SoilNet data
were used in the DA and for model verification. At each of the 179 sensor locations two redundant SPADE
ring oscillator sensors (Model 3.04, sceme.de GmbH i.G., Horn-Bad Meinberg, Germany) are vertically
installed at 5-, 20-, and 500cm depths within a distance of ~10 cm to each other. This increases measurement
volume and precision and helps to avoid data inconsistencies (e.g., contact issues with the soil matrix).
Additional technical details can be found in Qu et al. (2013) and Qu et al. (2016). A long-term evaluation
of the SWCs measured with the SPADE sensors at the study site indicated a drift in SWC values for indivi-
dual SoilNet locations. The SWC data exhibited a gradual increase of maximum SWCs during saturated soil
conditions for the period 2011 to 2013, which was not in line with the annual precipitation trend (Gebler
et al., 2017). A linear SWC trend correction was applied which takes the maximum SWC of the wet periods
in 2011 and 2012 into account. Trend correction was initially conducted for 82 SoilNet locations located in
the southern part of the study site and separately for all three sensor depths (Gebler et al., 2017). This data
set was further reduced to 61 sensor locations, since only gap-free SWC time series were used for DA. The
sensors of the northern part of the study site were not included in our experiments as SWC values for the
northern part of the study site were not available before 2012.

Discharge measurements for the Kieselbach, used for verification in this study, are conducted with a
Venturi-Gauge weir close to the catchment outlet and two upstream Tomson gauges close to the headwaters
of the Kieselbach (Qu et al., 2016).

2.2. TerrSysMP

For this study, ParFlow and CLM were applied in coupled fashion within the TerrSysMP (Shrestha et al.,
2014) using the external coupler OASIS3-MCT (Valcke, 2013). While ParFlow simulates subsurface flow
as well as overland flow, CLM calculates land-atmosphere exchange fluxes, snow, and vegetation processes.
Both components were used in combination with the PDAF (Nerger & Hiller, 2013), which was implemen-
ted by Kurtz et al. (2016).

The subsurface model ParFlow simulates transient, variably saturated subsurface flow two-way coupled with
overland flow at a high spatial resolution. On this account, ParFlow is designed to run in parallel on high-
performance computing platforms (Kollet et al., 2010; Maxwell, 2013). Driven by external boundary condi-
tions, ParFlow calculates the water pressure and saturation field as function of time. It solves the three-
dimensional Richard's equation (Richards, 1931) using a cell-centered finite differences scheme in space:

3 3S, .
SsSw(¥) :a—'f ¢ S;") = Vqg ®
q = —Kk,(9)V(b—2) (2

where S; is the specific storage coefficient (L™, S, relative saturation (=), P pressure head (L), ¢ time (T), ¢
porosity (—), q the volume specific Darcy flux (L/T), g a source/sink term (T™%) (e.g., pumping and injec-
tion), g, a general source/sink term that represents exchange fluxes between surface water and subsurface
(L/T), m’ an interfacial thickness (L), K saturated hydraulic conductivity tensor (L/T), k, relative permeabil-
ity (), and z positive downward vertical coordinate (L).

Relative saturation and permeability in ParFlow are expressed by the Mualem-van Genuchten relationships
(van Genuchten, 1980). The subsurface parametrization in ParFlow can be done with constant input or spa-
tially distributed input files like the ones generated with geostatistical conditioning methods (i.e., turning
bands algorithm and parallel Gaussian simulation). Groundwater and overland flow in ParFlow are coupled
via a backward Euler scheme in time using a free-surface overland flow boundary condition (Kollet &
Maxwell, 2006). Shallow overland flow is simulated by the kinematic wave model and the 2-D
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momentum equation for streamflow is resolved without parameterized routing routines. Thus, the free sur-
face flow is exclusively driven by gravity. The flow discharge relationships are described by Manning's equa-
tion (Kollet & Maxwell, 2008; Maxwell & Miller, 2005). For robust solutions of the subsurface and overland
flow equations, the Newton-Krylov method in combination with multigrid preconditioning as described in
Jones and Woodward (2001) is computed in a globally implicit manner. With an optional terrain-following
grid (TFG) transformation which was introduced by Maxwell (2013), the computational efficiency of
ParFlow can be improved, since TFG enables a reduction of model layers for study areas with large
topographic gradients.

CLM v.3.5 is the upper boundary condition of ParFlow. Both models are dynamically coupled via
source/sink terms at 10 overlapping subsurface horizons (root zone layer) of variable extent. This allows a
transient feedback in two ways. Via the OASIS3-MCT coupler (Valcke, 2013), CLM provides ET to
ParFlow and controls infiltrating precipitation. ParFlow passes SWC and pressure to the CLM subsurface.
All water and heat fluxes in the CLM are calculated according the principles of mass and energy conserva-
tion. The CLM hydrologic cycle interacts with the land surface heat fluxes and accounts for snow, soil infil-
tration, and vegetation water uptake as well as for precipitation interception by plant foliage, throughfall,
and stem flow. All these water fluxes can add (source) or extract (sink) water from the upper 10 subsurface
horizons which are coupled with ParFlow. In the coupled ParFlow-CLM model, water flow in the subsur-
face, SWC content, and pressure heads is calculated by ParFlow. In the CLM, the Monin-Obukhov similarity
theory according to Zeng et al. (1998) is used for calculating latent and sensible heat flux. The boundary layer
resistance terms are implemented using the Biosphere-Atmosphere Transport Scheme, which was devel-
oped by Dickinson et al. (1993) and adapted by Zeng et al. (2005). The CLM distinguishes between five dif-
ferent land surface classes (glacier, lake, wetland, urban, and vegetation). The vegetated area can be further
subdivided into plant functional types (Bonan et al., 2002) for which physiological plant parameters and
other variables are defined. In the coupled mode, the TOPMODEL-based CLM runoff scheme and CLM vari-
ably saturated subsurface flow are replaced by ParFlow. Atmospheric forcing data (temperature, precipita-
tion, solar radiation, humidity, and barometric pressure) are provided in a spatially distributed manner.

2.3. State and Parameter Estimation With the EnKF

In this study, the EnKF was applied to the ParFlow-CLM model of the Rollesbroich study site. The EnKF is
an ensemble based sequential DA method to improve the estimation of model states (and possibly para-
meters) on the basis of optimally combining information from model simulations and observations.

The assimilation cycle of the EnKF is a two-step process consisting of a forecast and an analysis, which are
repeated sequentially. In the forecast step, different model runs (in our case 128 or 256 which are also called
stochastic realizations) with the ParFlow-CLM model (M) are propagated forward in time. The ParFlow-
CLM model, as introduced in section 2.2, solves equations (1) and (2) for subsurface flow by the finite
volume method, and in addition, it solves overland flow and the exchange of water and heat between the
land and the atmosphere. The stochastic realizations differ because they use different initial conditions, satu-
rated hydraulic conductivity, and precipitation as input. These are considered the main sources of uncer-
tainty. The forecast step is given by the following:

X' = M(x(!,p,,q) (3)

where x{ * represents the predicted model state vector at time step ¢, x!~1 is the model state vector of the pre-
vious time step ¢ — 1, p; represents all the model parameters, and q; are the model forcings for each ensemble
realization i (i = 1,2,...,Mycalz)-

The prognostic variable in ParFlow is pressure. The model state vector x’: * consists of the pressure head ()
simulated for the N different grid cells (xlf = q;{ ). In this study, SWC (©) observations are assimilated:

yi=0"+&y @)

where y; is the observation vector and ¢;, is a vector whose elements contain random values drawn from a
normal distribution ./ (0, 0%) with mean zero and standard deviation o (Burgers et al., 1998). The dimension
of all the vectors in equation (4) is equal to the number of observations M assimilated for a certain time step.
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The pressure heads in the model state vector are updated by assimilating the SWC observations:

X! ==K (vi-yl") ©!

where x{ is the updated state vector, K the Kalman gain, y! is the observation vector, and ylf * are the fore-
casted observations according ylf t= h(x{ ) where h is the nonlinear measurement operator, which handles
the mapping between (measured) SWC and (simulated) pressure via the Mualem-van Genuchten relation-
ship according to Reichle et al. (2002).

The Kalman gain K is calculated according

K = Cov(x{"t,y’;’[) <C0V<Y{’17Y{’t> + R) B ©

where Cov indicates covariances and R (M x M) is the observation error covariance matrix, which contains
on its diagonal the SWC measurement error variances, which are defined prior to the simulations in corre-
spondence to equation (5).

The model covariance matrix is not completely calculated in equation (6), as only the covariances between
the measurements and the model states are needed. The complete model covariance matrix can be deter-
mined from the ensemble of model forecasts, where X/ contains the average model states calculated over
all realizations ne,), at each time step:

Nrealz -fit -\ T
P B () () ™

Mrealz—1 i=1

The EnKF is used in this work to also update uncertain parameters (e.g., Chen et al., 2011; Chen & Zhang,
2006; Hendricks Franssen & Kinzelbach, 2008).

The augmented state vector for updating both states and parameters is as follows:

. t
St b
xt = < [> ®)

where x is now the augmented state vector including pressure heads () (L) and the logarithm of soil
hydraulic conductivities (Y = log;o K (L/T)) at all model grid cells N. This implies that for the case of joint
state-parameter updating the augmented state vector is of dimension 2N.

In some of the scenarios where both states and parameters are updated, a damping factor (a) was used to
reduce filter inbreeding (Hendricks Franssen & Kinzelbach, 2008). Filter inbreeding is the underestimation
of the ensemble variance after applying the EnKF updating equation repeatedly. This underestimation of the
variance is related to the low rank approximation of the covariance matrix by a limited number of ensemble
members and the linearization of the relation between states and parameters. A damping factor reduces the
impact of filter inbreeding because parameter updates are made in smaller steps, limiting the impact of non-
linear relations between parameters and states, which are not captured by the covariances, and limiting the
impact of spurious covariances. This results in the following updating equation for the joint state-parameter
estimation problem:

X = x[ "ol K(;{ iyl ") )

where x¢ is the updated augmented state vector after DA and & a vector with damping factors, which are 1
for updating states and between 0 and 1 for updating parameters.

2.4. The TerrSysMP-PDAF Setup

The PDAF (v1.16) module coupled to TerrSysMP was used for the assimilation of SWC observations from
SoilNet infrastructure installed at the Rollesbroich study site. Figure 2 schematically illustrates the operation
mode of PDAF with the EnKF when applied with ParFlow-CLM. States and parameters of the different
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Figure 2. Schematic setup of the assimilation of soil water content with Parallel Data Assimilation Framework (PDAF)
and ParFlow-CLM. Different possibilities of state and parameter update are indicated on the right.

ParFlow-CLM model runs are collected by PDAF after a predefined assimilation interval. By assimilating
SWC observations either model states or states and parameters are updated and passed back to the
ParFlow-CLM realizations which are then propagated further in time. For the different variants of the
PDAF module within TerrSysMP as well as additional technical details see Kurtz et al. (2016).

3. Setup of the DA Experiments

The Rollesbroich model domain covers an area of 1,280 x 1,120 m with a lateral resolution of 10 X 10 m and a
total depth of 3.2 m. This results in a model domain of 128 X 112 X 20 (286,720) grid cells and includes the
Rollesbroich catchment area of 38 ha as well as parts of the Rollesbroich residential area, streets, and other
anthropogenic artificial structures. The slopes in x and y directions, which represent the topographic driven
overland flow in the domain, were calculated with the help of a digital elevation model. Further details of the
digital elevation model preparation can be found in Gebler et al. (2017). A Manning's roughness value of
0.001 hr/m'"® accounts for high (bank) vegetation density and the small stream channel bed of approxi-
mately 30 cm. The lower boundary was set impermeable at 3.2-m soil depth. The ParFlow subsurface
domain was built with a variable vertical resolution making use of the TFG approach (Maxwell, 2013).
From surface to bedrock the model resolution was gradually reduced with depth. The first layer with a ver-
tical extent of 0.025 m is followed by 10 layers of 0.05-m vertical resolution and a twelfth layer with 0.1-m
depth. The vertical resolution then further decreases from 0.2 m (Layer 13-17) to 0.5 m (Layer 18-19),
and 0.575 m (Layer 20) for the deepest layer (bedrock).

The subsurface parameterization scheme mainly follows the heterogeneous subsurface setup by Gebler et al.
(2017) with exception of the bedrock layers. For the assimilation experiments, the subsurface was separated
into three soil horizons and two bedrock layers with spatially heterogeneous two-dimensional stochastic
fields of Mualem-van Genuchten hydraulic properties. These stochastic fields include saturated hydraulic
conductivity (Kj), inverse air entry (), shape factor (n) as well as residual (6,) and saturated water content
(65) which also contain porosity information. A detailed description of the parameter sampling is given in
section 3.2.
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For the weathered siltstone and sandstone bedrock layers preferential

horizon 1 flow through fractures is very likely. To mimic these characteristics, the
] bedrock was subdivided into two separate layers. The mean hydraulic
horizon 2 conductivity (log;oK;) of the bedrock was increased to the magnitude of
. a sandy soil to enable an adequate drainage of the upper soil horizons
horizon 3

and a high lateral flow component in the bedrock layer which also mimics
bedrock (U pper) the efficiency of the drainage system. Figure 3 illustrates the simulation
bedrock (lower) setup with the different horizons. The default CLM subsurface setup with
10 exponentially increasing subsurface layers was adapted to match the
before mentioned extent of 10 corresponding ParFlow model layers
(0.475-m total depth). The CLM vegetation parameterization mainly relies
on standard spatial uniform CLM C3-grass parameters with a leaf area

Figure 3. Schematic overview of the five heterogeneous horizons of soil  index varying between 0.3 and 3.0 over the year. The CLM default root dis-
hydraulic parameters within ParFlow. Study site borders (black line drawn  {ripution parameters (roota and rootb) were adapted in accordance with

inside Horizon 1), channels (blue), and locations of the SoilNet devices
(black dots) are also indicated. The hatchings between the third and the
upper bedrock horizon represent the variable bedrock depth at 1.0-1.5 m.

the modifications made for the CLM subsurface extent (roota: 10.6; rootb:
6.0). This modification, which assigns 90% of grass roots within the upper
30-cm soil, is in line with literature values (e.g., Brown et al., 2010). No
flow boundary conditions were imposed for the northern, eastern, south-
ern, and western domain boundaries.

Precipitation, air pressure, wind speed, specific humidity, and incoming shortwave and longwave radiation
from on-site measurements (2011) and the nearby LANUYV station (2010) were used as input to CLM in
hourly time steps (Gebler et al., 2017).

In total, a period of two years (2010-2011) was simulated with ParFlow-CLM.

3.1. PDAF Setup and Assimilation Scenarios

First, ParFlow-CLM open loop simulations (Table 1) for the entire ensemble and the entire simulation per-
iod (January 2010 to December 2011) were performed. This period includes the model spin-up, which was
conducted for a period of 16 months (January 2010 to April 2011) beginning with an initial hydrostatic equi-
librium condition and a groundwater table at 1.5-m depth. Second, several assimilation variants (Table 1)
were tested with the EnKF assimilating SWC data taken from 61 locations in the southern part of the study
site at 5-, 20-, and 50-cm depths. More specifically these variants are as follows:

1. State update on daily basis

2. Joint update of states and hydraulic conductivity on daily basis

3. Joint update of states and hydraulic conductivity where states are updated daily and hydraulic conduc-
tivity only each 5 days. In addition a damping factor (o = 0.1) was applied for the parameter update.

In order to investigate potential model structural errors or methodical issues with the EnKF, the aforemen-
tioned variants were also tested with synthetic data mimicking the real-world data at identical measurement
locations. This includes a scenario using deterministic Mualem-van Genuchten o and » using the true para-
meter set of 2-D heterogeneous layers for the entire ensemble. Furthermore, a scenario with biased saturated
soil hydraulic conductivity (log;oKs: +0.5 in all soil layers) and an incorrect spatial correlation structure
(increased variogram range by factor 2) was investigated. The impact of ensemble size was also explored.
The selected synthetic reference truth was an ensemble member of the open loop ensemble run (i.e.,
SYN_OL), and synthetic measurement data were extracted from this reference run at 61 observation loca-
tions at 5-, 20-, and 50-cm depths. The synthetic observations were used in all synthetic experiments includ-
ing experiments with biased K, and erroneous spatial correlation structure. The assimilation period for real-
world and synthetic experiments was from 1 May to 31 December 2011. The synthetic cases were further
evaluated against 63 random locations (Figure 1) different from the assimilated locations in 5-, 20-, and
50-cm depths. In addition, two layers of the upper and lower bedrock in 130- and 190-cm depths were exam-
ined for verifying the performance of the DA runs.

The standard deviation of the measurement error was set to 0.04 cm*/cm® and assumed to be spatially
uncorrelated for synthetic and real-world scenarios. Surface cells with overland flow (i.e., with saturated
conditions) were excluded from the update. This avoids numerical instability by an on/off switching of
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Table 1

Simulation Scenarios for Different Synthetic and Real-World Data Assimilation Experiments

Parameter update Mualem-van Genuchten

Scenario Observation Realizations frequency (d) Parameter damping parametrization scheme (o, n)
REAL_OL SoilNet 128 n/a n/a stochastic
REAL_ST SoilNet 128 n/a No stochastic
REAL_PAR 1 SoilNet 128 1 No stochastic
REAL_PAR_5d SoilNet 128 5 Yes stochastic
SYN_OL synthetic 128 n/a n/a stochastic
SYN_ Ks_OL synthetic 128 n/a n/a stochastic
SYN_ST synthetic 128 n/a No stochastic
SYN_PAR_1 synthetic 128 1 No stochastic
SYN_PARan_1 synthetic 128 1 No deterministic
SYN_PARKs_1 synthetic 128 1 Yes stochastic
SYN_PAR_5d synthetic 128 5 Yes stochastic
SYN_OL_256 synthetic 256 n/a n/a stochastic
SYN_PARan_5d_256 synthetic 256 5 Yes deterministic

Note. The open loop simulations refer to the synthetic reference (SYN_OL) or to the associated real-world case (REAL_OL). The “ST” refers to simulation with
exclusive state update, while “PAR” includes simulation with state and parameter update. The letter “d” indicates scenarios with damping. The “Ks” specifies
simulation scenarios with biased saturated conductivity and incorrect spatial correlation in all soil layers. Some parameters were not available in specific scenar-
ios (“n/a”). The assimilation period for the data assimilation scenarios is May-December 2011.

the surface runoff generation which is caused by the perturbation of the pressure field after the
state update.

3.2. Ensemble Generation

In order to account for input uncertainties, model forcings as well as soil hydraulic parameters of the
ParFlow-CLM model were perturbed. This resulted in 128 (or 256) different stochastic model realizations
for the synthetic and real-world experiments. Hourly precipitation, assumed homogeneous for the
catchment, was perturbed according to a normal distribution by multiplying with a Gaussian random value
( Q, 0.15%). As precipitation measurements were available in the catchment, it was assumed that the
uncertainty with respect to this forcing was mainly related to measurement uncertainty and therefore rela-
tively small which justifies the Gaussian assumption.

The creation of an ensemble of uncertain subsurface hydraulic properties departed from van Genuchten soil
hydraulic properties estimated by HYDRUS-1D (Simtinek et al., 2008) and the Shuffled Complex Evolution
algorithm (SCE-UA; Duan et al. (1992) for 82 locations in the southern part of the study area. This approach
was already demonstrated to capture the spatial variability at the Rollesbroich test site (Qu et al., 2014) and
tested in combination with a 3-D ParFlow-CLM model (Gebler et al., 2017). On this account, Gebler et al.
(2017) extended the initial approach by an uncertainty assessment of the estimated soil hydraulic properties
(Figure 4), which was not provided by the original SCE-UA parameter estimation. Therefore, the discre-
pancy between the measurement support (at the optimization location) and the model discretization was
considered on the basis of ordinary block kriging (Burgess & Webster, 1980) using the VESPER (Whelan
et al., 2002) software in an unconditional manner at 10 X 10-m model resolution for all soil hydraulic para-
meters. The estimated uncertainty was similar to the uncertainty that alternatively was derived with the help
of measured texture data and the ROSETTA (ROS) pedotransfer function (Schaap et al., 2001; e.g., Mualem-
van Genuchten inverse air entry a: +1.3 cm™" [SCE-UA]; +1.5 cm ™" [ROS]) as clarified in Gebler et al.
(2017). These data (optimized SCE-UA parameter with uncertainty estimation by block kriging) were the
basis for the sampling of 128 (256) stochastic realizations with 3-D heterogeneous fields of soil hydraulic
properties which were used in the DA approach.

The subsequent sampling of Mualem-van Genuchten soil hydraulic properties (Figure 4) consists of four
major steps. First, for the upper three layers, samples were taken from the multivariate distribution of the
soil hydraulic parameters for each model realization. This distribution is defined by the individual parameter
mean values and (co)variances, which were given by the optimized 1-D parameter set and the available
uncertainty at each spatial location and depth. For the underlying siltstone and sandstone bedrock
(Horizons 4 and 5), the hydraulic properties were randomly sampled at each location on the basis of

GEBLER ET AL.

10,367



Ar |

AVV
100 Water Resources Research 10.1029/2018WR024658
Conditional global optimization
with SCE-UE and Hydrus (1D)
Van Genuchten log,, K,, log,, a,
log,, n, 6, 6, (horizon 1-3)
Unconditional Block Kriging of
each soil hydraulic parameter
log;; K., log,, a, log,, n, 6, 6,
uncertainty (horizon 1-3)
Multivariate random sampling using
parameter covariances and
uncertainties at each location
Random shift of horizon mean log,, K,
considering parameter relationships
Van Genuchten random sample of
horizon 4/5 (bedrock) at each location
Sequential Gaussian simulation of
log,, K, at each horizon
Conditional log,, K, fields for
each grid cell and five horizons
st Conditional log,, K,, log,, a, l0g,, n
Adjusting log,, K,, log,, a, 10g,, n, : 10 Msr 10 % 10 '
6, Qsaccordinéulinear rglations%ips 6, 93f|e|d$_f0r ea‘?h grid cell
and five horizons
Figure 4. Flowchart of the subsurface parameter sampling creating a heterogeneous layered subsurface for each ParFlow-
CLM realization (modified from Gebler et al., 2017).
parameter ranges provided by Bogena (2003). The bedrock hydraulic properties were further artificially
increased to the magnitude of a sandy soil with the aim to mimic the hydraulic characteristics of the
saprolite and the on-site drainage system. The hydraulic conductivity of the lower bedrock horizon (1.2-
to 1.5-m thickness) was more increased than the upper bedrock horizon (0.2- to 0.5-m thickness). This
guarantees a realistic drainage of the lower soil horizon.
Second, the logarithmic hydraulic conductivity (log;oK;) at each location of the upper layers (5, 20, and 50
cm) was perturbed with a spatially homogeneous normal distributed Gaussian random value .4 (0, 0.25%)
to create more variable logarithmic hydraulic conductivity averages between different realizations for the
individual soil horizons. With this procedure, additional model uncertainty was taken into account which
may originate from an underestimation of the 1-D inversion uncertainty for hydraulic conductivity.
Third, a spatial heterogeneous field of log;(K; was generated with sequential Gaussian simulation using
GCOSIM3D (Gomez-Hernandez & Journel, 1993) independently for each soil layer using the generated
log;oK; samples for the individual sensor locations. The required variogram parameters (range, sill, and nug-
get) were estimated by fitting the experimental semivariograms for the different soil layers to an exponential
model for each soil layer (Horizons 1-3). For the upper and lower bedrock layer only very limited
GEBLER ET AL. 10,368
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information regarding the spatial dependence of the hydraulic properties was available. Therefore, the var-
iogram parameters of Horizon 3 for the bedrock stochastic simulations were used.

In the fourth and last step, log;o @, logig 1, 6,, and 6, were adapted according to their relations with log; oK.
The logarithmic transform was also used for o and » as the spatial variability of these parameters can in gen-
eral not be described very well with the Gaussian approximation (e.g., Carsel & Parrish, 1988). The spatially
heterogeneous log,(K; fields, obtained in the third step, render log;, «, log;o 1 also spatially variable using
the multivariate relationships of log;oK with the other variables. This results in stochastic realizations for
the different soil and bedrock layers of log;oKj, logio &, logio 1, 6,, and 6,. For the different scenarios 128
(256) realizations were used in the DA procedure in ParFlow. In case of synthetic scenarios with determinis-
tic o and n the true realization values were taken for the entire ensemble.

3.3. Performance Validation

The performance of the open loop and different DA scenarios was evaluated with measured or synthetic
observations of daily SWC, daily ET and daily discharge. The Nash-Sutcliffe efficiency (NSE) index, the
root-mean-square error (RMSE), and bias (BIAS) were calculated for the forecasted state variables of each
simulation scenario.

The NSE was calculated according to the following:

Nistep  Msample — . 2 Tistep Msample . 2
NSE=1-{ > (xj—yj> / tzl 21 (yj—yj> (10)
=1 j=

=1 j=1

where i} are the simulated ensemble mean values at the observation (or verification) locations for the jth
sample at time ¢, yj‘. are the observed data (or synthetic observations from the synthetic reference),y; the aver-
age of the observed data over time, ngample the number of samples (per layer) , and n.p the total number of
time steps. The NSE range is between —oo and 1.0. Negative values indicate unacceptable simulation perfor-
mance whereas positive values suggest good performance (Nash & Sutcliffe, 1970; Moriasi et al., 2007).

The model bias (BIAS) and the relative model bias in percent (PBIAS) are given by the following:

1 Nistep Msample
BIAS=——— > )} (i}—y}) 11)
(nsamplexntstep) =1 j=1

Nistep  Msample

X))/ ¥ X% y}) (12)

Nistep  Msample (
=1 j=1

PBIAS = 1oo><( DD
j=1

t=1

The RMSE (equation (13)) was calculated to compare observed values with the ensemble mean from
the simulations:

N s
(nsamplexntstep) t=1 j=1 e

The RMSE was also calculated for individual locations. These RMSEs at individual locations were averaged
for each individual soil layer, which was a further performance statistics to evaluate the model simulations.

4. Results

4.1. Synthetic Experiments

4.1.1. SWC

In this section results are discussed for the SWC modeling for the synthetic case. In section 4.2 results for the
real-world experiments follow. The open loop simulations (SYN_OL) show a good performance for all soil
layers (NSE: 0.480-0.759; Table 2). This is similar for SYN_Ks_OL at 5 and 20 cm (0.695-0.813), but poor per-
formance is found at 50 cm (NSE: —10.368). After DA with state updating only (SYN_ST), and DA scenarios
with joint state-parameter updating (SYN_PAR_1, SYN_PARan_1, and SYN_PAR_5d) the average SWC at
5- and 20-cm depths is almost perfectly matched (NSE > 0.85). The RMSE decreased by 0.007-0.030 cm*/cm?®
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Figure 5. Mean soil water content (SWC) and standard deviation of SWC for the open loop run (OL) and the synthetic data assimilation experiments (DA) experi-
ments at the verification locations. Mean synthetic reference observations are indicated as well.

(24-88%) compared to the open loop runs depending on the scenario and layer. At 50-cm depth, the
simulations with biased Ky (SYN_PARKs_1) show a performance improvement indicated by 41% RMSE
reduction compared to the corresponding open loop. In contrast, all other synthetic DA simulations at 50
cm show larger deviations from the synthetic truth than their open loop counterparts (NSE —0.772 to
—0.341; RMSE 0.014-0.016 cm3/cm3). The synthetic simulations with 256 ensemble members
(SYN_PARan_5d_256) show similar results to SYN_PARan_1, which indicates that the performance is
not strongly influenced by ensemble size once the ensemble size is large enough.

Figure 5 shows the temporal evolution of the mean SWC for the open loop simulations and four different DA
experiments for the verification locations in 2011. The differences between the individual DA scenarios are
rather small. The different DA runs show larger differences in terms of SWC differences in May as well as in
October and November 2011. Another notable difference is the reduced ensemble spread of SYN_PARan_1,
which is indicated by a ~75% smaller standard deviation of mean SWC compared to other synthetic scenar-
ios. SYN_OL shows a good performance (Table 2) for the upper soil layers (NSE: 0.571-0.793). In contrast,
negative NSE is found at 130- and 190-cm depths (NSE: —6.761 to —2.333). With exception of the SWC in
20-cm depth (NSE: 0.631), SYN_Ks_OL shows an overall reduced performance compared to SYN_OL, par-
ticularly at 50, 130, and 190 cm (NSE: —14.738 to —9.486).

After DA, a performance improvement is found for the mean SWC at 5-, 20-, 130, and 190-cm depths indi-
cated by an RMSE decrease of 0.002-0.020 cm®/em? (6-63%). Particularly, the mean SWC at 5, 20, and 130 cm
shows a very good fit (NSE 0.765-0.944) after DA, also for SYN_Ks_OL, which exhibits a large SWC fluctua-
tion in all soil layers. For the bedrock layers the RMSE decrease ranges between 31% and 84%. In contrast, at
50-cm depth all assimilation scenarios show larger deviations from the reference. For this layer there is a
decrease of performance in terms of mean SWC at the verification locations (NSE: —1.363 to —0.159;
BIAS: —0.009-0.013 cm?/ cm3). An exception is SYN_PARKs_1 (NSE: —2.846), which exhibits a strong perfor-
mance improvement compared to SYN_Ks_OL (NSE: —9.484) and indicates that the biases in this simula-
tion scenario could be partly corrected by DA. The performance of SYN_Ks OL improves despite the
strong fluctuation in SWC at the end of May.

Hereinafter, the RMSE at the individual assimilation locations is discussed (Figures 1 and 2 in the supporting
information) for the different subsurface layers at the individual verification locations at 5, 20, 50, 130, and
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Table 2

Performance Measures for the Reproduction of SWC for the Synthetic Experiments

SYN_OL SYN_Ks_ OL SYN_ST SYN_PAR_1 SYN_PARan_1 SYN_PARKs_.1 SYN_PAR_5d SYN_PARan_5d (256)

Scm NSE (-) 0.751 0.813 0.978 0.971 0.926 0.892 0.973 0.934

BIAS (cm’/cm®)  0.035 —0.027 0.006 0.008 0.019 —0.006 0.007 0.017

RMSE (cm®/em®)  0.036 0.029 0.011 0.012 0.019 0.022 0.012 0.018
20cm  NSE () 0.480 0.695 0.936 0.931 0.993 0.849 0.924 0.990

BIAS (cm’/cm®)  0.031 —0.020 0.011 0.010 0.003 —0.002 0.012 —0.004

RMSE (cm®/em®)  0.034 0.022 0.012 0.012 0.004 0.016 0.013 0.005
50cm  NSE (=) 0.759 —10.368 —0341  —0.527 —0.772 —3.214 —0.609 —-1.112

BIAS (cm’/cm®)  —0.003  —0.031 —0.013 —0.014 —0.015 —-0.018 —0.015 —-0.017

RMSE (cm’/m®)  0.006 0.032 0.014 0.014 0.016 0.019 0.015 0.017

Note. Shown are performance statistics (Nash-Sutcliffe efficiency, NSE; root-mean-square error, RMSE; and absolute BIAS) for the open loop run (SYN_OL) and
the data assimilation experiments for the assimilation locations.

190 cm. For the open loop simulation the layer-averaged RMSE (SYN_OL: 0.0311-0.0492 cm?/cm?;
SYN_Ks_OL: 0.0384-0.0635) at the verification locations is 8-40% smaller than the RMSE at the
assimilation locations. The mean RMSE for simulations without biased Ks over all verification locations
decreases between 40% (SYN_ST) and 55% (SYN_PARan_1). For the individual layers, the mean RMSE
averaged over the locations decreases between 20% and 66% compared to the open loop run depending on
scenario and layer. The scenarios with parameter estimation show, for almost all layers, a better
performance than SYN_ST with state update only. SYN_PARan_1 performs best in terms of layer-
averaged RMSE for the individual locations over all five soil layers showing the strongest performance
increase. The RMSE reduction at 130- and 190-cm depths is smaller than in the upper soil layers.
Particularly, the RMSE reduction at 190 cm is relatively small (20-34%). These layers also show more
locations (58-63%) with decreasing performance. In contrast, fewer locations with decreasing performance
are found at the upper soil layers particularly for SYN_PARan_1 (0.0-1.5%). For SYN_PARKs 1
(Figure S2) the overall RMSE decrease (13%) as well as the RMSE decrease of the individual layers is
smaller (9-18%) than for the other simulation scenarios. The best performance is found at 50 cm, where
83% of the individual locations show an improvement.

4.1.2. Parameter Estimation

Figure 6 illustrates the temporal evolution of the hydraulic conductivity (log;oK;) estimates for the synthetic
experiments. In the synthetic scenario, the bedrock layer log,K; is reproduced well, despite relative large
differences between initial average log;oK; and the synthetic truth. Results for the other soil horizons for
the synthetic case vary among the different DA experiments. While SYN_PAR_1 (Figure 6a) overestimates
the hydraulic conductivity for Horizon 2 (20 cm) and Horizon 3 (50 cm), SYN_PAR_5d and SYN_PARan_1
overestimate the conductivity for Horizon 1 (5 cm). However, in most of these cases the deviations are very
small (<0.05 log;oKs). Only the SYN_PARan_1 Horizon 3 shows larger deviations (~0.10 log;0Ks). The para-
meter estimation for this scenario is also affected by temporal instability for Horizons 1 and 4 during the first
month of the estimation, due to an insufficient ensemble spread. Higher differences between open loop and
DA simulation are found for SYN_PARKSs_1 (Figure 6b). While log,(Kj is slightly overestimated in Horizons
1 and 2, for the deeper horizons log;(K is strongly adjusted to the synthetic true reference. In this context,
Horizons 4 shows an almost perfect fit although all horizons are affected by temporal instability during the
first month of assimilation. The parameter updates (Figure S3) for the synthetic scenarios with biased Ks are
very similar to each other. The parameter updates for SYN_PAR_1 and SYN_PARan_1 are only slightly
stronger than for SYN_PAR_5d. SYN_PAR_1 and SYN_PARan_1 exhibit higher log; (K, contrasts between
the sensor locations than SYN_PAR_5d. On the contrary, high contrasts are found for SYN_PARKSs_1 parti-
cularly for 50, 130, and 190 cm. This includes also differences in the spatial log; oK distribution compared to
the other DA scenarios.

Figure 7 shows the spatial distribution of the differences between the ensemble hydraulic conductivity esti-
mated for different DA scenarios and the reference hydraulic conductivity. This gives further insight in the
change of the spatial patterns of the hydraulic conductivity during the assimilation period. For the scenarios
SYN_PAR_1,SYN_PARan_1, SYN_PARKs_1, and SYN_PAR_5d in general a strong reduction of the RMSE
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Figure 6. Ensemble mean soil hydraulic conductivity and standard deviation for synthetic experiments (red) against the
open loop parameter set (gray) for different subsurface horizons of the Rollesbroich catchment. This includes scenarios
without (a) and with biased hydraulic conductivity (b). The dashed line in blue indicates the synthetic truth. Notice that
the used scales on the vertical axis differ for the different horizons.

is found. For SYN_Ks_OL and SYN_PARKs_1 a higher level of RMSE is found due to the introduction of the
biased Kj. A large improvement is found at the sensor locations of Horizons 1-3 and also within the bedrock
layers where no measurements were available. The spatial distribution of the RMSE reduction differs
between SYN_PAR_1, SYN_PAR_5d, and the DA scenarios with biased K and spatial correlation range.
Horizon 1 of SYN_PAR_1 is on average closer to the reference than its SYN_PAR_5d counterpart but
shows some locations with relatively high RMSE (0.4-0.5 log;0Ks) in the center and the west of the study
site. This is similar for Horizon 3. In contrast, the RMSE reduction is smoother and less spiky for the
SYN_PAR_5d scenario. The spatial pattern of RMSE reduction for SYN_PARan_1 follows closely the
spatial pattern of SYN_PAR_1. The spatial RMSE distribution for the bedrock layers also differs among
the simulation scenarios. Local maxima of RMSE are found mainly in the north and center of the study
site. SYN_PARKSs_1 shows a significant RMSE reduction for Horizons 3-5 but less for Horizons 1 and 2.
The RMSE patterns in SYN_Ks_OL and SYN_PARKs_1 reflect also the larger correlation range of Ks in
the simulation setup. From these findings it can be concluded that the different spatial patterns of the
estimated hydraulic conductivity are strongly associated with the update strategy resp. the model scenarios.
4.1.3. Discharge

SYN_ST shows strong discharge fluctuations until the high flow period associated with a high ensemble
spread. In some realizations the Kieselbach fell dry during assimilation, in particular during the period
May-June 2011 (Figure S4). This leads to an underestimation of discharge which is also indicated by a nega-
tive relative bias (—22.94%; Table 3). The NSE (0.44) is higher and the RMSE smaller (8.88 m>/hr) compared
to SYN_OL. This is probably related to the strong reduction of discharge peaks for which these measures are
most sensitive. In contrast, SYN_PAR_1 shows limited discharge fluctuations and low ensemble spread. The
performance for SYN_PAR_1 is much better than for the open loop run (SYN_OL) or state updating only
(NSE: 0.61; PBIAS: 12.16%; RMSE: 7.34 m3/hr), indicating a good adaptation of the simulations to the syn-
thetic reference. The discharge SYN_PARan_1 has similar characteristics, whereas the discharge of
SYN_PAR_5d can be characterized as intermediate between SYN_PAR_1 and SYN_ST. With an
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Figure 7. Root-mean-square error (RMSE) of the ensemble average hydraulic conductivity compared to the reference
hydraulic conductivity (log; oK) for the open loop and data assimilation experiments and for different soil horizons.
The study site is indicated by a white or black dashed line.

increasing number of parameter updates during assimilation the discharge fluctuations and ensemble
spread decrease, with a better adjustment of the discharge to the synthetic reference, an exception from
the before mentioned findings SYN_PARKs_1. Compared to the associated open loop simulations
(SYN_Ks_OL), SYN_PARKs_1 exhibits large bias (—39.28%) and a decrease of NSE and RMSE in
combination with strong fluctuations for the majority of the assimilation period.

4.1.4. ET and Water Balance

In the synthetic experiments, the reproduction of ET is already almost perfect for the open loop run (without
biased Ks) exhibiting very small bias and RMSE and very high NSE (0.99). In contrast, SYN_Ks_OL and
SYN_PARKSs_1 show a poor performance (NSE: 0.43-0.46) due to the Ks induced SWC bias in the upper soil
layers. The DA runs with exception of SYN_PARan_1 yield an additional small improvement.

The water balance gaps for the synthetic experiments are mainly related to errors in the simulated discharge
(Table 4) for simulations without Ks bias. The discharge of the open loop simulations is higher than the refer-
ence truth in the assimilation period (+24%). This gap is reduced by all DA scenarios. All DA scenarios are
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Table 3

Discharge Model Performance at the Catchment Outlet for Different Update
Scenarios With Synthetic Observations for 2011

closer to the reference truth but show a negative bias (—17% to —9%)
which is is 62-68% of the total open loop discharge. The EnKF does

not preserve the water balance and can add/extract water in corre-

Scenario NSE (=) PBIAS (%) RMSE (m®/hr) spondence with the measurements. Hence, large differences up to
SYN_OL —0.04 78.42 14.03 134 mm can be found for the DA experiments in the assimilation per-
SYN_Ks_OL 0.56 —8.53 8.5 iod particularly for experiments with larger impact of the state update
SYN_ST 0.44 —22.94 8.88 (e.g, SYN_ST and SYN_PAR_5d). For SYN_Ks OL and
SN Pl L 2l LIS D SYN_PARKSs_1 the water balance gap is related to both ET and dis-
SYN_PARan_1 0.46 12.38 8.72 R R .
SYN_PARKSs_1 —091 ~39.28 17.66 charge. Particularly, SYN_PARKs 1 shows a high deficit (26%),
SYN_PAR_5d 0.59 —5.92 7.6 which is related to extraction of water during DA.
Note. The model performance is indicated by the mean Nash-Sutcliffe effi-
ciency (NSE), percent bias, and the root-mean-square error (RMSE). 4.2. Real-World Experiments

4.2.1. SWC

Table 4

In this section simulation results are discussed for SWC characteriza-
tion with the help of the assimilation of data for the real-world case. Figure 8 shows the temporal evolution
of the mean SWC for the open loop simulations and three different DA experiments for the assimilated loca-
tions in 2011. The measured mean SoilNet SWC at the study site for this period is high during winter and
periods with intensive rainfall or thunderstorm events. The smallest SWC for 2011 is reached in May-
June. This basic seasonality is captured well by the open loop and DA simulations. The comparison with
the measured average SWC (Table 5) shows that the open loop simulation (REAL_OL) is close to the mea-
surements at 5-cm depth (NSE: 0.894; RMSE: 0.026 cm?/ cm3), but not at 20- and 50-cm depths with negative
NSE (20 cm: —0.269; 50 cm: —7.711), high RMSE (20 cm: 0.048 cm®/cm?; 50 cm: 0.059 cm®/cm®) and signif-
icant bias (20 cm: 0.046 cm®/cm?®; 50 cm: 0.057 cm®/cm?). The DA scenarios REAL_ST (state updating only)
and REAL_PAR_1 (daily joint state-parameter updating) showed a slightly improved SWC average com-
pared to the open loop run for May and June 2011 for the 5-cm layer, but these scenarios diverge from the
observations afterward until the end of November 2011. Also, for the REAL_PAR_5d scenario with daily
updates of states and each 5-day updates of parameters the scenario diverges from the observations during
the (late) summer and autumn 2011. The average SWC at 20- and 50-cm depths is better characterized than
in the open loop run for the three DA scenarios. For the 50-cm layer the high initial model bias gradually
decreased over the entire assimilation period. Whereas the three DA scenarios for 5- and 20-cm depths give
very similar results (October and November), at 50-cm depth REAL_PAR_5d outperforms REAL_ST and
REAL_PAR_1, which shows the smallest performance improvement compared to the open loop. The bias
for SWC-characterization at 50-cm depth decreases from 0.057 cm®/cm® (REAL_OL) to 0.017 cm?/
cm® (REAL_PAR_5d).

Figure 9 displays the RMSE for individual SoilNet observations at 5-, 20-, and 50-cm depths. The real-world
experiments REAL_ST and REAL_PAR_1 show decreasing simulation performance (larger RMSE than in
open loop) for 62-67% of the sensor locations at 5-cm depth. Only less frequent assimilation in combination

Observed and Simulated Yearly Water Balance Components: Precipitation (P), Evapotranspiration (ET), and Surface Runoff (Q) of the Rollesbroich Catchment for
Different Synthetic Simulation Scenarios

P (mm) ET (mm) Q (mm) P-ET-Q (mm)
Scenario Sum Sum Max Min Sum Max Min Mean %
SYN_OL 953 488 513 437 546 1118 165 —81 —8.5
SYN_Ks_OL 953 459 486 409 371 797 78 —123 —12.9
Reference Truth 953 487 n/a n/a 406 n/a n/a 60 6.3
SYN_ST 953 483 496 462 336 625 160 134 14.1
SYN_PAR_1 953 484 496 463 371 594 205 98 10.3
SYN_PARan_1 953 484 492 470 371 587 206 113 11.9
SYN_PARKs_1 953 364 378 338 339 388 292 —250 26.2
SYN_PAR_5d 953 484 496 462 353 599 170 116 12.2

Note. n/a = not available.
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Figure 8. Mean soil water content (SWC) and standard deviation of SWC for the open loop and the real-world data assim-
ilation (DA) experiments for the assimilation locations. Mean SoilNet observations are indicated as well.

with joint state-parameter estimation results in a small decrease in layer-averaged RMSE of the individual
sensors (REAL_OL: 0.0936 cm®/cm®; REAL_PAR_5d: 0.0858 cm3/cm3) at this depth. However, an improve-
ment was found for SWC model estimation at 20- and 50-cm depths for all real-world DA experiments (16—
28% RMSE-reduction at 20 cm and 8-18% RMSE reduction at 50 cm). Nevertheless, at 50-cm depth the initial
bias is only partly removed in the different DA scenarios. REAL_PAR_5d reproduces SWC profiles the best
over all three layers showing a reduction by 14% for the RMSE averaged over all sensor locations. For
REAL_ST the RMSE decreases by 6%, whereas REAL_PAR_1 shows only a 2% RMSE decrease. RMSE
decreases or increases thereby do not show vertical correlations. Spatial RMSE structures are not very similar
for the different simulation scenarios. In particular, the spatial RMSE structure for REAL_PAR_5d differs
from REAL_ST and REAL_PAR_1.

Compared to the open loop simulation for the synthetic case, the open loop simulation for the real-world
case (RMSE: 0.0825-0.094 cm®/cm?®) has a larger layer-averaged RMSE over the observation locations
(0.044-0.056 cm®/cm®). These numbers suggest that 40% of the layer-averaged RMSE over the observation
locations for the real-world case could be related to model structural errors (processes which are not

Table 5
Performance Measures for the Reproduction of Average SWC for the Real-World Experiments
REAL_OL REAL_ST REAL_PAR_1 REAL_PAR_5d

5cm NSE (=) 0.894 —0.429 0.007 0.436
BIAS (cm’/cm®) 0.002 —0.079 —0.064 —0.041
RMSE (cm’/em?) 0.026 0.095 0.079 0.053

20 cm NSE (-) —0.269 0.599 0.596 0.576
BIAS (cm’/cm®) 0.046 —0.013 —0.009 —0.025
RMSE (cm’/em?) 0.048 0.027 0.027 0.030

50 cm NSE (-) —7.711 —2.000 ~3.935 -1372
BIAS (cm’/cm®) 0.057 0.033 0.042 —0.017
RMSE (cm’/em?) 0.059 0.034 0.044 0.017

Note. Performance statistics (Nash-Sutcliffe efficiency, NSE; root-mean-square error, RMSE; and absolute BIAS) for the open loop run (REAL_OL) and the DA
experiments for May-December 2011 are shown.
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Figure 9. Root-mean-square error (RMSE) of soil water content at individual locations for the open loop runs (left column) and changes in RMSE (increase implies
improvement and decrease implies impoverishment) for three data assimilation scenarios (three columns on the right) of the real-world case for 2011.

captured by the model) or systematic biases in the model input (systematic errors in model forcings or values
for soil hydraulic parameters).

4.2.2. Parameter Estimation

Figure 10 illustrates the temporal evolution of the hydraulic conductivity (log;oK;) estimates for the real-
world experiments. For REAL_PAR_1 the ensemble spread rapidly decreases within the first weeks of
assimilation. In contrast, the ensemble spread of REAL_PAR_5d with less frequent parameter updating
(each five days only) still exhibits ~25% of the initial ensemble spread at the end of the assimilation period.
The different DA scenarios show large spatial variations in log;(K; estimates for the real-world case. In par-
ticular, log; oK of REAL_PAR_1 varies between the individual horizons and the final parameter estimates
show major differences in comparison with REAL_PAR_5d. The temporal evolution of log;oK; for
REAL_PAR_1 shows also some instability. The log;(K; of REAL_PAR_1 for the second and third layer first
rapidly decreases resp. increases until the end of May. Afterward, it increases resp. decreases again until it
converges to a final parameter estimate which is reached at the end of July. The final estimates differ up
to 0.6 log;oK, (m/hr) between REAL_PAR_1 and REAL_PAR_5d.

Figure 11 shows the differences of the ensemble average hydraulic conductivity fields, as updated in the DA
scenarios, compared to the ensemble average hydraulic conductivity of the open loop run, for the real-world
case. The figure shows that for REAL_PAR_1 parameter updates are stronger than for REAL_PAR_5d.
Similar to the synthetic scenarios, REAL_PAR_1 exhibits high log;oK; contrasts between the sensor loca-
tions and also for the bedrock layer between different areas of the northern study site. Also
REAL_PAR_5d shows positive and negative changes in log;(K; which are more limited spatially.

4.2.3. Discharge

Figure 12 shows the discharge dynamics for the real-world experiments for 2011. In general, the observa-
tions at the study site show high flow during winter rain and snowmelt, and low flow from May-
November. This seasonality is captured by the open loop simulations, although discharge is overestimated
during low flow conditions and for individual winter peaks. These findings are also reflected by the perfor-
mance measures for the open loop simulations in Table 6. In comparison with the on-site measurements, the
open loop simulations show a high relative bias (64.98%) and high RMSE (15.77 m*/hr). The DA simulations
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Figure 10. Mean and standard deviation of the soil hydraulic conductivity for the real-world experiments (red) against the
open loop parameter set (gray) for different subsurface horizons of the Rollesbroich catchment. Please note that the used
scales on the vertical axis differ for the different horizons.

exhibit a very different behavior. With the more intensive adjustment of SWC in the upper horizons, also
discharge is affected by the assimilation cycles. This leads to absence of streamflow in the REAL_ST and
the REAL_PAR_5d in November 2011. As a consequence, both scenarios exhibit a high relative bias
(REAL_ST: —88.84%; REAL_PAR_5d: —75.00%) indicating a discharge underestimation. The performance
of REAL_ST (NSE: 0.05; RMSE: 20.43 m®/hr) is even lower than for the open loop run (NSE: 0.49; PBIAS:
64.98%; RMSE: 15.77 m> /hr). Parameter estimation (REAL_PAR_1) results in an improved modeling of
discharge (NSE: 0.67; PBIAS: —23.55%; RMSE: 12.08 m3/hr). In particular the bias during low flow
periods is strongly reduced for these simulations. However, the peak discharge of REAL_PAR_1 is still
overestimated during the entire assimilation period.

4.2.4. Water Balance

The water balance gaps for the real-world experiments are mainly related to discharge differences. Table 7
gives an overview of the different measured and modeled water balance components at the study site for
2011, where all model simulations overestimate discharge. Large differences up to 224 mm can be found
for the DA experiments, which indicate that the EnKF extracts a significant amount of water in the assim-
ilation period through the adaptation of the pressure heads. Similar to the synthetic experiments, higher bal-
ance gaps are found for the real-world experiments with the strong adaptation of the pressure heads within
the simulations (REAL_ST and REAL_PAR_5d).
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Figure 11. Ensemble averaged differences of hydraulic conductivity fields (log; oK) between open loop and real-world scenarios at the end of the data assimilation
period (December 2011). Indicated are results for the soil layers at 5-, 20-, and 50-cm depths as well as the upper and lower bedrock layer. The dashed line marks the
test site borders within the model domain.

Measured ET was not available for 2011. However, given the range of lysimeter observations for 2012 (467-
523 mm with some gap filling according Gebler et al., 2015) and a possible reduction of actual ET in 2011 due
to water limitation in May-June, the simulated ET (467-488 mm) is in a reasonable range.

5. Discussion

Our findings indicate that the EnKF in combination with fully coupled land surface-subsurface models and
SWC data from a dense observation network can potentially improve the characterization of the hydrology
at the hillslope scale. For the real-world case joint updating of model states and hydraulic conductivity is

Precipitation

log ,, Discharge

REAL_PAR_1

N |

REAL_PAR_5d

F M A M
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' +++ OL mean
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Figure 12. Simulated and observed daily mean logarithmic discharge for the assimilation period at the Rollesbroich catch-
ment outlet. Open loop simulations are shown together with different updating scenarios for the real-world experiments.

Precipitation is also indicated on a daily basis. DA = data assimilation.
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Table 6

Discharge Model Performance for the Assimilation Period at the Catchment Outlet

for Different Update Scenarios With Real-World Observations in 2011

REAL_OL REAL ST REAL_PAR_1 REAL_PAR_5d
NSE (<)) 0.49 0.05 0.67 0.41
PBIAS (%) 64.98 —88.84 —23.55 —75.00
RMSE (m>/hr) 15.77 20.43 12.08 9.17

Note. The model performance is indicated by the mean Nash-Sutcliffe effi-

more effective in updating the SWC (14% RMSE reduction averaged
over all locations and layers for REAL_PAR_5d compared to open
loop) than state update alone (6% RMSE reduction). However, a
larger impact for parameter updating could have been expected. In
contrast to their real-world counterparts, the synthetic scenarios
exhibit a more significant improvement of SWC after DA showing a
relatively strong RMSE reduction at the average over all SWC verifi-
cation locations from 40% (SYN_ST) to 55% (SYN_PARan_1). This

ciency (NSE), percent bias, and root-mean-square error (RMSE).

Table 7

can be called satisfying, especially because the evaluations in these
synthetic runs are made at verification locations not used in
the assimilation.

The fact that for the synthetic case simulation results are better than for real-world case (with 40% lower
layer-averaged RMSE of SWC for the open loop run) indicates that model structural errors play a role for
the SWC estimation. One possible explanation, which was addressed with the simulation experiments,
was the fact that all soil hydraulic parameters are uncertain, but only hydraulic conductivity is estimated.
For a relatively simple 1-D subsurface flow model Li and Ren (2011) already demonstrated that the update
of multiple Mualem-van Genuchten parameters (i.e., hydraulic conductivity, o, and n) is more effective than
updating hydraulic conductivity alone. This issue has been analyzed by the SYN_PARan 1 and
SYN_PARan_5_256 scenarios with perfect knowledge of Mualem-van Genuchten « and n. Although overall
the SYN_PARan scenarios give smaller errors, the improvement with respect to their counterparts with
uncertain o and n is small. This indicates that model simulations could be further improved by an estimation
of these parameters but that their impact at least in this study is relatively small. However, under drier con-
ditions the SWC could be more strongly governed by a and n, so that estimating the three parameters jointly
could potentially improve SWC characterization more than in this study. Chaudhuri et al. (2018) showed
that under certain conditions the joint estimation of multiple spatially distributed parameter fields can be
successful, but it strongly depends on data availability and the joint presence of very dry and very wet con-
ditions in the data set.

The performance differences between the real-world case and the synthetic case are also analyzed with a sce-
nario for the synthetic case that departs from erroneous prior geostatistical parameters (saturated hydraulic
conductivity and variogram range). It is found that modest errors already result in a declined performance of
the DA, especially for the fluxes in this case. The too high saturated hydraulic conductivity for the upper soil
layers creates drought stress and a significant underestimation of ET, which is not corrected by DA. This
simulation experiment shows that erroneous values for the prior geostatistical parameters are a possible
explanation for the relative poor performance in the real-world case.

Observed and Simulated Yearly Water Balance Components: Tipping Bucket Precipitation (P), Evapotranspiration (ET), and Surface Runoff (Q) of the Rollesbroich
Catchment for Different Real-World Simulation Scenarios

OBSERVATION
Period P [mm] ET [mm] Q [mm)] P-ET-Q [mm)]
2011 953 n/a 392 n/a n/a
REAL-WORLD EXPERIMENTS

P [mm] ET [mm] Q [mm)] P-ET-Q [mm)]
Scenario Period Sum Sum Max Min Sum Max Min Mean %
REAL_OL 2011 953 488 513 437 546 1118 165 —81 —8.5
REAL_ST 2011 953 467 483 444 272 447 139 214 22.5
REAL_PAR_1 2011 953 471 486 444 342 558 180 140 14.7
REAL_PAR_5d 2011 953 467 483 445 262 423 137 224 23.5
Note. n/a = not available.
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Such erroneous initial guesses of geostatistical parameters can, for example, also be related to the existence
of preferential flow through macropores, which was already observed at the nearby Wiistebach site
(Wiekenkamp et al., 2016) and other studies investigating in situ SWC observations (e.g., Martini et al.,
2015; Poltoradnev et al., 2016). The underrepresentation of preferential flow in the model might explain
the high bias at 50-cm depth for the real-world simulations having a large influence on the infiltration of
a grassland with an extensive rooted top soil layer (Weiler & Naef, 2003). This issue was already indicated
by Gebler et al. (2017) for a slightly different ParFlow-CLM setup for the Rollesbroich study site.
Furthermore, the representation of the saprolite and the drainage system in the subsurface might be subop-
timal in our simulation model and could be better represented with a dual porosity approach (e.g., Frey et al.,
2012; Frey et al., 2016). Moreover, an unknown additional storage in the bedrock fractures potentially has
influence on the baseflow of the Kieselbach (Hale et al., 2016). The representation of the drainage system
in the model might be an additional cause for the model structural error, although no direct evidence in
the SWC spatial error distribution was found.

Other limitations of the DA experiments are potentially associated with update frequency, ensemble size,
and filter inbreeding. Whereas the larger ensemble size of 256 gives slightly better results than the ensemble
size of 128, the overall effect of the increased ensemble size is small. Nevertheless, it is found that in the DA
experiments, especially in case of daily updating and the real-world experiment, the ensemble variance
decreases too fast and is too low. For the real-world case, in too many cases, the observations are not covered
by the ensemble of model simulations. As a consequence, restricted weights are assigned to the measure-
ments, which have too little influence on the state and parameter updates (e.g., Evensen, 2004; Hendricks
Franssen & Kinzelbach, 2008; Houtekamer & Mitchell, 1998; Zhang et al., 2007). For the synthetic case,
the observations are generally well covered by the ensemble of model simulations shown in Figure 5 (note
that +1 standard deviation is plotted for the ensembles). The only exception is scenario SYN_PARKs_1 with
biased hydraulic conductivity, indicating the negative impact of biases, which could also be the reason for
the reduced performance of the real-world case. While for the synthetic case the ensemble spread for soil
moisture is adequate in general, the parameter spread is sometimes too narrow. Figure 6 shows that this
is the case for the shallow layers, for several of the scenarios with daily parameter updating. A possible expla-
nation is that updating hydraulic conductivity compensates for uncertain « and n parameters, which are not
updated. However, also for the scenario SYN_PARan_1 the ensemble of estimated parameters does not
include the reference values for Horizons 1 and 3. Therefore, also the synthetic case appears to be affected
to some degree by filter inbreeding impacting the parameter estimation, in spite of applying dampening
and tests with a relatively large ensemble size of 256. In a comparison study of seven EnKF variants,
Keller et al. (2018) showed for two physical setups and 1,000 synthetic studies per physical setup that the
introduction of the damping factor improves the parameter estimation for relatively small ensemble sizes,
in comparison to the standard EnKF without damping factor. Although the damping factor and other simple
inflation methods have been applied successfully (e.g., Aksoy et al., 2006; Erdal et al., 2014; Hendricks
Franssen & Kinzelbach, 2008), these methods are subject of discussion (Houtekamer & Zhang, 2016). The
reduced impact of the error statistics in the EnKF potentially obscures other sources of error and, therefore,
can lead to inconsistencies in the derivation of the Kalman gain (Houtekamer & Zhang, 2016). The question
is how the estimation of spatially distributed parameters can be further improved in the future avoiding filter
inbreeding. In order to answers this question, we see three different strategies, which can also be applied in
combination. First, the application of localization to reduce the influence of spurious correlations may be
useful (Houtekamer & Mitchel, 2001; Anderson, 2007). A more sophisticated DA strategy including localiza-
tion could potentially improve the results, as suggested by Rasmussen et al. (2015) who performed tests with
integrated terrestrial models, but this option was not yet available and implemented in our TerrSysMP-
PDAF framework. Second, the use of normal score ensemble Kalman filter (NS-EnKF; Zhou et al., 2012;
Schoniger et al., 2012), which includes a step to make the marginal distributions of states and parameters
Gaussian, may show improvements. The NS-EnKF update is performed then in terms of transformed vari-
ables. The transformation may be helpful in case of strongly skewed pressure head distributions in the
vadose zone under dry conditions (Erdal et al., 2015; Zhang et al., 2018). Especially under extremely dry con-
ditions it could be expected that NS-EnKF outperforms classical EnKF. However, our study area was not
affected by these very dry conditions; thus, the advantage of using NS-EnKF, in combination with a relative
small ensemble size, would probably have been limited. NS-EnKF is not implemented yet in combination
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with TerrSysMP-PDAF because it is associated with additional challenges in terms of (complex) paralleliza-
tion. Third, in very recent work, we found that combining the EnKF with a pilot points method (PP-EnKF)
can preserve ensemble spread much better than (other variants of) EnKF. The PP-EnKF method does not
need more compute time than classical EnKF. In this method, the update at measurement locations is done
with numerically estimated covariances, and between measurement locations analytical covariance func-
tions are applied for parameters. The method still needs to be implemented in the TerrSysMP-
PDAF framework.

Discharge was in general not well reproduced in the experiments showing that the SWC characterization is
not the main factor for improving discharge estimation. Nevertheless, for the best performing scenarios in
the synthetic case the considerable NSE improved from —0.04 to 0.61 is related to assimilation of SWC-data
and parameter estimation. For this small hillslope scale where precipitation uncertainty plays a minor role,
still a higher impact of SWC-assimilation could have been expected. Particularly for the real-world case
where the improvement of discharge estimation related to DA and parameter estimation was smaller. The
representation of the Kieselbach in the model is critical (Gebler et al., 2017). Given the small spatial extent
of the channel (0.3-1.0 m) the interaction between surface water and groundwater is highly sensitive to the
vertical pressure gradient which controls the reinfiltration of groundwater into the channel. The assimila-
tion of discharge data, combined with the updating of Manning's roughness coefficient as well as other
Mualem-van Genuchten soil hydraulic properties, could further improve discharge estimation. Baatz et al.
(2017) demonstrated the benefit of estimating Manning's roughness coefficients on the discharge simulation
of a 2-D regional-scale synthetic ParFlow model.

The assimilation of SWC data had in most scenarios no significant effect on the reproduction of the annual
actual ET in the synthetic simulations, which was already very good in the open loop. However, the scenario
with a systematic too high saturated hydraulic conductivity for the upper soil layers created drought stress
and underestimation of ET, showing that SWC assimilation for drier conditions with limited water supply
has potentially more impact.

Overall, this study indicates that DA with integrated physically based terrestrial systems models can poten-
tially strongly improve SWC and parameter characterization, but that (realistic) biases in prior (geo)statisti-
cal parameters can already degrade the performance considerably. Although DA under those conditions
with bias still improves SWC characterization, the estimation of fluxes like discharge and ET might degrade.
This points to the high importance of the assimilation of additional data, including ET measurements or
proxies of ET, which is until now not very common in integrated terrestrial systems modeling, as these data
are often only used for verification.

6. Conclusions

This study investigated the assimilation of high-resolution SWC data with the EnKF in the fully coupled land
surface-subsurface model TerrSysMP. The assimilation experiments were performed for the small head-
water grassland catchment Rollesbroich in the Eifel (Germany), or alternatively, for a synthetic reality
which mimics this catchment. DA experiments were performed with an ensemble size of 128 (256) model
realizations at 10 X 10-m lateral resolution and a variable vertical resolution (0.025-0.575 m) which resulted
in a problem size of 0.3 million unknowns. The individual realizations were set up with a fully heteroge-
neous subsurface with geostatistical realizations of Mualem-van Genuchten soil hydraulic properties. The
following DA experiments were performed: (i) daily state updating, (ii) daily joint state parameter updating,
and (iii) daily state updating combined with parameter updating each 5 days and a damping factor. In addi-
tion, for the synthetic test case also experiments were performed where (i) Mualem-van Genuchten para-
meters o and n were deterministic and only saturated hydraulic conductivity uncertain, and (ii) prior
geostatistical parameters like the mean saturated hydraulic conductivity and the range of all soil hydraulic
parameters were systematically biased. In all experiments SWC data from 61 sensor network locations and
three depths (5, 20, and 50 cm) were assimilated.

Considerable improvement was found for the synthetic case, which showed on average 40-55% RMSE
reduction for the verification locations and for the different DA scenarios. Also the discharge estimation
was improved with a NSE of —0.04 for the open loop and ~0.61 for the DA scenarios, which involved para-
meter estimation. It was found that estimated saturated hydraulic conductivity was much closer to the
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reference values (after joint state-parameter updating). However, in case of biased prior geostatistical para-
meters the characterization of SWC and saturated hydraulic conductivity improved less, and the estimation
of discharge and ET was even degraded with DA.

For the real-world case the EnKF in combination with joint updating of model states and hydraulic conduc-
tivity was more efficient in updating the SWC than state updating alone. For joint state-parameter updating
the average RMSE for the overall SWC sensor locations decreased by 14% for the real-world scenario with
joint state-parameter updating and damping while state updating reduced the RMSE only by 6%. The
improvement of the SWC characterization for the real-world case was limited. The uppermost layer of 5-
cm depth exhibited a performance impoverishment, indicated by strong RMSE increases. The discharge
for the verification period was only marginally improved, although some discharge improvement was found,
if both states and parameters were updated with DA. In particular, the systematic bias up to 65% between
real-world model simulations and measurements was not significantly improved.

In order to explain the very different results for the real-world case and the synthetic case, it is important to
point to the very different RMSE for the open loop runs for the real-world case and the synthetic case. The
RMSE for the open loop run, calculated over the 61 measurement locations and upper three layers, was 53%
lower for the synthetic case than for the real-world case. This can be related to model structural errors, and
these same model structural errors might have inhibited the positive impact of DA as updated parameters
just might have compensated for model structural errors. In this context, it was investigated whether results
could be better, if besides saturated hydraulic conductivity also Mualem-van Genuchten parameters « and n
were estimated. This was tested for the synthetic case by assuming that a and n were perfectly known and
only saturated hydraulic conductivity was uncertain. Results improved only very slightly compared to the
scenarios where o and n were unknown and point to the fact that for this case the uncertain o and n were
not a main additional limitation to improve SWC estimation by DA. However, from the synthetic experi-
ment with relative modest biases in the prior geostatistical parameters, for example related to preferential
flow, we conclude that such biases could explain the relative poor performance of the DA experiments for
the real-world case.

In summary, the potential of assimilating SWC observations at the hillslope scale to improve the character-
ization of spatially distributed SWC and discharge has been demonstrated for the synthetic case, which
mimicked the real-world case with all its complexities including 3-D fully distributed fields of saturated
hydraulic conductivity and Mualem-van Genuchten parameters o and n. The fact that for the real-world case
the improvements induced by DA were much smaller we attribute mainly to model structural errors like
biases in prior geostatistical parameters and also other model structural errors like the representation of
drainage might have played some role. These results might be site specific, and a similar approach could give
better results at another hillslope site. However, it also points to the importance of precise estimates of prior
geostatistical parameters and the representation of small-scale processes (e.g., macropore flow), which are
difficult to capture, even with a physically based integrated terrestrial systems model. The study suggests that
for predictions with integrated terrestrial system models it is essential to assimilate multiple data types,
including (proxies of) ET.
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